
Contemporary Mathematics

Unconditional computation of the class groups of
real quadratic fields

Ce Bian, Andrew R. Booker, Austin Docherty, Michael J. Jacobson, Jr.,
and Andrei Seymour-Howell

Abstract. We describe an algorithm, based on the Selberg trace formula and explicit
numerical computations of Maaß cusp forms, for computing the class groups and regula-
tors of all real quadratic fields of discriminant ∆ ≤ X in time O(X5/4+o(1)), without as-
suming any unproven conjectures. We applied the algorithm to compute up to X = 1011

and used the output to test various implications of the Cohen–Lenstra heuristics.

1. Introduction

Let K = Q(
√
∆) be the real quadratic field of discriminant ∆, Cl∆ the ideal class

group of order h∆ (the class number), and R∆ the regulator (natural logarithm of the
fundamental unit). Several authors, including Gauß, have produced tables of these in-
variants, listing class numbers, and sometimes regulators and elementary divisors of the
class groups, for all discriminants up to some bound; see Table 1.1 for a partial history.

Table 1.1. Notable tabulations of invariants of real quadratic fields.

Source Bound Invariants
Cayley 1862 ∆ < 99 h∆
Gauß 1893 ∆ < 1000 h∆

Saito and Wada 1988 [22] ∆ < 106 Cl∆, R∆

Jacobson 1998 [15] ∆ < 109 Cl∆, R∆

te Riele and Williams 2003 [27] p < 2 · 1011, p ≡ 1 (mod 4) h∆, R∆

Having extensive tables of class groups and regulators is useful for a variety of reasons.
For example, Gauß’ famous conjecture that there are infinitely many real quadratic fields
with class number one was made based on his data. The Cohen–Lenstra heuristics [9]
were also inspired by numerical data. Today, it is of interest to extend known tables
even further to strengthen existing numerical evidence in support of these conjectures
and others. In addition, tabulating class groups frequently uncovers new examples with
rare and interesting properties, such as the only known example of a real quadratic field
whose class group has 5-rank equal to 3 [15].

One important aspect of such tabulations is that, if the purpose is to provide numerical
evidence in support of unproven conjectures, it is desirable that the class groups and
regulators computed be unconditionally correct. This is especially important for cases
where the conjectures being tested are conditional on the same hypothesis required for the
correctness of the data, for example Littlewood’s bounds on extreme values of L-functions

1

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

dependent on the extended Riemann hypothesis. Unfortunately, the correctness of the
fastest algorithms for computing class groups of real quadratic fields is also dependent
on the extended Riemann hypothesis, and these conditional algorithms are significantly
faster than their unconditional counterparts.

Thus, it is tempting to use the faster conditionally correct algorithms for class group
tabulation because this enables the computation of much larger tables. For imaginary
quadratic fields, Ramachandran, Jacobson, and Williams [16] resolved this issue by em-
ploying a batch verification algorithm, using the Eichler–Selberg trace formula for holo-
morphic cusp forms to verify the correctness of the entire table of class groups in a
post-processing operation, allowing the tables of class groups to be extended significantly
in that case.

In this paper, we follow the same approach for real quadratic fields, using the Selberg
trace formula for Maaß forms as the basis for a novel algorithm for verifying a table of
class groups and regulators of real quadratic fields. This, combined with a modification
of the generic group structure algorithm of Buchmann and Schmidt [8] for producing the
table of class groups, allowed us to extend significantly the table of known class groups
to include all fields of discriminant up to 1.1×1011. Most importantly, thanks to the new
verification algorithm, our results are unconditionally correct for ∆ ≤ 1011, requiring no
assumptions of Riemann hypotheses. Following [15], our class group data was used to
test several unproved conjectures, for which no discrepancies were found. In addition,
some new examples of class groups with rare and unusual properties were discovered,
including the real quadratic field of smallest discriminant whose class group has 3-rank
≥ 4 (Cl∆ ∼= Z/2Z× (Z/3Z)4 for ∆ = 58 343 207 081).

The main difference between the present work and the imaginary quadratic case in
[16] is that the trace formula for holomorphic forms isolates a fixed weight, resulting in
a finite-dimensional space. In fact, the approach in [16] used a space of dimension 0,
so no modular form computations were needed in order to compute traces. By contrast,
the trace formula for Maaß forms necessarily involves infinitely many forms. In practice
this means that we need to truncate certain infinite sums and estimate the error, and we
require explicit, rigorous, numerical computations of Maaß forms [2, 3].

In the remaining parts of the paper, we first describe our new verification method,
followed by our method used to compute the class groups and regulators and numerical
results.

2. Maaß forms and the Selberg trace formula

Let H = {z = x + iy ∈ C : y > 0} denote the hyperbolic upper half-plane. This is
acted on by the modular group Γ = PSL(2,Z) via linear fractional transformations. A
Maaß cusp form for Γ is a non-constant, smooth function f : H → C that satisfies the
following properties:

(1) f(γz) = f(z) for all z ∈ H and γ ∈ Γ,
(2) f ∈ L2(Γ\H),
(3) f is an eigenfunction of the Laplace–Beltrami operator ∆ on H given by

∆ = −y2
(
∂2

∂x2
+

∂2

∂y2

)
.

2

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Furthermore, we define the Hecke operators Tn by

Tnf(z) =
1√
|n|

∑
ad=n
d>0

d−1∑
j=0

f

(
az + j

d

)
if n > 0,

f

(
az + j

d

)
if n < 0,

for non-zero n ∈ Z. Up to scalar multiplication, there exists a countably infinite sequence
of Maaß cusp forms which are also eigenfunctions for every Hecke operator Tn. We will
denote this by {fj}∞j=1. Let λj =

1
4
+ r2j denote the Laplace eigenvalue and aj(n) denote

the Hecke eigenvalues of fj. That is

∆fj =
(
1
4
+ r2j

)
fj and Tnfj = aj(n)fj.

The Hecke eigenvalues aj(n) are multiplicative, that is aj(mn) = aj(m)aj(n) for m and
n coprime integers. In particular, aj(−n) = (−1)ωjaj(n) for some ωj ∈ {0, 1}, called the
parity of fj. If ωj = 0 we say fj is even and if ωj = 1 then we say fj is odd. The rj may
be taken to be positive real numbers, and we may assume that the fj are ordered such
that r1 ≤ r2 ≤ r3 ≤ Additionally, the fj have a Fourier expansion of the form

fj(x+ iy) =
∞∑
n=1

aj(n)√
n
Wirj(2πny) cos

(ωj)(2πnx),

whereWir(x) =
√
xe

π
2
rKir(x), Kir(x) is the K-Bessel function, and we define cos(ω) = cos

if ω = 0 and cos(ω) = − sin if ω = 1. We remark that the normalising factor e
π
2
r is non-

standard; it is designed to compensate for the exponential decay of the K-Bessel function
as r → ∞ and is convenient for numerical purposes.

The Ramanujan conjecture predicts that the Hecke eigenvalues are bounded by the
divisor function, d(n). Unfortunately this is not yet known for Maaß forms, though we
do have the estimate |aj(p)| ≤ p7/64 + p−7/64 for primes p, due to Kim and Sarnak [19].
From the Hecke relations it follows that

|aj(n)| ≤ b(n) :=
∏
pk∥n

sinh((k + 1)θ log p)

sinh(θ log p)
,(2.1)

where θ = 7/64.
Note that the constant function f = 1 is a solution to (1)–(3) above, as well as a

Hecke eigenfunction with Tn eigenvalue σ−1(|n|)
√

|n|. Although not a Maaß cusp form,
it is part of the discrete spectrum of ∆ on L2(Γ\H), and will play a role in the proof of
the Selberg trace formula (Proposition 2.1).

2.1. The Selberg trace formula. The Selberg trace formula is an expression for
the weighted sum

∞∑
j=1

aj(m)h(rj),

where n ∈ Z\{0} and h is a suitable test function (see Proposition 2.1 for more details).
For us the key interest in this formula is that it involves the values L(1, χ) for quadratic
Dirichlet characters χ, which are in turn related to quadratic class groups via Dirichlet’s
class number formula (see (2.2).

3

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

To state the formula precisely, we recall some notation from Section 1.1 in [1]. Let D
denote the set of discriminants, that is

D = {D ∈ Z : D ≡ 0 or 1 (mod 4)}.

Any non-zero D ∈ D can be uniquely expressed in the form dℓ2, where d is a fundamental
discriminant and ℓ > 0. We define

ψD(n) =

(
d

n/ gcd(n, ℓ)

)
,

where (−) denotes the Kronecker symbol. We see that ψD is periodic modulo D, and if
D is a fundamental discriminant, then ψD is the usual quadratic character modulo D.

We set

L(s, ψD) =
∞∑
n=1

ψD(n)

ns
for Re(s) > 1.

When we set D = dℓ2, we can rewrite this as

L(s, ψD) = L(s, ψd)
∏
p|ℓ

1 + (1− ψd(p))

ordp(ℓ)∑
j=1

p−js

 .
Here we see that L(s, ψD) has analytic continuation to C, apart from a simple pole at
s = 1 when D is square. When D is not a square, we have

L(1, ψD) =
L(1, ψd)

ℓ

∏
p|ℓ

[
1 + (1− ψd(p))

(ℓ, p∞)− 1

p− 1

]
,

where (ℓ, p∞) denotes the largest power of p that divides ℓ.
In turn, L(1, ψd) is related to the class number and regulator of the quadratic field

Q(
√
d) by Dirichlet’s class number formula:

(2.2) L(1, ψd) =
hd√
|d|

·

{
2π
wd

if d < 0,

2Rd if d > 0.

Here

wd =

2 if d < −4,

4 if d = −4,

6 if d = −6

is the number of roots of unity in the ring of integers of Q(
√
d).

We can now state the Selberg trace formula for the modular group. The main reference
for this proof is Section 2 of [1].

Proposition 2.1 (The Selberg trace formula for the modular group). Let n be a
non-zero integer and f ∈ C3(R) be even of compact support. Define

h(r) = 2|n|−ir

∫ ∞

0

f
(
v − n

v

)
v2ir

dv

v
for r ∈ R,

4

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

and for a ∈ N with a | n define

Φ(a) = 2
∞∑

m=1

Λ(m)

m
f(am− n

am
) + 2a

∫ ∞

a

f(v − n
v
)− f(a− n

a
)

v2 − a2
dv

+
(
γ + log(4π)

)
f
(
a− n

a

)
− 1

2

∫ ∞

0

f
(
v − n

v

) dv
v

− a−1

∫
R
f
(√

y2 −min(4n, 0)
)
dy

+

∑
m∈N

m|(a−n
a
)

Λ(m)
(
1−m−1

)
f
(
a− n

a

)
+

∫ ∞

|a−n
a |

f(y)

y +
∣∣a− n

a

∣∣ dy if a ̸= n

a
,

(γ − log 2)f(0) +
1

2

∫ ∞

0

f(y) + f(y−1)− f(0)

y
dy +

1

3

∫ ∞

0

f(0)− f(y)

y2
dy if a =

n

a
,

where γ is the Euler–Mascheroni constant and Λ(m) is the von Mangoldt function.
Then,

∞∑
j=1

aj(n)h(rj) =
∑
a∈N
a|n

Φ(a) +
∑
t∈Z√

D=
√
t2−4n̸∈Q

L(1, ψD) ·

f
(√

D
)

if D > 0,√
|D|
π

∫
R

f(y)

y2 + |D|
dy if D < 0.

Proof. Suppose first that f is smooth. In [1, Proposition 2.1]1 we find the following
trace formula:

∞∑
j=0

aj(n)h(rj) =
∑
a∈N
a|n

F (a) +
∑
t∈Z√

D=
√
t2−4n̸∈Z

W (D),(2.3)

where

W (D) =

L(1, ψD)f
(√

D
)

if 0 <
√
D /∈ Z,

L(1, ψD)

√
|D|
π

∫
R

f(y)

y2 + |D|
dy if D < 0,∑

m|
√
D

Λ(m)(1−m−1)f(
√
D) +

∫ ∞

√
D

f(y) dy

y +
√
D

if 0 <
√
D ∈ Z,

1

2
(γ − log 2)f(0) +

1

6

∫ ∞

0

f(0)− f(y)

y2
dy

+
1

4

∫ ∞

0

f(y) + f(y−1)− f(0)

y
dy if D = 0,

and

F (a) = 2
∞∑

m=1

Λ(m)

m
f
(
am− n

am

)
+ 2a

∫ ∞

a

f(v − n
v
)− f(a− n

a
)

v2 − a2
dv

+
(
γ + log(4π)

)
f
(
a− n

a

)
− 1

4
h(0).

Note that this includes an extra term j = 0 corresponding to the constant eigenfunction
1, with r0 = i/2 and a0(n) = σ−1(|n|)

√
|n|.

1There is a minor error in [1, Proposition 2.1]; the definition of W (0) should be divided by 2.
5

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

To begin, we note that

h(0) = 2

∫ ∞

0

f
(
v − n

v

) dv
v
.

Thus, we see that Φ(a) and F (a) only differ by the final line of Φ(a) and the term

−a−1
∫
R f
(√

y2 −min(4n, 0)
)
dy, which comes from the j = 0 term on the left-hand

side of (2.3). Averaging the integral formulas for h(i/2) = h(−i/2) and making the

substitution v 7→ y+
√

y2+4|n|
2

, we have

σ−1(|n|)
√

|n|h
(
i

2

)
=
∑
a∈N
a|n

a−1

∫ ∞

0

f
(
v − n

v

) (
1 + |n|v−2

)
dv

=
∑
a∈N
a|n

a−1

∫
R
f
(√

y2 −min(4n, 0)
)
dy,

as required.
As for the final line of Φ(a), we define the map{

t ∈ Z :
√
t2 − 4n ∈ Z

}
→ {a ∈ N : a | n} ,

t 7→ a =

∣∣∣∣t+√
t2 − 4n

2

∣∣∣∣ .
Then for t ∈ Z with

√
t2 − 4n ∈ Z, we have that a is a positive divisor of n with

t2 − 4n = (a− n/a)2. Furthermore, this map is a bijection unless n is a square, in which
case the value a =

√
n is assumed twice (from t = ±2

√
n). Hence the corresponding

terms on the right-hand side of (2.3) contribute as the final line of F (a). Note that the
contribution from a = n/a is doubled.

Finally, we remove the assumption from [1, Proposition 2.1] that the test function is
smooth. Under our hypotheses on f , we can apply integration by parts three times to
the definition of h to see that h(r) ≪ |r|−3. By the Weyl estimate #

{
j : rj ≤ r

}
≪ r2,

it follows that the left-hand side of (2.3) is absolutely convergent. The conclusion now
follows by a straightforward approximation argument. □

We call the terms where D > 0 and
√
D /∈ Q hyperbolic and the terms where D < 0

elliptic.

2.2. Specializing the test function. In order to apply the trace formula as a
certification tool, it is necessary to choose a test function f that allows us to work out
explicit expressions for the terms occurring in Proposition 2.1. For this we consider the
test function

f(y) = max

(
0, 1− y2

X

)k

,(2.4)

where k ≥ 4 is an integer and X is a positive real number. We see this is an even, C3

function that is supported on [−
√
X,

√
X], so it satisfies our criteria in Proposition 2.1.

The next proposition makes each term in the trace formula explicit for this test function.
6

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Proposition 2.2. Let n,D be non-zero integers, a,X be positive real numbers and
k ≥ 4 be an integer. Assume that D ≥ −4n and X > max(D, (a− n/a)2), and set

b =

√
X +

√
X + 4n

2a
, A =

n+ ab
√
X

|n|
, x =

√
X/|D|.

Then, with f and h as defined in (2.4) and Proposition 2.1, we have

(i) h(r) = 2 · k!
(
A|n|
X

)k k∑
j=0

(−1)j
(
k

j

)
Re

(
Air−2j∏k−j

l=−j(l + ir)

)
for r ∈ R \ {0};

(ii) h(0) = 2

∫ ∞

0

f
(
v − n

v

) dv
v

= 2

(
A|n|
X

)k k∑
j=0

(
k

j

)2

A−2j

(
logA+

j∑
l=1

1

l
−

k−j∑
l=1

1

l

)
;

(iii)

∫
R
f
(√

y2 −min(4n, 0)
)
dy = 2

√
X

(
1 +

min(4n, 0)

X

)k+ 1
2

k∏
j=1

2j

2j + 1
;

(iv)

∫ ∞

√
|D|

f(y) dy

y +
√
|D|

= (1− x−2)k log

(
x+ 1

2

)
−

k∑
j=0

(
k

j

)
(−x2)−j

2j∑
l=1

(−1)l−1x
l − 1

l
;

(v)
√
|D|
∫
R

f(y) dy

y2 + |D|
= 2(1 + x−2)k arctanx− 2

k∑
j=0

(
k

j

)
x−2j

j∑
l=1

(−1)l−1

2l − 1
x2l−1;

(vi) 2a

∫ ∞

a

f(v − n
v
)− f(a− n

a
)

v2 − a2
dv = f

(
a− n

a

)
log

(
b− 1

b+ 1

)
+ 2

k∑
m=−k

(
−a

2

n

)m k∑
j=|m|

(
k

j

)(
2j

j + |m|

)(n
X

)j |m|∑
l=1

b(2l−1) sgnm − 1

2l − 1
;

(vii)

∫ ∞

0

f(0)− f(y)

y2
dy =

2k + 1√
X

k∏
j=1

2j

2j + 1
;

(viii)

∫ ∞

0

f(y) + f(y−1)− f(0)

y
dy = logX −

k∑
j=1

1

j
.

Proof. Using the definition of h and making the change of variables v 7→
√
|n|u, we

have

h(r) = 2|n|−ir

∫ ∞

0

max

(
0, 1− v2 − 2n+ (n/v)2

X

)k

v2ir
dv

v

=

∫ ∞

0

max

(
0, 1 +

2n

X
− |n|
X

(
u+ u−1

))k

uir
du

u

=

(
|n|T
X

)k ∫ ∞

0

max

(
0, 1− u+ u−1

T

)k

uir
du

u
,

where T = X+2n
|n| ≥ 2.

Now let F : [2,∞) → C be a k-times differentiable function of compact support and
let s ∈ C. Applying integration by parts inductively, we derive∫ ∞

0

F
(
u+ u−1

)
us
du

u
=

∫ ∞

0

F (k)
(
u+ u−1

) k∑
j=0

(−1)j
(
k

j

)
(s+ 2j − k)us+2j−k∏k

l=0(s+ j − l)

du

u
.

7

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

We can apply this to our specific test function F (t) = max
(
0, 1− t

T

)k
, noting that

F (k)(t) =

(−1)kk!

T k
if t < T,

0 if t > T.

Thus, using the above formula we obtain∫ ∞

0

max

(
0, 1− u+ u−1

T

)k

uir
du

u
=

(−1)kk!

T k

∫ A

1/A

k∑
j=0

(−1)j
(
k

j

)
(ir + 2j − k)uir+2j−k∏k

l=0(ir + j − l)

du

u

=
(−1)kk!

T k

k∑
j=0

(−1)j
(
k

j

)
Air+2j−k − A−ir−2j+k∏k

l=0(ir + j − l)
,

where A = T+
√
T 2−4
2

= X+2n+
√
X2+4nX

2|n| , so that A + A−1 = T . Replacing (j, l) by (k −
j, k − l) in the above sum, we see that it becomes

2k!

T k

k∑
j=0

(−1)k−j

(
k

j

)
Re

(
Air+2j−k∏k

l=0(ir + j − l)

)
.

Now multiplying by
(

|n|T
X

)k
and replacing (j, l) by (k − j, k − j − l) in the above sum

yields (i).
To evaluate h(0), we write

h(r) =
AirH(r)− A−irH(−r)

2ir
,

where

H(r) = 2 · k!
(
A|n|
X

)k k∑
j=0

(−1)j
(
k

j

)
A−2j

∏
−j≤l≤k−j

l ̸=0

(l + ir)−1.

By l’Hôpital’s rule, we have

h(0) = (logA)H(0)− iH ′(0).

Hence, a straightforward evaluation of H(0) and H ′(0) gives (ii).

Next, making the substitution y 7→ u
√
X +min(4n, 0), we obtain∫

R
f
(√

y2 −min(4n, 0)
)
dy =

∫
R
max

(
0, 1− y2 −min(4n, 0)

X

)k

dy

=
√
X

(
1 +

min(4n, 0)

X

)k+ 1
2
∫ 1

−1

(
1− u2

)k
du,

which yields (iii).

For the next term, making the substitution y 7→ u
√
X, we have∫ √

X

√
|D|

f(y)dy

y +
√

|D|
=

∫ 1

x−1

(1− u2)k

u+ x−1
du.

8

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Writing (1−u2)k = (1−x−2)k+(1−u2)k− (1−x−2)k and applying the binomial theorem
to the last two terms, we get

∫ 1

x−1

(1− u2)k

u+ x−1
du =

∫ 1

x−1

(1− x−2)k

u+ x−1
du+

k∑
j=0

(
k

j

)
(−1)j

∫ 1

x−1

u2j − x−2j

u+ x−1
du.

Expanding the right-most integrand into a geometric series, we obtain

u2j − x−2j

u+ x−1
= −x1−2j

2j∑
l=1

(−xu)l−1.

Integrating each term of this sum over [x−1, 1] yields (iv).
Similarly,

√
|D|
∫
R

f(y) dy

y2 + |D|
= x−1

∫ 1

−1

(1− u2)k

u2 + x−2
du

= x−1

∫ 1

−1

(1 + x−2)k

u2 + x−2
du+ x−1

k∑
j=0

(
k

j

)∫ 1

−1

(−u2)j − (x−2)j

u2 + x−2
du

= 2
(
1 + x−2

)k
arctanx− 2

k∑
j=0

(
k

j

)
x−2j

j∑
l=1

(−1)l−1

2l − 1
x2l−1.

For (vi), we begin by noting that (v−n/v)2 ≤ X for a ≤ v ≤ ab, hence f(n−n/v) =
(1− (v − n/v)2/X)k in this region. Applying the binomial theorem twice, we find that

f(v − n
v
)− f(a− n

a
)

v2 − a2
=

k∑
j=0

(
k

j

)(n
X

)j j∑
m=−j

(
2j

j + |m|

)
(−n)−mv

2m − a2m

v2 − a2
.

Now, expanding the right-most fraction into a geometric series, we find that

a

∫ ab

a

v2m − a2m

v2 − a2
dv = a2m

|m|∑
l=1

b(2l−1) sgnm − 1

2l − 1
.

Inserting this into the above equation and rearranging the sum over the values of m to
go between m = −k to k yields the first part of (vi). The second part arises from the
contribution of the integral over v > ab, where f(v − n/v) = 0. That is,

2a

∫ ∞

ab

f
(
v − n

v

)
− f

(
a− n

a

)
v2 − a2

dv = −f
(
a− n

a

)∫ ∞

b

2 du

u2 − 1
= −f

(
a− n

a

)
log

b+ 1

b− 1
.

Turning to (vii), we use integration by parts and the substitution y 7→ u
√
X to obtain

∫
R

f(0)− f(y)

y2
dy = −

∫
R

f ′(y)

y
dy =

2k√
X

∫ 1

−1

(
1− u2

)k−1
du =

4k + 2√
X

k∏
j=1

2j

2j + 1
.

9

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Finally, for (viii), we have∫ ∞

0

f(y) + f(y−1)− f(0)

y
dy = 2

∫ 1

0

f(y) + f(y−1)− f(0)

y
dy

= 2

∫ 1

0

f(y)− f(0)

y
dy + 2

∫ ∞

1

f(y)

y
dy

= 2

∫ √
X

0

f(y)− f(0)

y
dy + 2f(0)

∫ √
X

1

1

y
dy.

Now using the substitution y 7→ u
√
X and noting that f(0) = 1, this becomes

logX − 2

∫ 1

0

1− (1− u2)k

u
du = logX −

∫ 1

0

1− vk

1− v
dv = logX −

k∑
j=1

1

j
.

□

2.3. Idea of the algorithm. As noted before, we see the class number for real qua-
dratic fields appearing in the hyperbolic terms in the Selberg trace formula in Proposition
2.1. The main idea of our algorithm is to compute the spectral side of the trace formula
with known Maaß form data, bound its tail and see if the two sides of the trace formula
match with our class group data. For this section we shall assume that we are using the
test function f defined by (2.4).

To begin, suppose we have rigorously computed values for rj and λj(n) for j ≤ J
and |n| ≤ M , so that we may compute the spectral side of the trace formula to high
accuracy. There will be some error arising from the terms with j > J , for which we have
no data. More details on how to explicitly estimate the tail of the spectral sum will be
given in Section 2.3.1, but suppose for now that we can bound the tail by some positive
real number En. By the explicit form of the trace formula we derived in Proposition 2.1,
we have

(2.5)

∑
t∈Z

D=t2−4n<0

L(1, ψD)

√
|D|
π

∫
R

f(y) dy

y2 + |D|
+

∑
t∈Z√

D=
√
t2−4n̸∈Q

0<D≤X

L(1, ψD)

(
1− D

X

)k

=
∞∑
j=1

λj(n)h(rj)−
∑
a∈N
a|n

Φ(a)

≤
J∑

j=1

λj(n)h(rj) + En −
∑
a∈N
a|n

Φ(a).

Now, suppose we have a list of class numbers computed using our conditional algo-
rithm. A priori we do not know that the class numbers are correct, but we know that
each computed value is a factor of the true value (being the order of some subgroup of
the class group). Hence our data can be used to compute a rigorous lower bound for the
left-hand side of (2.5), since the terms are non-negative. (In order to compute L(1, ψD)
for D > 0, we also need the corresponding regulators. Although the fastest algorithms
for that also rely on GRH, they can be independently verified using the method of [10].
Hence we may assume that the regulators are known unconditionally.)

Moreover, any incorrect value must be off by at least a factor of 2. Hence, in order to
certify a given class number, we just need to show that it is not at least twice as large as

10

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

we think it is. To this end, we double the corresponding term in the hyperbolic sum and
then compute the full hyperbolic sum. If the sum exceeds the right-hand side of (2.5)
then we get a contradiction, and hence our purported value of the class number must have
been correct. Heuristically we expect the truncation error to be much smaller than our
rigorous estimate En, so we expect to be able to certify all d for which L(1, ψd)(1−d/X)k

exceeds En. Note that considering all n ∈ Z \ {0} with |n| ≤ 1
2

√
X − 1 suffices to cover

all non-square discriminants d ≤ X.
In our case, we have the first 2184 Laplace eigenvalues with r ∈ (0, 177.75] computed

by Andreas Strömbergsson using Hejhal’s algorithm [13] and certified using the program
from [5]. The proof of their completeness is given in Corollary 1.2 in [2]. In Section 3
we use a rigorous version of Hejhal’s “Phase 2” algorithm to compute all of the needed
Hecke eigenvalues, aj(n). The next few sections discuss how to explicitly bound the tail
of the spectral sum, and estimate the efficiency of the algorithm with our given data.

2.3.1. Bounding the tail of the spectral sum. In order to apply the above algorithm
we require an explicit bound on the tail of the spectral sum. To begin, using Proposition
2.2 (i), we have that

|h(r)| ≤ 2 · k!
|r|k+1

,

which becomes sharp in the limit as X → ∞. Using this estimate, we can bound the tail
of the spectral sum without needing specific estimates of the terms of the trace formula.
Namely, we need to find an explicit bound for the sum∑

j:rj>R

r−k−1
j ,

for some positive real R.
The main idea here is to use the fact that the eigenvalue counting function, N(t) =

{j : rj ≤ t}, is majorized by its Weyl asymptotic. More precisely, let

M(t) =
t2

12
− 2t

π
log

t

e
√

π
2

− 131

144
and S(t) = N(t)−M(t).

Then, from [12, Ch. 10, Thm. 2.29] we have

S(t) = O

(
t

log t

)
for t > 1.

In order to apply this numerically, we require an explicit constant for the big-O. Currently
this has not been worked out, however we can remedy this by using an integrated version
derived in [2, Theorem 1.1]. Explicitly, define

S1(t) =
1

t

∫ t

0

S(u) du and E(t) =

(
1 +

6.59125

log t

)(
π

12 log t

)2

.

Then,

S1(t) ≤ E(t) for all t > 1.(2.6)

Consider ∑
j:rj>R

r−k−1
j =

∫ ∞

R

t−k−1 dN(t) =

∫ ∞

R

t−k−1M ′(t) dt+

∫ ∞

R

t−k−1 dS(t).

11

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Applying integration by parts to the last integral twice, the above becomes∑
j:rj>R

r−k−1
j =

∫ ∞

R

t−k−1M ′(t) dt− S(R) + (k + 1)S1(R)

Rk+1

+ (k + 1)(k + 2)

∫ ∞

R

t−k−2S1(t) dt.

Using the bound (2.6) and our explicit form of M(t), we obtain∑
j:rj>R

r−k−1
j ≤ 1

6(k − 1)Rk−1
−

2 log(R
√

2/π) + 2/k

πkRk

− S(R) + (k + 1)S1(R)

Rk+1
+

(k + 2)E(R)

Rk+1
.

For given values of R and k, we can easily check that the non-principal terms contribute
a negative amount. Thus, using our data with R ≤ 177 and k ≤ 15, we find that∑

j:rj>R

r−k−1
j ≤ R1−k

6(k − 1)
.

Using this and the bound on the Hecke eigenvalues (2.1) due to Kim and Sarnak, we can
bound the tail by∣∣∣∣∣∣

∑
j:rj>R

λj(n)h(rj)

∣∣∣∣∣∣ ≤ b(n)
∑

j:rj>R

|h(rj)| ≤ 2b(n)k!
∑

j:rj>R

r−k−1
j ≤ b(n)k!

3(k − 1)
R1−k.(2.7)

2.3.2. Efficiency. We can use our explicit bound of the spectral tail (2.7) to get an
idea of how efficient this algorithm will be. We will be able to certify a given d provided
that the corresponding hyperbolic term on the right-hand side of (2.5) exceeds the amount
that we overestimate the tail by. More explicitly, we should get

L(1, ψd)

(
1− d

X

)k

>
b(n)k!

3(k − 1)
R1−k −

∑
j:rj>R

λj(n)h(rj).

We do not know the sum over j in advance, but we expect it to be much smaller than
our estimate (2.7). Thus, we should succeed in certifying d as long as

d

X
⪅ 1− 1

R

(
b(n)k!R

3(k − 1)L(1, ψd)

)1/k

.

For instance, if X = 1011 then the worst case value of b(n) is 164.397 . . ., attained
at n = 151200. If we assume that L(1, χd) has roughly the same minimum value as
among the negative discriminants up to 1011 (viz., 0.17448, as computed in [16]), then
the optimal k is 11, for which the above is about 94%. However, already with k = 6
we get 92%, and that may allow us to get by with significantly lower floating point
precision. (Note that the total sum over d has size roughly

√
X, but we are trying to

detect variations of size L(1, χd)(1−d/X)k, which can be less than 10−7 even with k = 6.
Hence it is also essential that we work with interval arithmetic in order to control for
cancellation; we made use of the Arb library [18] for this purpose.) This analysis is also
highly pessimistic in assuming that the worst case for b(n) occurs simultaneously with
the worst case for L(1, χd).

For these reasons, we ran our verification with k = 6. We made two runs on a machine
with 64 cores (2.5 GHz AMD Opteron processors), with the following results:

12

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

X certified up to running time
1.1× 1010 10 378 129 942 5 hours
1.1× 1011 103 455 923 536 57 hours

In both runs, the efficiency was better than 94%, and about 1.3% of the computation
time was spent on the right-hand side of (2.5).

2.3.3. Theoretical complexity. The computation of the Maaß forms is possible in poly-
nomial time, [25, §1.3.4]. Since we can take k arbitrarily large in the above analysis, the
eigenvalue cutoff R can grow slowly as a function of X, and the time to compute the
spectral side is therefore dominated by the computation of the Hecke eigenvalues, which
is O(X

1
2
+ε) for each form (see Section 3).

Thus, the slowest part of the computation of the right-hand side of (2.5) is the sum

over m appearing in Φ, which has roughly
√
X

a logX
non-zero terms. Summing over a | n and

|n| ≤
√
X gives O(X

logX
) terms in total. However, this is still swamped by the roughly X

terms appearing on the left-hand side of (2.5) in the hyperbolic sum. This motivates our
choice of test function, which makes the hyperbolic terms simple to compute.

As described in Section 4, the algorithm that we employ to compute the class group
and regulator work in time O(X

5
4
+ε) overall. Asymptotically one could turn to an index

calculus based algorithm with heuristic complexity O(X1+ε). Unfortunately, the cor-
rectness of the index calculus approach depends on GRH in several ways, and there is
currently no known method of verifying its output in subexponential time.

3. Rigorous computation of the Hecke eigenvalues

In order to compute the truncated sum on the spectral side of the trace formula, we
require a large list of Hecke eigenvalues for each of the Laplace eigenvalues. As noted
before, we have approximations of the Laplace eigenvalues of the first 2184 Maaß forms
of level 1, as well as a rigorously verified list of the first several Hecke eigenvalues for each
form. All this data has been computed and verified to better than 300 bits of precision,
which allows us to compute a given Maaß form f(z) for any z in the fundamental domain
to approximately this accuracy. In turn, we can compute many more Hecke eigenvalues
using the “Phase 2” part of Hejhal’s algorithm [13]. In this section we explain how to
carry out the Phase 2 algorithm rigorously.

Let f be a Maaß cusp form on PSL(2,Z) with Laplace eigenvalue λ = 1
4
+ r2 and

Hecke eigenvalues am. Let ω = 0 if f is even and ω = 1 if f is odd. Its Fourier expansion
is of the form

f(x+ iy) =
∞∑

m=1

am√
m
Wir(2πmy) cos

(ω)(2πmx)

where Wir(x) =
√
xe

π
2
rKir(x) and Kir(x) is the K-Bessel function. In addition, cos(ω) =

cos if ω = 0 and cos(ω) = − sin if ω = 1.
Fix N ∈ N, Y > 0 and define the 2N points

zj = xj + iY =
j − 1

2

2N
+ iY,

13

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

where 1−N ≤ j ≤ N . Now if we consider the discrete Fourier transform of f , for some
integer k, on these points we get

N∑
j=1

f(zj) cos
(ω)(2πkxj) =

N∑
j=1

∞∑
m=1

am√
m
Wir(2πmY) cos(ω)(2πmxj) cos

(ω)(2πkxj)

=
∞∑

m=1

am√
m
Wir(2πmY)

N∑
j=1

cos(ω)(2πmxj) cos
(ω)(2πkxj).

Here we can use the trigonometric identity cos(ω)(x) cos(ω)(y) = 1
2
cos(x−y)+(−1)ω cos(x+

y), to obtain

(3.1)

N∑
j=1

f(zj) cos
(ω)(2πkxj)

=
1

2

∞∑
m=1

am√
m
Wir(2πmY)

[
N∑
j=1

cos(2π(m− k)xj) + (−1)ω
N∑
j=1

cos(2π(m+ k)xj)

]
.

Here our goal is extract the k-th term of the series on the right-hand side and then get
an expression for the rest of the sum which we will bound later. We have

N∑
j=1

cos(2π(m± k)xj) =
1

2

N∑
j=1

(
e2π(m±k)xj + e−2π(m±k)xj

)
=

1

2
e−

m±k
2N

πi

N∑
j=1

e2πi
(m±k)j

2N +
1

2
e

m±k
2N

πi

N∑
j=1

e−2πi
(m±k)j

2N .

Now if 2N | (m± k), then
∑N

j=1 e
±2πi

(m±k)j
2N = N . Otherwise, using the fact that this sum

is a geometric series, we get 0. Thus we can simplify the above sum to

N∑
j=1

cos(2π(m± k)xj) =

{
(−1)

(m±k)
2N N if 2N | (m± k),

0 otherwise.
(3.2)

Hence combining the results of (3.1) and (3.2), we have

2

N

N∑
j=1

f(zj) cos
(ω)(2πkxj) =

∑
m≥1

m≡k(2N)

am√
m
Wir(2πmY)(−1)

(m−k)
2N

+ (−1)ω
∑
m≥1

m≡−k(2N)

am√
m
Wir(2πmY)(−1)

(m+k)
2N

=
ak√
k
Wir(2πkY) + E0,

where

E0 =
∞∑
j=1

(−1)j
[

a2jN+k√
2jN + k

Wir(2π(2jN + k)Y) + (−1)ω
a2jN−k√
2jN − k

Wir(2π(2jN − k)Y)

]
.

(3.3)

In order for the above truncation to be valid we require k ≤ N . Let z∗j be the pullback of

zj into the fundamental domain defined by
{
z = x+ iy ∈ H | |z| ≥ 1 and |x| ≤ 1

2

}
. Then

14

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

by the modularity of f , we have f(zj) = f(z∗j). Thus

ak√
k
Wir(2πkY) =

2

N

N∑
j=1

f(z∗j) cos
(ω)(2πkxj)− E0

=
2

N

N∑
j=1

∞∑
m=1

am√
m
Wir(2πmy

∗
j) cos

(ω)(2πmx∗j) cos
(ω)(2πkxj)− E0

=
2

N

N∑
j=1

(
L∑

m=1

am√
m
Wir(2πmy

∗
j) cos

(ω)(2πmx∗j) + Ej

)
cos(ω)(2πkxj)− E0,

where L ∈ N is a truncation parameter, and

Ej =
∞∑

m=L+1

am√
m
Wir(2πmy

∗
j) cos

(ω)(2πmx∗j).(3.4)

Here we can consider the total error given by

E =
2

N

N∑
j=1

Ej cos(ω)(2πkxj)− E0,(3.5)

and our main computation formula becomes

ak√
k
Wir(2πkY) =

2

N

N∑
j=1

L∑
m=1

am√
m
Wir(2πmy

∗
j) cos

(ω)(2πmx∗j) cos
(ω)(2πkxj) + E .(3.6)

Computationally, we can see this is just a discrete cosine/sine transformation with
respect to the Hecke eigenvalues. Thus, once we have values of Y and N , discussed in
Subsection 3.2, we can apply a standard computational library on Fast Fourier Transforms
to compute these sums.

Our goal now is to bound the total error E explicitly so that it can aid us in our
computations.

3.1. Bounding the error. To begin, we have

|E| ≤

∣∣∣∣∣ 2N
N∑
j=1

Ej cos(ω)(2πkxj)

∣∣∣∣∣+ |E0| ≤ 2 max
1≤j≤N

{|Ej|}+ |E0|.

We now want to bound the individual parts appearing in the above bound. For this we
require the following two lemmas. The first is bound on the Fourier coefficients from
Kim–Sarnak [19].

Lemma 3.1. Let f be a Maaß cusp form of level 1 with Hecke eigenvalues am. Then
for all non-zero m ∈ Z we have ∣∣∣∣ am√

m

∣∣∣∣ ≤ η := 1.758.

Proof. Using (2.1), we have
∣∣∣ am√

m

∣∣∣ ≤ b(m)√
m
, and this is maximized at m = 12. □

The second lemma we require is a bound on the K-Bessel function due to Booker,
Strömbergsson and Then [4, Prop. 1].

15

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Lemma 3.2. For all y > r > 0 we have

|Wir(y)| = e
π
2
r√y|Kir(y)| ≤

√
π

2

√
y

4
√
y2 − r2

e−ru(y/r),

where u(t) =
√
t2 − 1− arctan(

√
t2 − 1).

We can now directly apply the above lemmas to bound the sums appearing in E .

Proposition 3.3. Let bm be an increasing arithmetic sequence for m0 ≤ m <∞ with
bm0 > r and arithmetic difference d. Then

∞∑
m=m0

∣∣∣∣ am√
m
Wir(bm)

∣∣∣∣ < Br,bm0 ,d
:= η

√
π

2

√
bm0

4
√
b2m0

− r2
e−ru(bm0/r)

(
1 +

bm0

d
√
b2m0

− r2

)
,

where u(t) =
√
t2 − 1− arctan(

√
t2 − 1).

Proof. We begin by noting that the function
√
y

4
√

y2−r2
is decreasing for y > r. Hence

by applying both of the above lemmas we get

∞∑
m=m0

∣∣∣∣ am√
m
Wir(bm)

∣∣∣∣ < η

√
π

2

√
bm0

4
√
b2m0

− r2

∞∑
m=m0

e−ru(bm/r).

The goal here is to majorize the exponential sum by a geometric series. For this, we note
that the function e−ru(y/r) is decreasing for y > r and u′(t) =

√
1− t−2 is increasing for

t > 1. Hence for all t2 > t1 > 1, we have

u(t2) ≥ u(t1) + (t2 − t1)u
′(t) = u(t1) + (t2 − t1)

√
1− t−2

1 .

Thus, for all m ≥ m0 we obtain

ru(bm/r) ≥ ru(bm0/r) +
√
b2m0

− r2
bm − bm0

bm0

.

We can now bound the exponential sum by

∞∑
m=m0

exp(−ru(bm/r)) ≤ exp(−ru(bm0/r)) exp(
√
b2m0

− r2)
∞∑

m=m0

exp

(
−
√
b2m0

− r2

bm0

bm

)

≤ exp(−ru(bm0/r))

(
1− exp

(
−
√
b2m0

− r2

bm0

d

))−1

.

To get the final result we use the fact that (1− e−x)−1 < 1 + x−1 for x > 0. □

Using Proposition 3.3 we can compute bounds for the errors E0 and Ej.

Proposition 3.4. Let L,M ∈ N with 0 < k ≤ M < N , 2πY (2N −M) > r, and√
3π(L+ 1) > r. Then we have

|E0| ≤ 2Br,2πY (2N−M),4πY N ,

|Ej| ≤ Br,
√
3π(L+1),

√
3π

for all 1 ≤ j ≤ N .
16

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Proof. From Lemma 3.2, we see that |Wir(y)| is decreasing for y > r. Now using
the definition of E0 from (3.3), we have

|E0| ≤

∣∣∣∣∣
∞∑
j=1

a2jN+k√
2jN + k

Wir(2π(2jN + k)Y) + (−1)ω
∞∑
j=1

a2jN−k√
2jN − k

Wir(2π(2jN − k)Y)

∣∣∣∣∣
≤

∞∑
j=1

∣∣∣∣ a2jN+1√
2jN + 1

Wir(2π(2jN + 1)Y)

∣∣∣∣+ ∞∑
j=1

∣∣∣∣ a2jN−M√
2jN −M

Wir(2π(2jN −M)Y)

∣∣∣∣ .
Thus applying Proposition 3.3 we obtain the result.

For Ej, we note that since all the z∗j are in the fundamental domain, we have y∗j >
√
3/2

for all j. Hence from the definition of Ej from (3.4) we get

|Ej| ≤
∞∑

m=L+1

∣∣∣∣ am√
m
Wir(2πmy

∗
j)

∣∣∣∣ < Br,2π(L+1)y∗j ,2πy
∗
j
≤ Br,

√
3π(L+1),

√
3π,

by Proposition 3.3. □

In practice we choose L to be the number of initial Fourier coefficients that we know.
We ensure this is sufficiently large that the error is dominated by our estimate for |E0|,
i.e. that Br,

√
3π(L+1),

√
3π ≤ Br,2πY (2N−M),4πY N .

3.2. Choosing Y and N . For our code, we let M be the largest indexed Fourier
coefficient we wish to compute. We will only need to consider the Fourier coefficients ap
for p ≤ M prime since the others can be computed using the Hecke relations from this
data. To help control the error we have to carefully choose the parameters Y and N . To
begin we note that theWir(y) decays exponentially for y > r from the K-Bessel function.

We start by choosing Y = r/M . Then we compute Wir(2πpY) for all primes p ≤M .
The aim of this is to see if we are near any of the zeros of the K-Bessel function in its
oscillatory region, which would cause our error bound to blow up. If we are too close to
a zero, we can change Y slightly so that we move away from this zero. However, we have
to make sure we do not make any other values of Wir(2πpY) close to a different zero.
This is essentially a min-max problem of minimizing the value of Y whilst maximizing
the distance of the values of Wir(2πpY) away from zero.

Once we have a value for Y , we can work on finding N . To do this we first fix a
precision of B bits, and then we bound our error |E| to be roughly 2−B, that is

|E| ≤ 4Br,2πY (2N−M),4πY N = 2−B.

Note that in practice we will want to choose B larger than our desired output precision
due to rounding errors and the fact we will be dividing by Wir. Now, we know all the
constants r, Y,M and B, hence we can rearrange the above to become

Q(N) :=
1

η

√
2

π
Br,2πY (2N−M),4πY N =

1

η

√
2

π
2−B−2.

Hence to find N , we just need to find the root of

Q(N)− 1

η

√
2

π
2−B−2,

which we find by bisection.
17

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

4. Tabulation algorithm

Although the index-calculus algorithm of Buchmann [6] remains the best method
in terms of asymptotic complexity for computing class groups and regulators of real
quadratic fields, it is not necessarily the best choice for our application. The fields
under our consideration all have small discriminants, almost certainly too small for the
asymptotic superiority of Buchmann’s algorithm to be in effect.

Following [15], we instead used a combination of an unconditionally correct algorithm
for computing the regulator and a generic group structure algorithm for computing the
elementary divisors of the class group (and hence also the class number), modified for
class groups of real quadratic fields. We used Lenstra’s improvement [20] of Shanks’
baby-step giant-step algorithm [24], as described in [17, Sec 10.2], which compute an
unconditionally correct approximation of the regulator in time O(∆1/5+ε) under the ex-
tended Riemann hypothesis. For computing the class group, we used an algorithm due
to Buchmann and Schmidt [8], modified as follows as was required to apply it to class
groups of real quadratic fields.

Termination. The input of the group structure algorithms in [7] and [8] is a set of
group elements g1, . . . , gl, and the output is the subgroup generated by them. If g1, . . . , gl
is known to generate the entire class group, then the output is the structure of the entire
class group. One way to construct such a generating set is to take as the gi all prime
ideals of norm less than a suitable bound, but unfortunately the best known bounds, even
assuming Riemann hypotheses [11], are of the form c log2∆ for some constant c < 4.
This is much too large for these baby-step giant-step based algorithms, especially when
considering that in many cases the class group is cyclic and only one or two small-norm
prime ideals already generates all of it.

Instead, we follow the procedure of [17, Sec 10.4] and iteratively enlarge the subgroup
one prime ideal at a time in order of increasing norm. To determine when the the entire
class group is generated, we first compute the regulator (using Lenstra’s algorithm as
stated above), and then use an approximation of the L-function L(1, χ∆) and the analytic
class number formula to compute a bound h∗ such that h∗ < h∆R∆ < 2h∗. Then, as soon
as the order of the subgroup generated is such that the product of that and the regulator
exceeds h∗, we know that we have the entire class group.

This approach has the advantage that the class group is often obtained very quickly
with few prime ideals required. It also allows us to collect data on the largest prime
ideals required to generate each class group, that we can use for empirical evidence in
support of the GRH-dependent bounds such as [11]. However, to compute the bound h∗

sufficiently quickly we have to assume the extended Riemann hypothesis to bound the
error in our approximation of L(1, χ∆). Thus, the output of the algorithm is only correct
under the GRH. However, we do know that because the algorithm always computes a
subgroup of the class group that if any of our class groups are wrong, their orders are all
less than the true class numbers, an important fact for our verification method to work
correctly.

Equivalence testing. Both of the generic class group algorithms assume that testing
the equality of group elements can be done efficiently. However, in the case of class groups
of real quadratic fields this is not the case, as there is no known computationally-efficient
way to identify unique canonical representatives of ideal equivalence classes. The best
known approach is to use reduced ideals to represent class group elements. Computing a
reduced ideal equivalent to a given ideal is fast and it can be shown that every equivalence
class contains finitely many reduced ideals, but the number of reduced ideals in each class

18

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

is O(R∆). In our modification of [8], we employ an equivalence test based on Shanks’
infrastructure by storing roughly

√
R∆ equivalent reduced ideals along with each baby

step (corresponding to infrastructure baby steps) and checking whether each giant step
and roughly

√
R∆ equivalent ideals corresponding to infrastructure giant steps.

Complexity. The group structure algorithm of [8] has complexity O(
√
Gl∆

ε), and
our modified version thus has cost O(∆1/4+ε) because we require

√
h∆ group operations

and
√
R∆ infrastructure operations to test equivalence for each of those for a total of

O((h∆R∆)
1/2+ε) bit operations. Note that the correctness and running time of both

methods are dependent on the GRH, due to the method used to determine termination
described above.

5. Numerical results

An initial data set was tabulated on machines at the University of Bristol, across 256
cores (AMD Opteron processors), using PARI [28]. The verification data set tabulations
were performed on the University of Calgary’s ARC supercomputer. Specifically, the
computation was distributed across 3 nodes of the cpu2022 partition, which have Intel
Xeon Gold 5320 processors and overall provided 156 cores to distribute across. All ARC
nodes run an up-to-date version of Rocky Linux 8, and the tabulation program used
ANTL [14], which was built and run using g++ 8.5.0, GMP 6.2.1, MPFR 4.1.0, Open
MPI 4.1.1, MPICH 3.4.3 and NTL 11.5.1.

5.1. Tabulation. Tabulations were completed in two parts. First, regulators and
class groups were computed for all ∆ ≤ 1.1× 1011 using PARI, and took a real time of 1
week. Regulator and class group computations were carried out for all ∆ ≤ 1.1 × 1011.
For the latter, total CPU time spent was 1379 days and real time spent was 649 hours.
The size of the tabulated data set was approximately 345GB after compressing using
Gzip 1.9. Using a simple verification program, the results of the PARI were confirmed
against the verification data set for all ∆ ≤ 1.1× 1011, and took 31 hours.

5.2. The Cohen–Lenstra heuristics. Let Clodd∆ denote largest odd-order subgroup
of Cl∆, and let hodd∆ be its order. For primes p ≥ 3, Cohen and Lenstra [9] conjectured
that the probability that a given abelian p-group G occurs as the p-Sylow subgroup of
Clodd∆ is proportional to (#G · #AutG)−1. Assuming this, it was shown in [17, §7.8,
Conj. 7.8] that

Pr(hodd∆ = h) = ρ(h) :=
C

h2

∏
pr∥h

1

ηr(p)
,

where

ηr(p) =
r∏

i=1

(1− p−i), η∞(p) = lim
r→∞

ηr(p), and C =
1

2η∞(2)
∏∞

r=2 ζ(r)
,

and that

Pr(Clodd∆ has p-rank r) =
η∞(p)

pr(r+1)ηr(p)ηr+1(p)
,

from which we derive

Pr(Clodd∆ has rank r) = δ(r)

:= C

(∏
p≥3

r∑
k=0

1− p−1

pk(k+1)ηk(p)ηk+1(p)
−
∏
p≥3

r−1∑
k=0

1− p−1

pk(k+1)ηk(p)ηk+1(p)

)
.

19

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Table 5.1. Comparison of actual and expected frequencies of odd class
number h over ∆ ≤ 1011

h ρ(h) #{∆ ≤ 1011 : hodd∆ = h} 1
ρ(h)

· #{∆≤1011:hodd
∆ =h}

#{∆≤1011}
1 0.7544582 23077857263 1.0063263
3 0.1257430 3720399446 0.9733839
5 0.0377229 1148230625 1.0013881
7 0.0179633 548292832 1.0041652
9 0.0157179 458686616 0.9600650
11 0.0068587 209526693 1.0050215
13 0.0048363 147794143 1.0053682
15 0.0062872 185045389 0.9682842

Table 5.2. Comparison of actual and expected frequencies of odd rank r
over ∆ ≤ 1011

r δ(r) #{∆ ≤ 1011 : Clodd∆ has rank r} 1
δ(r)

· #{∆≤1011:Clodd∆ has rank r}
#{∆≤1011}

0 0.7544582 23077857263 1.0063263
1 0.2431724 7256625197 0.9817455
2 2.366145× 10−3 61821672 0.8595633
3 3.282595× 10−6 51015 0.5112804
4 5.078341× 10−10 1 0.0647823

Values of ρ(h) and δ(r) are shown in Tables 5.1 and 5.2, and compared with the
observed frequencies for ∆ ≤ 1011. Plainly, some of the observed counts are much closer
to their expected values than others, e.g. we see that class numbers divisible by 3 and
ranks ≥ 2 are significantly rarer than expected. This is explained in Figures 5.1 and
5.2, which show the evolution of each ratio over ∆ ≤ X, on a log scale. Trend fitting of
the curves supports the conclusion that, in each case, the ratio tends to 1 as X → ∞,

albeit at a slow rate of convergence. For instance, the best fit to 1
ρ(3)

· #{∆≤X:hodd
∆ =3}

#{∆≤X} over

X ∈ [1010, 1011] by a curve of the form a− bX−c is shown in Figure 5.3, and indicates a
limiting value of a ≈ 1.003327 and error rate ≈ O(X−0.139222).

20

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Figure 5.1. Ratio of actual and expected frequencies of odd class number
h over ∆ ≤ X

Figure 5.2. Ratio of actual and expected frequencies of odd rank r over
∆ ≤ X

21

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

Figure 5.3. 1
ρ(3)

· #{∆≤X:hodd
∆ =3}

#{∆≤X} compared with 1.003327 −
1.017842X−0.139222

6. Conclusions

We have shown that unconditionally certifying the table of class groups and regulators
using Maaß forms works very well in practice. Indeed, the bottleneck in terms of extending
our table further is producing the class groups and regulators. One possible improvement
is to compute the class numbers using Shanks’s algorithm of complexity O(∆1/5+ε) [23]
(see also [17, Sec 10.3], and then compute group structures only for possibly non-cyclic
examples by applying Sutherland’s algorithm for computing the structure of finite abelian
p-groups [26] for each prime p dividing the class number with multiplicity greater than
one. Since the Cohen-Lenstra heuristics imply that class numbers of real quadratic fields
are small, and that fields with class groups of large rank are very rare, we expect that
this method would work very well in practice.

Another intriguing option is to find an analogue of the method used by Mosunov and
Jacobson [21] for unconditionally tabulating class groups of imaginary quadratic fields
using class number generating functions. This method reduced the problem of computing
class numbers to multiplication of large degree polynomials, and was shown to work very
well in practice. It is not immediately clear whether similar formulas exist that could be
used for real quadratic fields.

Finally, there has been very little work done on unconditional tabulation, nor table
verification, for fields of degree greater than 2. Trace formulas of higher rank automorphic
forms could possibly yield a verification algorithm analogous to ours, but there is much
work to be done before that will become a reality.

7. Code availability

Source code for the algorithms presented here is available at

https://github.com/BBDJSH-LuCaNT-2023/

22

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

https://github.com/BBDJSH-LuCaNT-2023/

References

[1] Andrew R. Booker and Min Lee. The Selberg trace formula as a Dirichlet series. Forum Math.,
29(3):519–542, 2017.

[2] Andrew R. Booker and David J. Platt. Turing’s method for the Selberg zeta-function. Comm. Math.
Phys., 365(1):295–328, 2019.

[3] Andrew R. Booker and Andreas Strömbergsson. Numerical computations with the trace formula
and the Selberg eigenvalue conjecture. J. Reine Angew. Math., 607:113–161, 2007.

[4] Andrew R. Booker, Andreas Strömbergsson, and Holger Then. Bounds and algorithms for the K-
Bessel function of imaginary order. LMS Journal of Computation and Mathematics, 16:78–108,
2013.

[5] Andrew R. Booker, Andreas Strömbergsson, and Akshay Venkatesh. Effective computation of Maass
cusp forms. Int. Math. Res. Not., pages Art. ID 71281, 34, 2006.

[6] Johannes Buchmann. A subexponential algorithm for the determination of class groups and regula-
tors of algebraic number fields. In Séminaire de Théorie des Nombres, Paris 1988–1989, volume 91
of Progr. Math., pages 27–41. Birkhäuser Boston, Boston, MA, 1990.

[7] Johannes Buchmann, Michael J. Jacobson, Jr., and Edlyn Teske. On some computational problems
in finite abelian groups. Math. Comp., 66(220):1663–1687, 1997.

[8] Johannes Buchmann and Arthur Schmidt. Computing the structure of a finite abelian group. Math.
Comp., 74(252):2017–2026, 2005.

[9] H. Cohen and H. W. Lenstra, Jr. Heuristics on class groups of number fields. In Number theory,
Noordwijkerhout 1983 (Noordwijkerhout, 1983), volume 1068 of Lecture Notes in Math., pages 33–62.
Springer, Berlin, 1984.

[10] R. de Haan, M. J. Jacobson, Jr., and H. C. Williams. A fast, rigorous technique for computing the
regulator of a real quadratic field. Math. Comp., 76(260):2139–2160, 2007.

[11] Löıc Grenié and Giuseppe Molteni. Breaking the 4 barrier for the bound of a generating set of the
class group, 2022.

[12] Dennis A. Hejhal. The Selberg trace formula for PSL(2, R). Vol. 2, volume 1001 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 1983.

[13] Dennis A. Hejhal. On eigenfunctions of the Laplacian for Hecke triangle groups. In Emerging ap-
plications of number theory (Minneapolis, MN, 1996), volume 109 of IMA Vol. Math. Appl., pages
291–315. Springer, New York, 1999.

[14] M. J. Jacobson, Jr. ANTL Source Code. https://github.com/BBDJSH-LuCaNT-2023/ANTL.
[15] Michael J. Jacobson, Jr. Experimental results on class groups of real quadratic fields (extended

abstract). In Algorithmic number theory (Portland, OR, 1998), volume 1423 of Lecture Notes in
Comput. Sci., pages 463–474. Springer, Berlin, 1998.

[16] Michael J. Jacobson, Jr., Shantha Ramachandran, and Hugh C. Williams. Numerical results on
class groups of imaginary quadratic fields. In Algorithmic number theory, volume 4076 of Lecture
Notes in Comput. Sci., pages 87–101. Springer, Berlin, 2006.

[17] Michael J. Jacobson, Jr. and Hugh C. Williams. Solving the Pell equation. CMS Books in Mathe-
matics/Ouvrages de Mathématiques de la SMC. Springer, New York, 2009.

[18] F. Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Transac-
tions on Computers, 66:1281–1292, 2017.

[19] Henry Kim and Sarnak Peter. Appendix 2: Refined estimates towards the ramanujan and selberg
conjectures. Journal of the American Mathematical Society, 16(1):175–181, 2003.

[20] H. W. Lenstra, Jr. On the calculation of regulators and class numbers of quadratic fields. In Number
theory days, 1980 (Exeter, 1980), volume 56 of London Math. Soc. Lecture Note Ser., pages 123–150.
Cambridge Univ. Press, Cambridge, 1982.

[21] A. Mosunov and M. J. Jacobson, Jr. Unconditional class group tabulation of imaginary quadratic
fields to |∆| < 240. Math. Comp., 85(300):1983–2009, 2016.

[22] Michiyo Saito and Hideo Wada. Tables of ideal class groups of real quadratic fields. Proc. Japan
Acad. Ser. A Math. Sci., 64(9):347–349, 1988.

[23] Daniel Shanks. Class number, a theory of factorization, and genera. In 1969 Number Theory Institute
(Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), pages 415–
440. Amer. Math. Soc., Providence, R.I., 1971.

23

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

https://github.com/BBDJSH-LuCaNT-2023/ANTL

[24] Daniel Shanks. The infrastructure of a real quadratic field and its applications. In Proceedings of the
Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972), pages 217–224. Univ. Colorado,
Boulder, Colo., 1972.

[25] Fredrik Strömberg. Computational aspects of Maass Waveforms. PhD thesis, Uppsala University,
2005.

[26] Andrew V. Sutherland. Structure computation and discrete logarithms in finite abelian p-groups.
Math. Comp., 80(273):477–500, 2011.

[27] Herman te Riele and Hugh Williams. New computations concerning the Cohen-Lenstra heuristics.
Experiment. Math., 12(1):99–113, 2003.

[28] The PARI Group, Univ. Bordeaux. PARI/GP version 2.13.4, 2022. available from http://pari.

math.u-bordeaux.fr/.

University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N
1N4

School of Mathematics, University of Bristol, Woodland Road, Bristol, BS8 1UG

24

30 Jun 2023 15:33:25 PDT

230123-Booker Version 2 - Submitted to LuCaNT

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

	1. Introduction
	2. Maaß forms and the Selberg trace formula
	3. Rigorous computation of the Hecke eigenvalues
	4. Tabulation algorithm
	5. Numerical results
	6. Conclusions
	7. Code availability
	References

