# An Atlas of Orthogonal Discriminants 

Gabriele Nebe

Lehrstuhl für Algebra und Zahlentheorie
July 12, 2023

- ATLAS of finite groups ordinary character tables of finite simple groups classifying simple modules in characteristic 0
- ATLAS of Brauer tables modular character tables of finite simple groups classifying simple modules char. $p$ dividing the group order
- Extended versions available in GAP (Thomas Breuer) functionalities for computing with characters: products, exterior powers, symmetrizations, permutation characters, restriction to subgroups ...
- Characters classify group homomorphisms into linear groups.
- Underlying field always contains the character field $F(\chi)$ (a number field resp. a finite field)
- Sometimes contained in smaller classical group: Here: which orthogonal group?


## Orthogonal representations of finite groups

## ATLAS of orthogonal representations

- Current joint project with Richard Parker and Thomas Breuer:
- For all but the largest few ATLAS groups compute the discriminants of the invariant quadratic forms
- type of orthogonal group over finite fields


## Recall

- $V=\bigoplus_{i=1}^{n} K v_{i}$ vector space
- $Q: V \rightarrow K$ quadratic form
- $B_{Q}:(v, w) \mapsto Q(v+w)-Q(v)-Q(w)$ polarisation
- $\operatorname{disc}(Q):=(-1)^{\binom{n}{2}} \operatorname{det}\left(B_{Q}\left(v_{i}, v_{j}\right)_{1 \leq i, j \leq n}\right)\left(K^{\times}\right)^{2}$ discriminant


## Invariant quadratic forms

- $G$ a finite group, $K$ a field.
- $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ representation, $V=K^{n} K G$-module.


## Space of $G$-invariant quadratic forms

$\mathfrak{Q}(\rho):=\{Q: V \rightarrow K \mid Q$ quadratic form $Q(v \rho(g))=Q(v)$ for all $v \in V, g \in G\}$
$\rho$ is called orthogonal if there is $Q \in \mathfrak{Q}(\rho)$ non-degenerate.

- $\rho$ absolutely irreducible $\Rightarrow \mathfrak{Q}(\rho)=\{a Q \mid a \in K\}$.
- $\operatorname{disc}(a Q)=a^{n} \operatorname{disc}(Q) \in K^{\times} /\left(K^{\times}\right)^{2}$ well defined $\Leftrightarrow n$ even.


## Orthogonal stability

An ordinary or Brauer character $\chi$ is called orthogonally stable if there is a square class $d\left(F(\chi)^{\times}\right)^{2}$ such that for all representations $\rho: G \rightarrow \mathrm{GL}_{n}(L)$ with character $\chi$ and all non-degenerate $Q \in \mathfrak{Q}(\rho)$

$$
\operatorname{disc}(Q)=d\left(L^{\times}\right)^{2}
$$

$$
\operatorname{disc}(\chi):=d\left(F(\chi)^{\times}\right)^{2}
$$

is called the orthogonal discriminant of $\chi$.

## Theorem

$\chi$ is orthogonally stable, if and only if all its absolutely irreducible orthogonal constituents have even degree.

## Orthogonally simple characters

A character $\chi$ is called orthogonally simple if $\chi$ is orthogonal but it is not the sum of two orthogonal characters.

$$
\chi=\chi_{1}+\chi_{2} \Rightarrow \operatorname{disc}(\chi)=\operatorname{disc}\left(\chi_{1}\right) \operatorname{disc}\left(\chi_{2}\right) .
$$

## 3 Types of orthogonally simple characters

$$
\begin{aligned}
+ & \chi \\
& \in \operatorname{Irr}(G), \operatorname{ind}(\chi)=+. \\
& \chi \\
\text { - } & \chi=2 \psi, \psi \in \operatorname{Irr}(G), \operatorname{ind}(\psi)=- \text {. then } \operatorname{disc}(\chi)=1 . \\
\circ & \chi=\psi+\bar{\psi}, \psi \neq \bar{\psi} \in \operatorname{Irr}(G), \operatorname{ind}(\psi)=o . \\
L & :=\mathbb{Q}(\psi), K=\mathbb{Q}(\chi): L=K[\sqrt{-\delta}] \text { and } \operatorname{disc}(\chi)=(-\delta)^{\psi(1)}
\end{aligned}
$$

## Task

Determine orthogonal discrimimants of absolutely irreducible orthogonal characters of even degree.

## The discrimimant of the adjoint involution

- $B$ non-degenerate symmetric bilinear form
- adjoint involution $\iota_{B}$ on $\operatorname{End}(V)$

$$
\begin{gathered}
B(\alpha(v), w)=B\left(v, \iota_{B}(\alpha)(w)\right) \text { for all } v, w \in V . \\
E_{-}(B):=\left\{\alpha \in \operatorname{End}_{K}(V) \mid \iota_{B}(\alpha)=-\alpha\right\}
\end{gathered}
$$

- basis $\left(v_{1}, \ldots, v_{n}\right), \operatorname{End}(V) \cong K^{n \times n}$
- $\iota_{B}(A)=B A^{t r} B^{-1}$ and $E_{-}(B)=\left\{B X \mid X=-X^{t r}\right\}$ as
- $\iota_{B}(B X)=B(B X)^{t r} B^{-1}=B X^{t r}$.
- $X=-X^{t r} \Rightarrow \operatorname{det}(X)$ is a square


## Proposition

$\operatorname{dim}(V)$ even $\Rightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq\{ \}$.
Then $\operatorname{det}(B)=\operatorname{det}(\alpha)\left(K^{*}\right)^{2}$ for any invertible $\alpha \in E_{-}(B)$.

## Computing the discriminant: Example 1

## Proposition

```
dim}(V)\mathrm{ even }=>\mp@subsup{E}{-}{\prime}(B)\cap\textrm{GL}(V)\not={}
```

Then $\operatorname{det}(B)=\operatorname{det}(\alpha)\left(K^{*}\right)^{2}$ for any invertible $\alpha \in E_{-}(B)$.

- $Q \in \mathfrak{Q}(\rho)$ non-degenerate, $\rho(G) \leq O(Q), n:=\operatorname{dim}(\rho)$ even.
- $\iota_{B_{Q}}(g)=g^{-1}=: \iota(g)$ for all $g \in \rho(G)$.
- Take three random elements in $\rho(G) ; g, h, k$.
- Compute $X=X(g, h, k)=g-g^{-1}+h-h^{-1}+k-k^{-1}$.
- If $\operatorname{det}(X) \neq 0$ then $\operatorname{disc}(Q)=(-1)^{\binom{n}{2}} \operatorname{det}(X)\left(K^{\times}\right)^{2}$.

$$
\begin{aligned}
& U_{3}(3)=\left\{\bar{X} \in \mathbb{H}_{9}^{3 \times 3} \mid \bar{X}^{t r}=I_{3}, \operatorname{det}(X)=1\right\}, U_{3}(3):\langle a\rangle, \alpha(X)=\bar{X}
\end{aligned}
$$

## Computing the discriminant: Example 2

- $G=U_{3}(3), \chi(1)=14, Q \in \mathfrak{Q}\left(\rho_{\chi}\right)$.
- $g \in \rho(G), g^{7}=1$ : Eigenvalues: all 7th root of 1, multiplicity 2.
- $V=V_{1} \perp V_{z}, \operatorname{dim}\left(V_{z}\right)=12, g_{z}:=g_{\mid V_{z}}$
- $\operatorname{det}\left(V_{z}\right)=\operatorname{det}\left(g_{z}-g_{z}^{-1}\right)=\prod_{i=1}^{6}\left(\zeta_{7}^{i}-\zeta_{7}^{-i}\right)^{2}$ is a square.
- $h \in N_{G}(\langle g\rangle), h^{3}=1$ acts on $V_{1}$ with minimal polynomial $X^{2}+X+1$
- so $\operatorname{det}\left(V_{1}\right)=\operatorname{det}\left(h_{1}-h_{1}^{-1}\right)=\left(\zeta_{3}-\zeta_{3}^{-1}\right)\left(\zeta_{3}^{-1}-\zeta_{3}\right)=3$
$-\operatorname{disc}(\chi)=(-1) \operatorname{det}\left(V_{1}\right) \operatorname{det}\left(V_{z}\right)=-3\left(\mathbb{Q}^{\times}\right)^{2}$.


## Computing the discriminant: Example 3

## Theorem (Eva Bayer 2015)

Assume that there is $g \in O(Q)$ such that $P(1) P(-1) \neq 0$, where $P$ is the characteristic polynomial of $g$. Then $\operatorname{det}(g)=1, n=\operatorname{dim}(V)$ is even, and $\operatorname{det}(Q)=P(1) P(-1)\left(K^{\times}\right)^{2}$.

- $P=\prod_{i=1}^{n}\left(X-\xi_{i}\right) \in \bar{K}[X]$
- $g \sim g^{-1}=B_{Q} g^{t r} B_{Q}^{-1} \Rightarrow \operatorname{mult}\left(\xi_{i}^{-1}\right)=\operatorname{mult}\left(\xi_{i}\right)$.
- $\xi_{i} \neq \xi_{i}^{-1} \Rightarrow \operatorname{det}(g)=\prod_{j=1}^{n} \xi_{j}=1$ and $n$ is even.

$$
P(1) P(-1)=\prod_{j=1}^{n}\left(\xi_{j}^{2}-1\right)=\left(\prod_{j=1}^{n} \xi_{j}\right) \prod_{j=1}^{n}\left(\xi_{j}-\xi_{j}^{-1}\right)=\operatorname{det}(g) \operatorname{det}\left(g-g^{-1}\right)
$$

so $P(1) P(-1)=\operatorname{det}\left(g-g^{-1}\right)=\operatorname{det}(Q)$ up to squares.

## Fields of characteristic 2: Non-Example

- $K$ a field of characteristic 2
- $Q: V \rightarrow K$ non-degenerate quadratic form
- $Q \in K^{n \times n}, Q(x)=x Q x^{t r}$.
- $B=Q+Q^{t r}$ Gram matrix of polarisation.
- $\ell:=Q B^{-1}$

Then $\operatorname{dim}(V)=n=2 m$ even and $\operatorname{Arf}(Q)=s(\ell)+m(m-1) / 2$ where $P_{\ell}=X^{n}+t X^{n-1}+s(\ell) X^{n-2}+\ldots$ characteristic polynomial.


## An application

## Theorem

$\chi$ is orthogonally stable, if and only if all its absolutely irreducible orthogonal constituents have even degree.

## Task

Determine orthogonal discrimimants of absolutely irreducible orthogonal characters of even degree.

## Theorem

Absolutely irreducible orthogonal characters of even degree are orthogonally stable.

- Finite fields:
- $K=F(\chi), \rho: G \rightarrow \mathrm{GL}_{n}(K), \chi_{\rho}=\chi$.
- $\mathfrak{Q}(\rho)=\{a Q \mid a \in K\}$.
- $\operatorname{disc}(\chi)=\operatorname{disc}(Q)$


## An application: Example 4

## Theorem

Absolutely irreducible orthogonal characters of even degree are orthogonally stable.

- Number fields:
- $K=\mathbb{Q}(\chi)$ characterfield
- $A:=\langle\rho(g) \mid g \in G\rangle_{\mathbb{Q}}$ is a central simple $K$-algebra.
- $\iota_{B}$ inverts the group elements
- $E_{-}(\rho):=E_{-}(B) \cap A=\left\langle\rho(g)-\rho\left(g^{-1}\right) \mid g \in G\right\rangle_{\mathbb{Q}}$
$E_{-}(\rho)$ contains invertible elements $X$.
- $d:=N_{r e d}(X) \in K$
$-\operatorname{disc}(\chi)=d\left(K^{\times}\right)^{2}$.


## The character table of $J_{2}$



## The character table of $J_{2}$

- Rational Schur index of 336 is 2 .
- So need 672 dimensional rational representation, dimension of space of invariant quadratic forms is 3 .
- But over $\mathbb{F}_{p}, p \geq 7$ this is a well defined character of an orthogonal representation of degree 336 .
- Compute disc(336):
- Construct 672-dimensional rational representation $\rho$
- Choose $g, h, k \in \rho(G)$, compute

$$
X=X(g, h, k)=g-g^{-1}+h-h^{-1}+k-k^{-1} \in \rho\left(E_{-}(\mathbb{Q} G)\right) .
$$

- $\operatorname{disc}(336)=N_{\text {red }}(X)\left(\mathbb{Q}^{\times}\right)^{2}$.


## Further applications

## Split extensions $G$ : 2 (Example 5)

Groups with non-trivial center (ind. o, Spinor norm)

## Reduction to simple groups

Enough to compute $\operatorname{disc}(\chi)$ for absolutely irreducible even degree orthogonal characters of simple groups.

$$
p \text {-groups }(G \neq 1 \Rightarrow Z(G) \neq 1)
$$

- Let $G$ be a $p$-group, $\chi$ orthogonally stable
- explicit formula for $\operatorname{disc}(\chi)$
- $\operatorname{disc}(\chi)=(-p)^{\chi(1) / 2}$ if $p \equiv 3(\bmod 4)$
- $\operatorname{disc}(\chi)=(-1)^{\chi(1) / 2}$ for $p=2$.
- Similar for $p \equiv 1(\bmod 4)$
- $\mathbb{Q}(\chi)=\mathbb{Q}, p \equiv 1(\bmod 4) \Rightarrow \operatorname{disc}(\chi)=p^{\chi(1) /(p-1)}$.


## Orthogonal Condensation

- Large $K G$-module $V$ with composition factors $S_{1}, \ldots, S_{t}$
- compute idempotent $e \in K G$
- condensed module $V e$ is module for $e K G e$
- composition factors $\left\{S_{i} e \mid 1 \leq i \leq t\right\}-\{0\}$.
- Problem:
- $\left\{g_{1}, \ldots, g_{s}\right\} K$-algebra generating set of $K G$
- then set $\left\{e g_{i} e \mid 1 \leq i \leq s\right\}$ does not generate $e K G e$
- However we know the involution on $e K G e, e g e \mapsto e g^{-1} e$.


## Orthogonal Condensation: Example 6

- $V$ a permutation module, $p$ odd prime
- $H \in \operatorname{Syl}_{p}(G), e:=\frac{1}{|H|} \sum_{h \in H} h$.
- $V(1-e)_{\mid H}$ orthogonally stable of known orthogonal discriminant
- Ve spanned by the $H$-orbit sums
- yields $e g_{i} e, i=1, \ldots, 10$
- $\iota\left(e g_{i} e\right)=e g_{i}^{-1} e$
- $A=\left\langle e g_{i} e, e g_{i}^{-1} e \mid 1 \leq i \leq 10\right\rangle_{\mathbb{Q}-a l g e b r a}$
- Reduce modulo primes $\neq p$
- Compute determinant of skew element of $A$ on composition factors
- Enough primes $\Rightarrow$ discriminant of this composition factor.


## Harada Norton group

- $G=H N, \operatorname{dim}(V)=108,345,600, p=5$.
- $\operatorname{dim}(V e)=7008$.
- $\operatorname{disc}(\chi)=4 \sqrt{5}+17$ for $\chi(1)=5,103,000$.


## The discriminant field

## Definition

$\chi$ ordinary orthogonally stable character, $K=\mathbb{Q}(\chi)$ character field, $d\left(K^{\times}\right)^{2}=\operatorname{disc}(\chi)$. Then $\Delta(\chi):=K[\sqrt{d}]$ discriminant field of $\chi$.

## Theorem

$\wp \unlhd \mathbb{Z}_{K}$ prime ideal such that $\chi(\bmod \wp)$ is orthogonally stable. Then

- $\wp$ is unramified in $\Delta(\chi) / K$.
- $\wp$ is split in $\Delta(\chi) / K$ if and only if $\operatorname{disc}(\chi(\bmod \wp))=1$.

In particular only prime divisors of the group order ramify in $\Delta(\chi) / K$.
$\mathbb{Q}(\chi)=\mathbb{Q}, \chi(\bmod 2)$ orthogonally stable $\Rightarrow \operatorname{disc}(\chi) \equiv 1(\bmod 4)$.

## The discriminant field

## Definition

$\chi$ ordinary orthogonally stable character, $K=\mathbb{Q}(\chi)$ character field, $d\left(K^{\times}\right)^{2}=\operatorname{disc}(\chi)$. Then $\Delta(\chi):=K[\sqrt{d}]$ discriminant field of $\chi$.

## Theorem

$\wp \unlhd \mathbb{Z}_{K}$ prime ideal such that $\chi(\bmod \wp)$ is orthogonally stable. Then

- $\wp$ is unramified in $\Delta(\chi) / K$.
- $\wp$ is split in $\Delta(\chi) / K$ if and only if $\operatorname{disc}(\chi(\bmod \wp))=1$.

In particular only prime divisors of the group order ramify in $\Delta(\chi) / K$.

If $\chi$ lies in a $\wp$-block of defect 1 then $\chi(\bmod \wp)$ is orthogonally stable if and only if $\wp$ is unramified in $\Delta(\chi) / K$.

## Ordinary character table of $J_{1}$.



| $\chi$ | $56 a$ | $56 b$ | $76 a$ | $76 b$ | $120 a$ | $120 b$ | $120 c$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbb{Q}(\chi)$ | $\mathbb{Q}[\sqrt{5}]$ | $\mathbb{Q}[\sqrt{5}]$ | $\mathbb{Q}$ | $\mathbb{Q}$ | $\mathbb{Q}\left[c_{19}\right]$ | $\mathbb{Q}\left[c_{19}\right]$ | $\mathbb{Q}\left[c_{19}\right]$ |
| $p=2$ | $56 a$ | $56 b$ | $76 a$ | $76 b$ | $120 a$ | $120 b$ | $120 c$ |
| $p=3$ | $56 a$ | $56 b$ | $76 a$ | $76 b$ | $120 a$ | $120 b$ | $120 c$ |
| $p=5$ | $56 a$ | $56 a$ | $76 a$ | $76 b$ | $120 a$ | $120 b$ | $120 c$ |
| $p=7$ | $56 a$ | $56 b$ | $1+7531+45$ | $45+75$ | $31+89$ | 120 |  |
| $p=11$ | 56 | $7+4927+49$ | $7+69$ | $1+119$ | $56+64$ | $14+106$ |  |
| $p=19$ | $1+55$ | $22+34$ | $76 a$ | $76 b$ | $43+77$ | $43+77$ | $43+77$ |
| $\operatorname{disc}(\chi)$ | $17-4 \sqrt{5} 517+4 \sqrt{5}$ | 77 | $7729-18 c_{19}-9 c_{19}^{\prime} 47+9 c_{19}+18 c_{19}^{\prime} 38+9 c_{19}-9 c_{19}^{\prime}$ |  |  |  |  |

$\Delta(\chi) / \mathbb{Q}$ is not Galois for $\chi \in\{56 a, 56 b, 120 a, 120 b, 120 c\}$.

## Theorem (Marie Roth)

If $G$ is a solvable group then $\Delta(\chi) / \mathbb{Q}$ is Abelian.

## Observation

Non-Galois extensions only occur for sporadic groups.

## Parker's Conjecture

If $\operatorname{disc}(\chi)=d\left(K^{\times}\right)^{2}$ then for all dyadic valuations $\nu$ of $K$ we have that $\nu(d)$ is even.

## Theorem (N.)

Parker's conjecture holds for solvable groups.

## Observation

No counterexamples to Parker's conjecture so far.

