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I ATLAS of finite groups
ordinary character tables of finite simple groups
classifying simple modules in characteristic 0

I ATLAS of Brauer tables
modular character tables of finite simple groups
classifying simple modules char. p dividing the group order

I Extended versions available in GAP (Thomas Breuer)
functionalities for computing with characters:
products, exterior powers, symmetrizations,
permutation characters, restriction to subgroups ...

I Characters classify group homomorphisms into linear groups.
I Underlying field always contains the character field F (χ)

(a number field resp. a finite field)
I Sometimes contained in smaller classical group:

Here: which orthogonal group?



Orthogonal representations of finite groups

ATLAS of orthogonal representations

I Current joint project with Richard Parker and Thomas Breuer:
I For all but the largest few ATLAS groups compute the

discriminants of the invariant quadratic forms
I type of orthogonal group over finite fields

Recall
I V =

⊕n
i=1Kvi vector space

I Q : V → K quadratic form
I BQ : (v, w) 7→ Q(v + w)−Q(v)−Q(w) polarisation

I disc(Q) := (−1)(
n
2) det(BQ(vi, vj)1≤i,j≤n)(K×)2 discriminant



Invariant quadratic forms

I G a finite group, K a field.
I ρ : G→ GLn(K) representation, V = Kn KG-module.

Space of G-invariant quadratic forms

Q(ρ) := {Q : V → K | Q quadratic form Q(vρ(g)) = Q(v)
for all v ∈ V, g ∈ G}

ρ is called orthogonal if there is Q ∈ Q(ρ) non-degenerate.

I ρ absolutely irreducible⇒ Q(ρ) = {aQ | a ∈ K}.

I disc(aQ) = an disc(Q) ∈ K×/(K×)2 well defined⇔ n even.



Orthogonal stability

An ordinary or Brauer character χ is called orthogonally stable
if there is a square class d(F (χ)×)2 such that
for all representations ρ : G→ GLn(L) with character χ and all
non-degenerate Q ∈ Q(ρ)

disc(Q) = d(L×)2.

disc(χ) := d(F (χ)×)2

is called the orthogonal discriminant of χ.

Theorem
χ is orthogonally stable, if and only if all its absolutely irreducible
orthogonal constituents have even degree.



Orthogonally simple characters

A character χ is called orthogonally simple if χ is orthogonal but it is
not the sum of two orthogonal characters.

χ = χ1 + χ2 ⇒ disc(χ) = disc(χ1) disc(χ2).

3 Types of orthogonally simple characters

+ χ ∈ Irr(G), ind(χ) = +.
χ orthogonally stable⇔ χ(1) even.

- χ = 2ψ, ψ ∈ Irr(G), ind(ψ) = −. then disc(χ) = 1.
◦ χ = ψ + ψ, ψ 6= ψ ∈ Irr(G), ind(ψ) = ◦.
L := Q(ψ), K = Q(χ): L = K[

√
−δ] and disc(χ) = (−δ)ψ(1)

Task
Determine orthogonal discrimimants of absolutely irreducible
orthogonal characters of even degree.



The discrimimant of the adjoint involution

I B non-degenerate symmetric bilinear form
I adjoint involution ιB on End(V )

B(α(v), w) = B(v, ιB(α)(w)) for all v, w ∈ V.

E−(B) := {α ∈ EndK(V ) | ιB(α) = −α}
I basis (v1, . . . , vn), End(V ) ∼= Kn×n

I ιB(A) = BAtrB−1 and E−(B) = {BX | X = −Xtr} as
I ιB(BX) = B(BX)trB−1 = BXtr.

I X = −Xtr ⇒ det(X) is a square

Proposition

dim(V ) even⇒ E−(B) ∩GL(V ) 6= {}.
Then det(B) = det(α)(K∗)2 for any invertible α ∈ E−(B).



Computing the discriminant: Example 1

Proposition

dim(V ) even⇒ E−(B) ∩GL(V ) 6= {}.
Then det(B) = det(α)(K∗)2 for any invertible α ∈ E−(B).

I Q ∈ Q(ρ) non-degenerate, ρ(G) ≤ O(Q), n := dim(ρ) even.

I ιBQ
(g) = g−1 =: ι(g) for all g ∈ ρ(G).

I Take three random elements in ρ(G); g, h, k.
I Compute X = X(g, h, k) = g − g−1 + h− h−1 + k − k−1.

I If det(X) 6= 0 then disc(Q) = (−1)(
n
2) det(X)(K×)2.



U3(3) = {X ∈ F3×3
9 | XXtr

= I3,det(X) = 1}, U3(3) : 〈α〉, α(X) = X

; @ @ @ @ @ @ @ @ @ @ @ @ @ @ ; ; @ @ @ @ @ @

6048 96 108 9 96 96 16 12 7 7 8 8 12 12 24 24 3 4 6 6
p power A A A A A A AA A A A B AB AA A A BB C AD AD
p’ part A A A A A A AA A A A A AA AB A A BB A AD AD
ind 1A 2A 3A 3B 4A B** 4C 6A 7A B** 8A B** 12A B** fus ind 2B 4D 6B 8C 12C D**

X_1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : ++ 1 1 1 1 1 1

X_2 - 6 -2 -3 0 -2 -2 2 1 -1 -1 0 0 1 1 : oo 0 0 0 0 i3 -i3

X_3 + 7 -1 -2 1 3 3 -1 2 0 0 -1 -1 0 0 : ++ 1 -3 1 -1 0 0

X_4 o 7 3 -2 1 -2i-1 2i-1 1 0 0 0 i -i i-1-i-1 . + 0 0 0 0 0 0
|

X_5 o 7 3 -2 1 2i-1 -2i-1 1 0 0 0 -i i-i-1 i-1 .

X_6 + 14 -2 5 -1 2 2 2 1 0 0 0 0 -1 -1 : ++ 2 -2 -1 0 1 1

X_7 + 21 5 3 0 1 1 1 -1 0 0 -1 -1 1 1 : ++ 3 -1 0 1 -1 -1

X_8 o 21 1 3 0 2i-3 -2i-3 -1 1 0 0 i -i -i i . + 0 0 0 0 0 0
|

X_9 o 21 1 3 0 -2i-3 2i-3 -1 1 0 0 -i i i -i .

X_10 + 27 3 0 0 3 3 -1 0 -1 -1 1 1 0 0 : ++ 3 3 0 -1 0 0

X_11 o 28 -4 1 1 4i -4i 0 -1 0 0 0 0 i -i . + 0 0 0 0 0 0
|

X_12 o 28 -4 1 1 -4i 4i 0 -1 0 0 0 0 -i i .

X_13 o 32 0 -4 -1 0 0 0 0 -b7 ** 0 0 0 0 . + 0 0 0 0 0 0
|

X_14 o 32 0 -4 -1 0 0 0 0 ** -b7 0 0 0 0 .



Computing the discriminant: Example 2

I G = U3(3), χ(1) = 14, Q ∈ Q(ρχ).

I g ∈ ρ(G), g7 = 1: Eigenvalues: all 7th root of 1, multiplicity 2.
I V = V1 ⊥ Vz, dim(Vz) = 12, gz := g|Vz

I det(Vz) = det(gz − g−1z ) =
∏6
i=1(ζi7 − ζ−i7 )2 is a square.

I h ∈ NG(〈g〉), h3 = 1 acts on V1 with minimal polynomial
X2 +X + 1

I so det(V1) = det(h1 − h−11 ) = (ζ3 − ζ−13 )(ζ−13 − ζ3) = 3

I disc(χ) = (−1) det(V1) det(Vz) = −3(Q×)2.



Computing the discriminant: Example 3

Theorem (Eva Bayer 2015)

Assume that there is g ∈ O(Q) such that P (1)P (−1) 6= 0, where P is
the characteristic polynomial of g. Then det(g) = 1, n = dim(V ) is
even, and det(Q) = P (1)P (−1)(K×)2.

I P =
∏n
i=1(X − ξi) ∈ K[X]

I g ∼ g−1 = BQg
trB−1Q ⇒ mult(ξ−1i )=mult(ξi).

I ξi 6= ξ−1i ⇒ det(g) =
∏n
j=1 ξj = 1 and n is even.

P (1)P (−1) =

n∏
j=1

(ξ2j−1) = (

n∏
j=1

ξj)

n∏
j=1

(ξj−ξ−1j ) = det(g) det(g−g−1)

so P (1)P (−1) = det(g − g−1) = det(Q) up to squares.



Fields of characteristic 2: Non-Example
I K a field of characteristic 2
I Q : V → K non-degenerate quadratic form
I Q ∈ Kn×n, Q(x) = xQxtr.
I B = Q+Qtr Gram matrix of polarisation.
I ` := QB−1

Then dim(V ) = n = 2m even and Arf(Q) = s(`) +m(m− 1)/2 where
P` = Xn + tXn−1 + s(`)Xn−2 + . . . characteristic polynomial.

O−(2n,K) O+(2n,K)

Sp(2n,K)



An application

Theorem
χ is orthogonally stable, if and only if all its absolutely irreducible
orthogonal constituents have even degree.

Task
Determine orthogonal discrimimants of absolutely irreducible
orthogonal characters of even degree.

Theorem
Absolutely irreducible orthogonal characters of even degree are
orthogonally stable.

I Finite fields:
I K = F (χ), ρ : G→ GLn(K), χρ = χ.
I Q(ρ) = {aQ | a ∈ K}.
I disc(χ) = disc(Q)



An application: Example 4

Theorem
Absolutely irreducible orthogonal characters of even degree are
orthogonally stable.

I Number fields:

I K = Q(χ) characterfield

I A := 〈ρ(g) | g ∈ G〉Q is a central simple K-algebra.
I ιB inverts the group elements
I E−(ρ) := E−(B) ∩A = 〈ρ(g)− ρ(g−1) | g ∈ G〉Q
E−(ρ) contains invertible elements X.

I d := Nred(X) ∈ K
I disc(χ) = d(K×)2.



The character table of J2



The character table of J2

I Rational Schur index of 336 is 2.
I So need 672 dimensional rational representation, dimension of

space of invariant quadratic forms is 3.
I But over Fp, p ≥ 7 this is a well defined character of an

orthogonal representation of degree 336.

I Compute disc(336):
I Construct 672-dimensional rational representation ρ

I Choose g, h, k ∈ ρ(G), compute
X = X(g, h, k) = g − g−1 + h− h−1 + k − k−1 ∈ ρ(E−(QG)).

I disc(336) = Nred(X)(Q×)2.



Further applications
Split extensions G : 2 (Example 5)

Groups with non-trivial center (ind. o, Spinor norm)

Reduction to simple groups

Enough to compute disc(χ) for absolutely irreducible even degree
orthogonal characters of simple groups.

p-groups (G 6= 1⇒ Z(G) 6= 1)

I Let G be a p-group, χ orthogonally stable
I explicit formula for disc(χ)

I disc(χ) = (−p)χ(1)/2 if p ≡ 3 (mod 4)

I disc(χ) = (−1)χ(1)/2 for p = 2.
I Similar for p ≡ 1 (mod 4)

I Q(χ) = Q, p ≡ 1 (mod 4)⇒ disc(χ) = pχ(1)/(p−1).



Orthogonal Condensation

I Large KG-module V with composition factors S1, . . . , St
I compute idempotent e ∈ KG
I condensed module V e is module for eKGe
I composition factors {Sie | 1 ≤ i ≤ t} − {0}.
I Problem:
I {g1, . . . , gs} K-algebra generating set of KG
I then set {egie | 1 ≤ i ≤ s} does not generate eKGe
I However we know the involution on eKGe, ege 7→ eg−1e.



Orthogonal Condensation: Example 6
I V a permutation module, p odd prime
I H ∈ Sylp(G), e := 1

|H|
∑
h∈H h.

I V (1− e)|H orthogonally stable of known orthogonal discriminant
I V e spanned by the H-orbit sums
I yields egie, i = 1, . . . , 10

I ι(egie) = eg−1i e

I A = 〈egie, eg−1i e | 1 ≤ i ≤ 10〉Q−algebra
I Reduce modulo primes 6= p

I Compute determinant of skew element of A on composition
factors

I Enough primes⇒ discriminant of this composition factor.

Harada Norton group

I G = HN , dim(V ) = 108, 345, 600, p = 5.
I dim(V e) = 7008.
I disc(χ) = 4

√
5 + 17 for χ(1) = 5, 103, 000.



The discriminant field

Definition
χ ordinary orthogonally stable character, K = Q(χ) character field,
d(K×)2 = disc(χ). Then ∆(χ) := K[

√
d] discriminant field of χ.

Theorem
℘E ZK prime ideal such that χ (mod ℘) is orthogonally stable. Then
I ℘ is unramified in ∆(χ)/K.
I ℘ is split in ∆(χ)/K if and only if disc(χ (mod ℘)) = 1.

In particular only prime divisors of the group order ramify in ∆(χ)/K.

Q(χ) = Q, χ (mod 2) orthogonally stable⇒ disc(χ) ≡ 1 (mod 4).



The discriminant field

Definition
χ ordinary orthogonally stable character, K = Q(χ) character field,
d(K×)2 = disc(χ). Then ∆(χ) := K[

√
d] discriminant field of χ.

Theorem
℘E ZK prime ideal such that χ (mod ℘) is orthogonally stable. Then
I ℘ is unramified in ∆(χ)/K.
I ℘ is split in ∆(χ)/K if and only if disc(χ (mod ℘)) = 1.

In particular only prime divisors of the group order ramify in ∆(χ)/K.

If χ lies in a ℘-block of defect 1 then χ (mod ℘) is orthogonally stable
if and only if ℘ is unramified in ∆(χ)/K.



Ordinary character table of J1.
; @ @ @ @ @ @ @ @ @ @ @ @ @ @ @

175560 120 30 30 30 6 7 10 10 11 15 15 19 19 19
p power A A A A AA A BA AA A BA AA A A A
p’ part A A A A AA A AA BA A AA BA A A A
ind 1A 2A 3A 5A B* 6A 7A 10A B* 11A 15A B* 19A B*5 C*4

X_1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X_2 + 56 0 2-2b5 * 0 0 0 0 1 b5 * -1 -1 -1

X_3 + 56 0 2 *-2b5 0 0 0 0 1 * b5 -1 -1 -1

X_4 + 76 4 1 1 1 1 -1 -1 -1 -1 1 1 0 0 0

X_5 + 76 -4 1 1 1 -1 -1 1 1 -1 1 1 0 0 0

X_6 + 77 5 -1 2 2 -1 0 0 0 0 -1 -1 1 1 1

X_7 + 77 -3 2 b5 * 0 0 b5 * 0 b5 * 1 1 1

X_8 + 77 -3 2 * b5 0 0 * b5 0 * b5 1 1 1

X_9 + 120 0 0 0 0 0 1 0 0 -1 0 0 c19 *5 *4

X_10 + 120 0 0 0 0 0 1 0 0 -1 0 0 *4 c19 *5

X_11 + 120 0 0 0 0 0 1 0 0 -1 0 0 *5 *4 c19

X_12 + 133 5 1 -2 -2 -1 0 0 0 1 1 1 0 0 0

X_13 + 133 -3 -2 -b5 * 0 0 b5 * 1 -b5 * 0 0 0

X_14 + 133 -3 -2 * -b5 0 0 * b5 1 * -b5 0 0 0

X_15 + 209 1 -1 -1 -1 1 -1 1 1 0 -1 -1 0 0 0

b5 = 1
2 (−1 +

√
5)

c19 = ζ + ζ7 + ζ8 + ζ11 + ζ12 + ζ18, ζ = exp(2πi/19)



χ 56a 56b 76a 76b 120a 120b 120c

Q(χ) Q[
√

5] Q[
√

5] Q Q Q[c19] Q[c19] Q[c19]
p = 2 56a 56b 76a 76b 120a 120b 120c
p = 3 56a 56b 76a 76b 120a 120b 120c
p = 5 56a 56a 76a 76b 120a 120b 120c
p = 7 56a 56b 1 + 7531 + 45 45 + 75 31 + 89 120
p = 11 56 7 + 4927 + 49 7 + 69 1 + 119 56 + 64 14 + 106
p = 19 1 + 55 22 + 34 76a 76b 43 + 77 43 + 77 43 + 77

disc(χ)17-4
√

517+4
√

5 77 7729-18c19-9c′1947+9c19+18c′1938+9c19-9c′19

∆(χ)/Q is not Galois for χ ∈ {56a, 56b, 120a, 120b, 120c}.



Theorem (Marie Roth)

If G is a solvable group then ∆(χ)/Q is Abelian.

Observation
Non-Galois extensions only occur for sporadic groups.

Parker’s Conjecture

If disc(χ) = d(K×)2 then for all dyadic valuations ν of K we have that
ν(d) is even.

Theorem (N.)

Parker’s conjecture holds for solvable groups.

Observation
No counterexamples to Parker’s conjecture so far.


