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Abstract. We describe a generalization and improvement of Diaz y Diaz’s
search technique for imaginary quadratic fields with 3-rank at least 2, one of

the most successful algorithms for generating many examples with relatively

small discriminants, to find quadratic fields with large n-ranks for odd n ≥ 3.
An extensive search using our new algorithm in conjunction with a variety of

further practical improvements produced billions of fields with non-trivial p-

rank for the primes p = 3, 5, 7, 11 and 13, and a large volume of fields with high
p-ranks and unusual class group structures. Our numerical results include a

field with 5-rank at least 4 with the smallest absolute discriminant discovered
to date and the first known examples of imaginary quadratic fields with 7-rank

at least 4.

1. Introduction

For any positive integer n, the n-rank of a quadratic field is the number of
elementary divisors of the ideal class group that are divisible by n. Computing
the 2-rank of a quadratic field is no more difficult than factoring its fundamental
discriminant, but much less is known about the n-rank for n > 2. The Cohen-
Lenstra heuristics [4] predict that the odd part of the class group of a quadratic
field is almost always cyclic and that fields with large odd n-rank are extremely
rare. Nevertheless, these heuristics do imply that fields with a given n-rank should
occur infinitely often for every odd integer n and rank, and moreover with a fixed,
albeit small, density. However, existence has only been demonstrated for very small
n and rank. Fields with n-rank exceeding 2, for n an odd prime, are known only
for odd primes n ≤ 19, and examples with n-rank exceeding 3 are only known for
n equal to 3 and 5. As a result, the development of special construction and search
techniques for producing quadratic fields with n-ranks exceeding 1 is a challenging
and interesting problem that has undergone intense investigation for many decades
(see the discussion later in this section for a wide range of references).

Constructing fields with non-trivial n-rank is also important in the context of
class field theory, especially when n = p is an odd prime. The number of unramified
degree p extensions of a quadratic field of discriminant ∆ is (pr−1)/(p−1), where r
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is the p-rank of Q(
√
∆). Thus, quadratic fields Q(

√
∆) with large p-rank give

rise to large counts of such extensions, or equivalently, to large counts of degree
p fields of discriminant ∆(p−1)/2 whose Galois closure has the dihedral group of
order 2p as its Galois group. When ∆ < 0, Hilbert’s Theorem 94 guarantees that
for every unramified degree p extension ofQ(

√
∆), there exists a unique ideal class of

Q(
√
∆) of order p that capitulates i.e. becomes the principal class, in the extension.

The principalization (or capitulation) problem in this setting asks to match all the
unramified degree p extensions with their capitulating order p ideal classes. This
problem is generally computationally challenging, especially in imaginary quadratic
fields with high p-rank where the number of possible capitulation matches is large.
Finally, the p-rank of a quadratic field determines the behaviour of its p-class tower,
i.e. the tower of fields, beginning with the quadratic field itself, for which each
extension is the p-Hilbert class field of the previous field. Imaginary quadratic
fields with p-rank at most 1 are known to have p-class towers of finite length, and
those with p-rank at least 3 have infinite p-class towers [12]. However, there are no
known examples of imaginary quadratic fields with p-rank 2 and p-class tower of
length at least 3, let alone infinite length [16]. Thus, efficiently constructing fields
with p-rank 2 is of particular interest in computational class field theory.

Research into quadratic fields of large n-rank arguably began in 1922, when
Nagel [20] proved that for any positive integer n there exist infinitely many imag-
inary quadratic fields whose class number is divisible by n. Kuroda [13] made
Nagel’s result constructive and in 1964 established a connection between solutions
of certain Diophantine equations and imaginary quadratic fields whose class num-
ber is a multiple of n. Building on Kuroda’s approach, research intensified in the
1970s, beginning with Yamamoto [32] who established the existence of infinitely
many imaginary quadratic fields of n-rank at least 2. Craig [5, 6] discovered infinite
families of imaginary quadratic fields of 3-rank 3 and 4, but the smallest1 discrim-
inant of his 3-rank 4 construction (listed explicitly in [9]) has 104 decimal digits.
More practical constructions of quadratic fields with high 3-rank soon followed,
including work of Shanks et al. [27, 25, 26, 21], Diaz y Diaz [7, 8], Buell [3], and
Llorente and Quer [15].

In contrast, there has been relatively little work on producing fields with high
p-rank for p > 3. Solderitsch [28] used Kuroda’s approach to find the first known
example of an imaginary quadratic field with 7-rank equal to 3. More recently, the
work of Mestre [17], Schoof [24] and Leprevost [14] departed from these classical
techniques, deploying instead more sophisticated tools from algebraic geometry
and the theory of elliptic curves to produce quadratic fields with large p-rank for
certain small primes p. Most recently, Gillibert and Levin [10] unified many of
these methods (both Diophantine and geometric) and interpreted them all through
a geometric lens.

Rather than finding infinite parameterized families of fundamental discrimi-
nants defining quadratic fields of high n-rank — which is the approach taken in
many of the aforementioned sources — our goal is to produce a high yield of fields
with small discriminants and large n-rank, including minimal discriminants for each

1All the discriminants under consideration here are negative. For simplicity, without explic-

itly mentioning it, any size attribute used herein will refer to absolute value. For example, when
we speak of discriminants that are large, small, minimal etc., we mean that their absolute value

is large, small, minimal.
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n. For this reason, we chose to follow Diaz y Diaz’s approach [7, 8] because his
algorithm is extremely effective in producing a large volume of quadratic fields with
3-rank at least 2 and relatively small discriminants. Closely following the ideas of
Kuroda [13], Diaz y Diaz searched for triples of positive integers (m, y, z) satisfying
the norm equation

4m3 = y2 − z2∆(1.1)

for a fundamental discriminant ∆ < 0. Under certain conditions, such a triple
gives rise to an ideal m of norm m in the ring of integers of Q(

√
∆) whose cube

is principal, generated by α = (y + z
√
∆)/2. Thus, for fixed ∆, two such triples

satisfying these conditions yield two ideals m1 and m2 whose cubes are principal.
Additional restrictions guarantee that the classes represented by m1 and m2 are
independent in the class group of Q(

√
∆), thereby yielding a quadratic field Q(

√
∆)

of 3-rank at least 2.
Our main goal is to generalize Diaz y Diaz’s method of [7, 8] and combine it

with a new and improved search technique to generate examples of quadratic fields
with discriminants of modest size and large n-ranks for arbitrary odd n ≥ 3. In
[13, Theorem 2] Kuroda gave sufficient conditions under which a solution (m, y, z)
to

4mn = y2 − z2∆(1.2)

corresponds to an ideal class of order n in the class group of Q(
√
∆). Unfortu-

nately, to obtain two independent ideal classes of order n following Diaz y Diaz’s
reasoning, the conditions on the corresponding solutions of (1.2) become increas-
ingly restrictive as n grows. An alternative approach is to check computationally
whether these two ideals generate independent classes of order n. Specifically, we
search for multiple solutions of (1.2) with the same discriminant ∆, compute a
Z-basis for the ideal corresponding to each solution, and finally check whether or
not these ideals represent independent classes. This removes the aforementioned
restrictive conditions, thereby producing a much higher yield of fields with high
n-rank.

To obtain quadratic fields of 3-rank at least 2, Diaz y Diaz only considered
pairs of solutions (m, y) of (1.2) for fixed ∆ and z. As a further generalization
of his technique, we allow z to vary. More specifically, we introduce an additional
variable parameter λ and search for triples of solutions (m, y, λ) of the more general
norm equation

4mn = y2 − λ2z2∆(1.3)

with ∆, z fixed. For odd primes n = p, this search strategy produced a higher yield
of discriminants of moderate size defining quadratic fields of high p-rank compared
to Diaz y Diaz’s approach of only considering λ = 1. We also include a number of
practical improvements designed to speed up the search for solutions of (1.3).

Although some of our theoretical results hold for arbitrary odd n (in which case
this is explicitly indicated), our main focus was on odd primes n = p. We used our
novel algorithm to carry out extensive computations searching for new examples of
imaginary quadratic fields with high p-rank for the primes p = 3, 5, 7, 11 and 13.
Overall, we found billions of fields of p-rank 2 and higher. Most noteworthy are
the 67 fields of 7-rank at least 4, which represent the first known examples of fields
with a 7-rank exceeding 3. Among them, the field with the smallest discriminant
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is Q(
√
−469874684955252968120). Our numerical results also include 4518 fields

of 5-rank at least 4, among which the field Q(
√
−126438163259) has the smallest

known discriminant of an imaginary quadratic field with 5-rank at least 4.
Our paper is organized as follows. The necessary mathematical framework is

provided in Section 2, where we extend Kuroda’s Theorem [13, Theorem 2] to the
more general Diophantine equation (1.3) and generalize Diaz y Diaz’s sufficient
conditions for independence of ideal classes in [7, Section 3] from n = 3 to arbi-
trary odd n. We also give an explicit Z-basis for the ideal corresponding to any
solution of (1.3) which can be used to significantly speed up the independence test
even when n > 3. In Section 3, specializing to the case n = p an odd prime, we
demonstrate how Diaz y Diaz’s approach in [7, 8] to searching for solutions to (1.1)
can be extended to (1.3) and improve the associated search method to generate so-
lutions more efficiently. In Section 4, we compare different construction techniques
under multiple metrics to identify the strategy that is best suited to a large-scale
computation for each prime under consideration. The results of our extensive com-
putations searching for fields with high p-rank for the primes p with 3 ≤ p ≤ 13
are presented in Section 5, with some unusual class group examples listed in an
appendix. Additionally, an implementation of the main algorithms described here
can be found in [1].

2. Mathematical Framework

Fix a fundamental discriminant ∆ < 0 and an odd integer n ≥ 3. The term
“ideal” will always refer to an integral ideal in the maximal order of the imaginary
quadratic field Q(

√
∆). In this section, we describe the relationship between solu-

tion triples (m, y, z) of (1.2) and ideals representing elements of order n in the ideal

class group of Q(
√
∆). For n a prime, we also provide a set of sufficient conditions

for two distinct solutions of (1.2) to give rise to two independent ideal classes of
order n. This extends the theory underlying Diaz y Diaz’s algorithm [7] for finding
imaginary quadratic fields of 3-rank 1 and 2 to n-ranks where n is any odd prime.

For any algebraic integer α ∈ Q(
√
∆), let α denote its conjugate, N(α) its

norm and (α) the principal ideal generated by α. We begin with the following
simple observation. Let m be an ideal such that mn is principal, m ∈ Z its norm,
and w = (y + z

√
∆)/2 a generator of mn. Then taking norms of the identity

mn = (w) shows that (m, y, z) is a solution of (1.2). Lemma 5 of [7] provides an
essentially converse result in the case n = 3. Specifically, suppose (m, y, z) is a
solution of (1.1) with yzm ̸= 0 such that gcd(z,m) is squarefree and a divisor of
∆. Then there exists an ideal m of norm m that generates an ideal class of order 3.
Using Kuroda’s reasoning of [13, Theorem 2], we generalize this result to arbitrary
odd n and additionally compute an explicit Z-basis of any such ideal m.

For any a, p ∈ Z with a non-zero and p prime, let

vp(a) = max{ν ≥ 0 | pν divides a}
denote the standard p-adic valuation. Since ∆ is a fundamental discriminant, we
have vp(∆) = 0 or 1 for p odd and v2(∆) = 0, 2 or 3, with ∆/4 ≡ 3 (mod 4) when
v2(∆) = 2.

Lemma 2.1. Let (m, y, z) be an integer triple satisfying (1.2) with myz ̸= 0,
and assume that c = gcd(z,m) is squarefree and divides ∆. Let p be any prime
divisor of m. Then the following hold.
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(a) If p divides c, then vp(m) = 1, vp(z) = (n − 1)/2 < vp(y) and p ramifies

in Q(
√
∆).

(b) If p divides m/c, then p does not divide yz∆ and p splits in Q(
√
∆).

Proof. Suppose p divides c. Then p divides ∆, so p ramifies in Q(
√
∆).

Since p3 divides both mn and z2∆, (1.2) implies that p2 | y.
Assume contrary to part (a) that p2 | m. Then vp(z) = 1 since c is squarefree.

It follows that vp(4m
n) ≥ 2n ≥ 6 and 3 ≤ vp(z

2∆) ≤ 5. This is only possible if
vp(y

2) = vp(z
2∆) = 4, which forces p = 2, v2(y) = 2 and v2(∆) = 2. Dividing (1.2)

by 16 yields

mn−1 m

4
=

(y
4

)2

−
(z
2

)2 ∆

4
.

Since y/4, z/2 are odd and ∆/4 ≡ 3 (mod 4), the right hand side is congruent to
2 (mod 4) while the left hand side is divisible by 4, which is impossible. Hence
vp(m) = 1.

By the ultrametric inequality applied to (1.2), we now obtain

(2.1) vp(4m
n) ≥ min{vp(y2), vp(z2∆)},

with equality if vp(y
2) ̸= vp(z

2∆).
Assume first that vp(y

2) = vp(z
2∆). Then p = 2 and v2(∆) = 2. Moreover,

we have strict inequality in (2.1) since v2(4m
n) is odd whilst v2(y

2) is even. Put
k = v2(y) = v2(z) + 1. Similarly to the reasoning for proving vp(m) = 1, dividing
(1.2) by 22k yields a right hand side that is congruent to 2 (mod 4). The left hand
side has 2-adic valuation n+2−2k, so n+2−2k = 1, or equivalently, k = (n+1)/2.
Together with k = v2(z) + 1, this proves part (a).

Now assume that vp(y
2) ̸= vp(z

2∆). Then vp(4m
n) = vp(z

2∆) < vp(y
2), where

the equality follows again from the fact that vp(4m
n) is odd and vp(y

2) is even. In
particular, vp(∆) is odd and we obtain

2vp(z) = n+ 2vp(2)− vp(∆) = n− 1 ,

as vp(∆) = 1 when p is odd and vp(∆) = 3 when p = 2. Hence vp(z) = (n− 1)/2 <
vp(y) as claimed in part (a).

For part (b), note that gcd(c,m/c) = 1, since vq(c) = vq(m) = 1 for primes
q dividing c by part (a). Suppose p divides m/c. Then p ∤ c, so p ∤ z. Assume
by way of contradiction that p | y. Then p2 | ∆ by (1.2), which only allows
p = 2. Since v2(z

2∆) = v2(∆) ≤ 3 and v2(4m
n) ≥ 5, this forces v2(∆) = 2 and

v2(y) = 1. Dividing (1.2) by 4 once again yields a right hand side that is congruent
to 2 (mod 4) and a left hand side that is divisible by 4, which is absurd. So p ∤ y,
and hence p ∤ ∆ by (1.2). This proves part (b). □

Recall that an ideal m is primitive if no rational integer other than ±1 divides
every element in m.

Theorem 2.2. Let (m, y, z) be an integer triple satisfying (1.2) with myz ̸= 0,
and assume that gcd(m, z) is squarefree and divides ∆. Then there exists a primitive

ideal m of norm m such that mn = (w) where w = (y + z
√
∆)/2.

Proof. For brevity, put c = gcd(m, z) and m′ = m/c. Then gcd(m′, c) = 1

and c(n−1)/2 divides both y and z by Lemma 2.1. Put w = (y + z
√
∆)/2 and

w′ = w/c(n−1)/2. Then w and w′ are algebraic integers in Q(
√
∆) of respective

norms mn and c(m′)n. Let p be a prime ideal dividing w′ and p the rational prime
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below p. Then p divides c or m′. If p divides c, then vp(c) = 1 and p ramifies in

Q(
√
∆) by Lemma 2.1. If p | m′, then p does not divide yz∆ and p splits in Q(

√
∆)

by Lemma 2.1. It follows that
(w′) = abn ,

where a is an ideal that is a product of distinct ramified prime ideals, with a2 =
(c), and b is an ideal of norm m′ that is a product of (not necessarily distinct)

prime ideals whose norms split in Q(
√
∆). In particular, the principal ideal (w′) is

primitive.
Put m = ab. Then m is a primitive ideal of norm m = cm′ and

mn = an−1(w′) = (c(n−1)/2w′) = (w) . □

Following the terminology introduced in [8], we refer to the ideal m of Theo-
rem 2.2 as the ideal corresponding to the solution (m, y, z) of (1.2). In this same
source, Diaz y Diaz gave two respective sets of sufficient conditions for the field
Q(

√
∆) to have 3-rank at least 1 and 2. Here we directly generalize his results to

higher prime n-ranks in Proposition 2.3. For the proof, we recall that every ideal
class of order distinct from 2 of Q(

√
∆) contains a unique reduced ideal, and every

primitive ideal of norm not exceeding
√
−∆/4 is reduced.

Proposition 2.3. Let ∆ < 0 be a fundamental discriminant and n ≥ 3 a
prime.

(a) Let (m, y, z) be an integer triple satisfying (1.2) with myz ̸= 0, and assume

that gcd(m, z) is squarefree and divides ∆. If 1 < m <
√

−∆/4, then the
ideal m corresponding to (m, y, z) generates a class of order n.

(b) Let (m1, y1, z1) and (m2, y2, z2) be two integer triples satisfying (1.2) with
m1y1z1 ̸= 0, m2y2z2 ̸= 0, and suppose that gcd(m1, z1) and gcd(m2, z2)

are both squarefree and divide ∆. If 1 < m1 < m2 <
√

−∆/4, m
(n−1)/2
1 <√

−∆/4 and m2 does not divide m
(n−1)/2
1 , then the ideals m1 and m2

corresponding to the respective triples (m1, y1, z1) and (m2, y2, z2) generate
independent ideal classes of order n.

Proof. By virtue of Theorem 2.2, part (a) identifies m as a reduced non-
principal ideal whose n-th power is principal, so its class has order n. Similarly, in
part (b), m1 and m2 are distinct reduced ideals generating ideal classes of order n.
Suppose these classes are dependent. Then there exists k with 1 ≤ k ≤ (n − 1)/2
such that m2 is equivalent to mk

1 or mk
1 . Assume the former (the proof of the latter

case is entirely analogous) and write mk
1 = (a)a where a ∈ Z and a is primitive.

Taking ideal norms yields N(a) ≤ mk
1 <

√
−∆/4, so a is a reduced ideal in the

class of m2. It follows that a = m2, so mk
1 = a2m2, contradicting the fact that m2

does not divide m
(n−1)/2
1 . □

Unfortunately, the conditions of Proposition 2.3 (b) become increasingly restric-
tive as n increases. It is possible to formulate analogous conditions for composite
odd n, but they are even more constrained, so we do not consider this scenario. In
computational experiments, we found that a search for solutions satisfying part (b)
of Proposition 2.3 produces limited examples of quadratic fields of large n-rank. As
an alternative strategy, we searched for solutions (m, y, z) of (1.2) satisfying Propo-
sition 2.3 (a) and directly tested the classes generated by the corresponding ideals
m for independence. To facilitate this computation, we represent each such ideal
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m by a Z-basis which can be obtained efficiently from the solution triple (m, y, z)
as follows. This, together with Theorem 2.2, could be considered stronger than a
direct generalization of [8, Lemma B], as it describes a Z-basis for the ideal under
consideration as opposed to simply providing a basis of algebraic integers.

Theorem 2.4. Let (m, y, z) be an integer triple satisfying (1.2) with myz ̸= 0,
and assume that c = gcd(m, z) is squarefree and divides ∆. Put y′ = y/c(n−1)/2,
z′ = z/c(n−1)/2, and define z∗ ∈ Z via

z′z∗ ≡

{
1 (mod 4m) if z′ is odd,

1 (mod m) if z′ is even.

If z′ is odd, put x ∈ Z via x ≡ y′z∗ (mod 4m), and if z′ is even, define x ∈ Z via

x ≡

{
y′z∗ (mod m),

∆ (mod 4).

Then {m, (x+
√
∆)/2} is a Z-basis of the ideal m corresponding to (m, y, z).

Proof. By Lemma 2.1, y′ and z′ are integers and gcd(c, z′) = 1, so gcd(m, z′) =
1. It follows that z∗ is well-defined. Dividing (1.2) by cn−1 yields

(2.2) (y′)2 ≡ (z′)2∆ (mod 4m) .

Let c be the Z-module of rank 2 generated by m and (x +
√
∆)/2. Then c is an

ideal if and only if x2 ≡ ∆ (mod 4m). If z′ is odd, then (z′z∗)2 ≡ 1 (mod 4m) and
x2 ≡ (y′z∗)2 (mod 4m), so (2.2) yields

x2 ≡ (y′)2(z∗)2 ≡ (z′)2∆(z∗)2 ≡ ∆ (mod 4m) .

Suppose now that z′ is even. Then m is odd as gcd(z′,m) = 1, so gcd(m, 4) = 1.
As before, we obtain x2 ≡ ∆ (mod m) from (2.2). Furthermore, x2 ≡ ∆2 ≡
∆ (mod 4), since ∆ ≡ 0 or 1 (mod 4). Thus, x2 ≡ ∆ (mod 4m) by Chinese re-
maindering.

This shows that c is a primitive ideal of norm m. Let m be the ideal corre-
sponding to (m, y, z). To prove that c = m, put w′ = (y′+z′

√
∆)/2. We claim that

w′ ∈ c. To that end, note that

w′ =
y′ − xz′

2m
m+ z′

x+
√
∆

2
.

If z′ is odd, then xz′ ≡ y′ (mod 4m) from the definition of x. If z′ is even, then
xz′ ≡ y′ (mod m). In this case, m is odd, and (2.2) shows that y′ is even, so again
xz′ ≡ y′ (mod 2m) by the Chinese remainder theorem. In either case, we see that
(y′ − xz′)/2m ∈ Z, so w′ ∈ c.

From the proof of Theorem 2.2, we have m = ab and (w′) = abn, where a and b

are ideals such that all prime ideal factors of a ramify in Q(
√
∆) and all prime ideal

factors of b lie above split rational primes. Since c divides (w′), we have c = a′b′

where a′ divides a and b′ divides bn. Taking norms of c and m (which both have
norm m) yields (a′)2 = a2 and b′b′ = bb. Thus, a′ = a, and the fact that b and b
are coprime forces b′ = b, so c = m. □
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3. Generalization and Improvement of the Diaz y Diaz Approach

The results from the previous section allow us to extend Diaz y Diaz’s approach
from n = 3 to any odd prime n. In this section, we introduce new and improved
search strategies for finding solutions to (1.2) and (1.3) in this case. As mentioned
previously, simple conditions can be derived to generalize Proposition 2.3 to any
odd n ≥ 3, which would then allow the results of this section to be extended to this
more general setting. However, henceforth, we restrict to the case where n = p is
an odd prime.

3.1. Diaz y Diaz’s original algorithm. We begin with a brief review of Diaz
y Diaz’s original algorithm [7, 8], which finds small solutions of (1.1) efficiently via
the following observation. Suppose we select two positive integers m1,m2 with
m2 > m1 > 1. Put

t = m2 −m1 , N =
1

t
(m3

2 −m3
1) = t2 + 3m1t+ 3m2

1 .

Now write N = N ′N ′′ and t = t′t′′ for positive integers t′, t′′, N ′, N ′′, and let
y = t′N ′ − t′′N ′′. If y2 − 4m3

1 < 0, we write this quantity in the form y2 − 4m3
1 =

z2∆ where ∆ < 0 is a fundamental discriminant and z ∈ Z. A simple symbolic
computation reveals that (m1, y, z) and (m2, y + 2t′′N ′′, z) are solutions of (1.1).

This approach was used by Diaz y Diaz to produce hundreds of thousands of
quadratic fields with 3-rank at least 2. A very promising aspect of this technique
is that many of the discriminants it produced turned out to define quadratic fields
of 3-rank exceeding 2, as seen via computing their corresponding class groups. The
high yield of this method motivated our generalization to arbitrary odd prime n-
ranks.

Diaz y Diaz’s idea for efficiently generating solutions of (1.1) directly generalizes
to finding solutions of (1.2) for any odd prime n = p. As before, select two positive
integers m1 and m2 with m2 > m1 > 1 and put m2−m1 = t and N = (mp

2−mp
1)/t.

Again, write N = N ′N ′′ and t = t′t′′ for positive integers t′, t′′, N ′, N ′′, and let let
y = t′N ′ − t′′N ′′. If y2 − 4mp

1 < 0, write y2 − 4mp
1 = z2∆ where ∆ < 0 is a

fundamental discriminant. Then (m1, y, z) and (m2, y + 2t′′N ′′, z) are solutions of
(1.2), and if they satisfy the conditions of Proposition 2.3, then ∆ is the discriminant
of a quadratic field of p-rank at least 2. The overall search procedure consists of
looping over a given range of values for m1 and, for each m1, looping over a range
of suitable t values, recording all such discriminants ∆ found in this manner.

The only part of the algorithm that requires additional explanation is the range
of values chosen for t (the difference between m1 and m2). A range of values for
m1 is selected, and for each value of m1 we loop over all values of t such that

1 ≤ t < m
p/2
1 −m1. That is, we loop over values of m2 such that m1 < m2 < m

p/2
1 .

For p = 3 this was the search space used by Diaz y Diaz in [7]. The justification
for the upper bound is as follows: In order to satisfy Proposition 2.3, we need
both solutions (m1, y, z) and (m2, y + 2t′′N ′′, z) to satisfy m1,m2 <

√
|∆|/4. But

since m1 < m2, the condition m2 <
√

|∆|/4 is sufficient. Combining this with

the identity 4mp
1 = y2 + z2|∆| (which implies |∆| ≤ 4mp

1) gives m2 <
√

|∆|/4 ≤√
4mp

1/4 = m
p/2
1 .

3.2. Algorithmic Improvements. Although Diaz y Diaz’s method was used
very successfully for p = 3, including by Llorente and Quer [15] to find fields with
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FINDING IMAGINARY QUADRATIC FIELDS WITH HIGH n-RANK 9

the largest known 3-ranks, it does not scale well for larger p. The main reason

is that the upper bound m
p/2
1 − m1 on t grows exponentially with p, resulting in

a search space that grows too quickly. Furthermore, larger pairs (m1,m2) often
yield larger values of ∆. Thus, to find small discriminants, it is better to exhaust
smaller pairs (m1,m2) before moving to larger ones. We have devised a number of
algorithmic improvements to the search procedure to address this issue.

Extending and Simplifying the Search Procedure. Diaz y Diaz’s method finds
solution pairs of (1.2) with the same z-value. We extend the search space by
searching for solutions to the sightly more general pair of equations

4mp
1 = y21 − λ2

1z
2∆ ,

4mp
2 = y22 − λ2

2z
2∆ .

(3.1)

By varying λ1 and λ2, we can find many new solutions of (3.1) for the same values
of m1 and m2 without greatly increasing the sizes of the discriminants.

Diaz y Diaz’s search technique can be generalized to find solutions of (3.1), but
there is a simpler, more efficient approach. Fix positive integers m1, m2, λ1 and
λ2. We first seek integers y1 and y2 satisfying

4λ2
2m

p
1 − 4λ2

1m
p
2 = (λ2y1)

2 − (λ1y2)
2 .

If we suppose the left-hand side is factored as ab for a, b ∈ Z, then since ab =(
a+b
2

)2 − (
a−b
2

)2
, we can set

y1 =
a+ b

2λ2
, y2 =

a− b

2λ1
.

If 2λ2 divides a+ b and 2λ1 divides a− b, then y1 and y2 are integers, so we obtain
the two solutions (

m1,
a+ b

2λ2
, λ1z

)
,

(
m2,

a− b

2λ1
, λ2z

)
of (3.1), where we obtain z and ∆ simply by setting λ1z

2∆ = y21 − 4mp
1. By

selecting values for λ1 and λ2 and looping over pairs of values for m1 and m2, this
provides a systematic way of generating many solutions of (3.1). For a given tuple
(m1,m2, λ1, λ2), this approach also only requires one factorization, while a direct
extension of Diaz y Diaz’s approach would require two.

Our third improvement to the search is that instead of searching over all pairs

(m1,m2) with m1 < m2 < m
p/2
1 −m− 1 for some specificed range of m1 values as

described above in Section 3.1, we consider (m1,m2) such that 1 < m2 < m1. This
addresses the issue of preferring to exhaust small pairs (m1,m2) before moving on to
larger ones, because the discriminants produced are smaller. The effect in practice
is that the time required to process each potential solution of (3.1) is reduced, but
we also found that our search space yielded more solutions despite the fact that the
number of pairs considered is reduced.

Explicit Independence Testing. As mentioned earlier, the conditions on m2 in
Proposition 2.3 (b) required to achieve the independence of the ideal classes cor-
responding to simultaneous solutions of (3.1) become increasingly restrictive as p
grows, thereby greatly limiting the solutions that can be found. Instead of forcing
m2 to be small to guarantee independence, we remove the bound on m2 and instead
apply a computation to check independence, using the Z-basis of Theorem 2.4.
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10 BAGSHAW, JACOBSON, SCHEIDLER, AND ROLLICK

For each solution (m, y, λ, z) of (3.1) found, we store the corresponding ideal
and sort the ideals by discriminant. Following our search, we test for each discrim-
inant ∆ whether the set of solutions attached to ∆ is sufficient to guarantee that
Q(

√
∆) has p-rank at least k for some integer k. It suffices to test whether the ideal

classes found in this way generate a subgroup of the ideal class group of Q(
√
∆) that

is isomorphic to (Z/pZ)k. To determine k, we simply compute the subgroup of the
class group generated by the ideals corresponding to each solution by computing
all the powers up to exponent (p − 1) of each ideal and then all possible products
formed by these powers. This improvement has the additional benefit that multiple
searches can be performed using different pairs (λ1, λ2). Then all the solutions for
a given discriminant ∆ can be combined and tested for independence as described
above.

In practice, it was found that the set of solutions rarely detected that k > 2,
even in cases when the actual p-rank of Q(

√
∆) exceeded 2. Thus, when running a

large-scale computation, we simply kept track of all discriminants yielding k ≥ 2.
With this in mind, we handled the case p = 3 somewhat differently. Cyclic

subgroups of order 3 in the class group contain the principal class and two other
classes of order 3, each containing a unique reduced ideal of the same norm. Thus,
in the case p = 3, if all solutions found correspond to reduced ideals, then one only
needs to keep track of their norms: if at least two solutions correspond to ideals
of different norms, then we can conclude k ≥ 2. In a large-scale computation, this
can save both time and storage. Checking whether an ideal is reduced by checking
that its norm is at most

√
−∆/4 is not be very restrictive in practice, and thus we

have opted for this method in the case p = 3.
Factoring. A final point that needs to be addressed is the factoring involved

in the algorithm. Fix an odd prime p and an integer pair (λ1, λ2). For brevity,
put N(X,Y ) = 4λ2X

p − 4λ1Y
p ∈ Z[X,Y ]. We must then find the divisors of

N(m1,m2), which becomes increasingly time-consuming as p and m1 get large. To
improve the performance of this part of the search algorithm, we experimented
with using a sieve to find small prime factors of these numbers. The main idea is
as follows. For a fixed value of m1 and every prime q less than some sieving bound,
we find all values of m2 with 2 ≤ m2 < m1 such that λ2

2m
p
1 − λ2

1m
p
2 is divisible

by q, using a process analogous to the Sieve of Erathosthenes. To that end, we
compute the roots of xp− (λ2/λ1)

2 ≡ 0 (mod q) for each prime q. Then each value
of r ≡ xm1 (mod q), where x is any of these p-th roots, yields a quantity N(m1, r)
that is divisible by q, and the m2 values with N(m1,m2) divisible by q have the
form m2 = r + kq for k ∈ Z. After sieving in this way, we obtain for fixed m1,
λ1, λ2 all the primes up to the sieving bound that divide N(m1,m2) for all m2

with 2 ≤ m2 < m1. These primes are divided out of each N(m1,m2) found and
the result is factored using Sage’s built-in factor method. Our sieve method is
described in Algorithm 3.1. The same procedure is performed for all m1 ≥ 3 up to
some suitable upper bound on m1.

Complete Algorithm. Our complete algorithm, incorporating the improvements
described above, is presented in Algorithm 3.2.

4. Evaluation and Parameter Selection

We performed a series of benchmarking experiments to compare the perfor-
mance of Diaz y Diaz’s method and its natural extension to p > 3 as outlined
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FINDING IMAGINARY QUADRATIC FIELDS WITH HIGH n-RANK 11

Algorithm 3.1 Factoring Sieve

Input:
• Odd prime p;
• Fixed integer m1;
• Largest prime to sieve over, sieve bound

• Integer pair (λ1, λ2)
• A dictionary, roots, containing for each prime q up to sieve bound, the roots

of xp − (λ2/λ1)
2 ≡ 0 mod q. Below “for q ∈ roots” refers to looping over the

keys in the dictionary.
Output:

• An array, factor array, consisting of small prime factors of N(m1,m2) for pairs
, (m1, 2), (m1, 3)..., (m1,m1 − 1).

1: factor array ← []
2: for m2 ∈ {0, 1, 2, . . . ,m1 − 1} do
3: factor array[m2] = []

4: for q ∈ roots do
5: for x ∈ roots[q] do
6: for m2 ∈ {2, 3, . . . ,m1 − 1} with m2 ≡ xm1 (mod q) do
7: add q to factor array[m2]

8: return factor array

in Section 3.1 (referred to below as “DyD Ext”) and our new Algorithm 3.2 (ref-
ered to as “Improved Alg”). We also evaluated the effect of each of our proposed
improvements and ran tests to find suitable values of λ1 and λ2 to maximize the
effectiveness of our search. Our findings are summarized below.

The purpose of these algorithms is not only to obtain many fields with p-
rank 2, but also to help discover fields with higher p-rank. In order to identify
these, we computed the class groups of as many of the fields found as was feasible.
Unfortunately, there is no known algorithm to determine the p-Sylow subgroup
or even the p-rank of the class group asymptotically faster than just computing
the entire class group. The fastest known algorithm for computing class groups
is subexponential in log |∆| [11, Theorem 13.11], but the output is only correct
assuming the Generalized Riemann Hypothesis (GRH). Unconditional verification
is possible but can only be done in exponential time, rendering the computation
infeasible for many of the fields produced by our methods. Even computing class
numbers assuming the GRH is slow compared to our search methods. Thus, we
also considered the smallest discriminant produced and the overall yield of small
discriminants as part of our evaluation.

Our algorithms were implemented in SageMath v. 8.8 [31], and the computa-
tions were performed on the University of Calgary’s ARC cluster (running CentOS
7). The cluster’s cpu2019 partition was used, allowing us to run simultaneous com-
putations in parallel on up to 240 cores (2x Intel Xeon Gold 6148 CPU, 2.40GHz).
When run, we allocated each core 1GB of RAM. Our code is available in a repository
on GitHub [1].

4.1. Algorithm Comparisons. Our first set of experiments consisted of run-
ning each of the search algorithms with the primes p with 3 ≤ p ≤ 13, starting at
lower m1 = 3 and with data being recorded at values of upper m1 at increasing
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12 BAGSHAW, JACOBSON, SCHEIDLER, AND ROLLICK

Algorithm 3.2 Expanded Search With Explicit Independence Testing (Improved
Alg)

Input:
• Odd prime p;
• Set of integer pairs {(λi,1, λi,2)}, lambda pairs;
• Lower bound on m1, lower m1;
• Upper bound on m1, upper m1;

Output:
• A list D consisting of discriminants, each corresponding to a non-empty set of

triples {(mi, yi, λi,jzi)} satisfying Proposition 2.3 (a) for n = p with lower m1 ≤
m1 ≤ upper m1 and 2 ≤ m2 < m1, whose corresponding ideals generate a

subgroup of the ideal class group of Q(
√
∆) isomorphic to (Z/pZ)k for some

k ≥ 2.
1: ideals← {}
2: D ← []
3: for λ1, λ2 ∈ lambda pairs do
4: for m1 ∈ {lower m1, ... , upper m1} do
5: for m2 ∈ {2, ...,m1 − 1} do
6: N ← 4λ2

2m
p
1 − 4λ2

1m
p
2

7: for a ∈ {l ∈ Z≥0 | l divides N and l ≤
√
N} do

8: b← N/a
9: if 2λ2 | a+ b then

10: y1 ← (a+ b)/(2λ2)
11: if y2

1 − 4mp
1 < 0 then

12: ∆← squarefree part of y2
1 − 4mp

1

13: if ∆ ̸≡ 1 (mod 4) then
14: ∆← 4∆
15: if ∆ | y2

1 − 4mp
1 then

16: z ←
√

(y2
1 − 4mp

1)/∆
17: c1 ← gcd(m1, z)
18: if c1 | ∆ and 4 ∤ c1 then

19: if p = 3 and m1 <
√
−∆/4 then

20: add m1 to ideals[∆]

21: if p > 3 then
22: x← as described in Theorem 2.4
23: add [m1, (x+ y1

√
∆)/2] to ideals[∆]

24: if 2λ1 | a− b then
25: y2 ← (a− b)/(2λ1)
26: Repeat Lines 11–23 using (y2,m2) in place of (y1,m1)

27: for ∆ ∈ ideals do
28: if p = 3 then
29: add ∆ to D if there are at least 2 distinct elements in ideals[∆]

30: if p > 3 then
31: add ∆ to D if ⟨ ideals[∆] ⟩ ∼= (Z/pZ)k for some k ≥ 2

32: return D

powers of 2. For a direct comparison with the Diaz y Diaz method, we only used
λ1 = λ2 = 1 in Algorithm 3.2.

In all cases, our improved algorithm was significantly faster than the Diaz y Diaz
method in terms of both actual run time and run time per unique field with p-rank
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FINDING IMAGINARY QUADRATIC FIELDS WITH HIGH n-RANK 13

two found. Figure 4.1 shows the runtimes for p = 3, Figure 4.2 shows the runtimes
per p-rank two field found for p = 3, and Figure 4.3 shows the runtimes for p = 11.
The time per discriminant plot is not included for p = 11, as no discriminants were
found using DyD Ext. The results for p = 5, 7, 13 were analogous.
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Figure 4.1. Run times of DyD Ext and Improved Alg for various upper
bounds on m1, for p = 3
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Figure 4.2. Run times per discriminant for DyD Ext and Improved Alg for
various values of upper m1, for p = 3
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Figure 4.3. Run times of DyD Ext and Improved Alg for various upper
bounds on m1, for p = 11

Table 4.1 lists the minimal discriminant found by each algorithm, and the
entry is left blank if no discriminants were found. Note that as predicted, the new

Table 4.1. Discriminants of minimal absolute value found by DyD Ext and
Improved Alg for p = 3, 5, 7, 11, 13

p

Algorithm 3 5 7 11 13

DyD Ext -3299 -53079 -5882719

Improved Alg -3299 -11199 -2096648 -15733605544 -9551516316168

algorithm, in addition to being faster overall, is more effective at finding solutions
to (3.1) and, moreover, that the discriminants produced are smaller.

4.2. Effect of Sieving. Our next experiments were designed to evaluate the
effect of using a sieve to factor the values of N(m1,m2) as described in Algo-
rithm 3.1.

We first determined an appropriate bound for the sieving primes (referred to as
prime bound in Algorithm 3.1) experimentally as follows. We computed the total
time it takes to factor all the given values of N(m1,m2) for m1 between certain
values of lower m1 and upper m1, using assistance from Algorithm 3.1 for different
values of prime bound, and also without using Algorithm 3.1 (just deploying Sage’s
factor function). We choose upper m1 in increasing powers of 2 and let lower m1

= upper m1 - 100. We did this for the pair (λ1, λ2) = (1, 1), as the optimal prime
bounds should be very similar for other pairs (λ1, λ2).

For p = 3, 11, 13, we chose values of prime bound in increasing powers of 2, from
28 to 221. We chose values of upper m1 starting from 29, up to 217 for p = 3 and
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216 for p = 11 and p = 13. The dictionary containing roots was pre-computed for
primes up to 216 but this took under 2 minutes for each p. Unfortunately, factoring
the values of N(m1,m2) for these primes was always faster without the assistance of
Algorithm 3.1. For p = 3, we suspect that this is because the quantities N(m1,m2)
are relatively small and can thus be handled easily by Sage’s factor function, or
perhaps it is due to the fact that our sieve was implemented in a high-level language
without optimizations that are typically done in a C implementation. Regardless,
there is surely potential for improvement in this area.

For p = 5 and p = 7, assistance from Algorithm 3.1 showed an improvement
in factoring time with the right selection of prime bound. Table 4.2 displays, for
p = 5 and 7, and for different ranges of values of upper m1, the unassisted factoring
time, the sieve-assisted factoring time and its associated value of prime bound. All
times are in seconds.

Table 4.2. Comparison of assisted and unassisted factoring times (in
seconds) for different ranges of values of upper m1

p = 5

upper m1 512 1024 2048 4096 8192 16384 32768 65536

unassisted factoring 2.69 8.03 22.99 65.61 233.88 661.41 1734.83 5528.90

assisted factoring 6.55 16.81 40.99 98.83 261.36 642.81 1628.91 4924.33

optimal prime bound 512 1024 2048 8192 8192 131072 262144 524288

p = 7

upper m1 512 1024 2048 4096 8192 16384 32768 65536

unassisted factoring 10.40 47.08 179.66 583.81 1890.67 5153.09 13491.52 34018.69

assisted factoring 9.93 38.98 165.13 570.21 1818.32 4506.21 12113.02 31163.75

optimal prime bound 512 1024 2048 8192 262144 524288 524288 524288

4.3. Choosing Parameters for the Expanded Search. Our next experi-
ments were designed to examine the effect of varying the parameters λ1 and λ2 of
Algorithm 3.2, in order to determine parameter choices for our large-scale search
that were most likely to yield favorable results.

To determine suitable choices, we ran experiments incrementally, testing the
benefit of adding any new such pairs to the search after starting with λ1 = λ2 = 1.
As an example, we provide the data from our experiments for p = 11 in Table 4.3
Results for p = 3, 5, 7, 13 were mostly analogous, with notable differences discussed
below. Each line in the table corresponds to a run of our new algorithm (Algo-
rithm 3.2) on input the pairs (λ1, λ2) listed in the first two columns of that line and
all the lines above it. This approach quantifies the computational value of adding
a new pair (λ1, λ2). All experiments were run with lower m1 = 3.

Columns 3 and 4 in Table 4.3 list the smallest and the median discriminant
found in any given run. The remaining column headers signify the following data:

• new ∆ lists the number of discriminants reported by Algorithm 3.2 to have
p-rank at least 2 that were not found in the previous run corresponding
to the row above;

• s per new ∆ is the relative run time increase for all new discriminants,
i.e. the ratio of the additional time taken (in seconds) compared to the
previous row, divided by new ∆;
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Table 4.3. Incrementally adding pairs (λ1, λ2) for p = 11, upper m1 = 512

λ1 λ2 min ∆ median ∆ new ∆ s per new ∆
1 1 -15733605544 -2409316885097325501591366943 8778 0.067515
2 1 -15733605544 -1800413784996102890457052303 4417 0.207770
1 2 -185328519 -1551091754615407644328306939 1374 0.435184
1 3 -185328519 -1364091056871805689771941779 695 0.828320
3 1 -70565939 -1007073149417658049440905299 4360 0.227851
4 1 -70565939 -816946052154444502485125447 2516 0.415843
3 2 -70565939 -795797521072323671302410443 1068 0.880585
2 3 -70565939 -780705253163238322892621827 424 1.537410
1 4 -70565939 -760023844628486720926728387 301 1.887791
1 5 -70565939 -741729080835893769769496423 265 2.147148
5 1 -70565939 -618772757856319584170735560 2850 0.351154
6 1 -70565939 -564683504170411558007215723 1051 0.918917
5 2 -70565939 -540413837611003533378344227 805 1.216898
4 3 -70565939 -533568062381971324849963279 621 1.474324
3 4 -70565939 -526707431576602266767546552 224 3.118813
2 5 -70565939 -518991454188667796823702339 149 4.069647
3 5 -70565939 -512906661353959435015354916 230 2.777062
5 3 -70565939 -492701289613950876504147715 668 1.393279
7 1 -70565939 -438924627629964845075394724 2202 0.449065
8 1 -126407 -400133798411797736175242571 1468 0.717999
5 4 -126407 -397916586199033278442104835 314 2.803772
4 5 -126407 -394450906589853749463160687 188 3.792223
9 1 -126407 -359749231801531908064767095 1345 0.783479
10 1 -126407 -341203318897141258313638135 715 1.314428

An obvious trend that we observed for all primes is that adding new pairs
(λ1, λ2) enables Algorithm 3.2 to find smaller discriminants defining fields with p-
rank at least 2. For p = 3 and 5, the respective provably minimal discriminants
−3299 and −11199 were found just with the initial pair (λ1, λ2) = (1, 1). But for
larger primes, adding new pairs (λ1, λ2) generated significantly smaller discrimi-
nants. For example, for p = 11, the pair (λ1, λ2) = (1, 1) produced the rather large
minimal discriminant −15733605544. Adding just the pairs (λ1, λ2) = (2, 1) and
(1, 2) already found a much smaller minimal discriminant, and by the time all the
pairs up to (λ1, λ2) = (8, 1) were included in the search, the algorithm discovered
the significantly smaller discriminant −126407. Moreover, for all primes under con-
sideration, the median discriminant decreased as more such pairs were added. This
is highly desirable and represents convincing evidence in support of the effectiveness
of our new approach to searching for solutions of (3.1) with varying pairs (λ1, λ2),
rather than restricting to the original Diaz y Diaz setting (λ1, λ2) = (1, 1) in [8].

It is also clear that adding new pairs (λ1, λ2) increases the yield of discriminants
as p increases. However, while it is evident that adding more pairs (λ1, λ2) to the
search appears generally favourable, it is more difficult to ascertain how many such
pairs should be included and how to choose the specific pairs that bring the most
benefit. Our data show that the processing time per discriminant increases as
more pairs (λ1, λ2) are added, but the median discriminant, and often the minimal
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discriminant, decrease. The choice of pairs (λ1, λ2) to include is governed by how
one wishes to balance these two factors. One noticeable trend is that pairs with
λ2 = 1 seem to give higher yields than those with larger λ2 values. This can be
seen by their higher yields of new discriminants and relatively low seconds per new
discriminant values. It is also clear that for larger primes, adding new (λ1, λ2) pairs
has a greater impact on the minimal discriminant found. In our implementation
we compute class groups, so small median discriminants are very beneficial and
more (λ1, λ2) pairs should be chosen for larger primes. With so many factors to
weigh, there is no clear strategy for selecting (λ1, λ2) pairs. We opted to make the
following choices for a large-scale computation:

• For p = 3, the pairs (λ1, λ2) = (1, 1), (2, 1), (3, 1) were chosen, as they seem
to produce a high yield of discriminants at a very low cost per discriminant
(“s per new ∆” value).

• For p = 5, the pairs (λ1, λ2) = (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (1, 2) were
chosen.

• For p = 7, we decided to pick the top 10 pairs with the lowest cost per
discriminant, which are (λ1, λ2) = (1, 1), (2, 1), (1, 2), (3, 1), (4, 1),
(5, 1), (6, 1), (7, 1), (8, 1), (9, 1).

• For p = 11 and p = 13, discriminants need to be kept small in order to
compute class groups efficiently. Thus, the focus of a large-scale compu-
tation for these primes was not to search up to a large value of upper m1,
but rather, to search over as many (λ1, λ2) pairs as possible for a smaller
value of upper m1.

4.4. Summary. Table 4.4 lists the preferred factoring algorithm for each
prime p as well as the parameters used as input to Algorithm 3.2 for a large-scale
computation, based on the results of our experiments described above.

Table 4.4. Parameters for large-scale computation

Prime Factoring (λ1, λ2) pairs upper m1

3 Sage (1,1), (2,1), (3,1) 196608
5 Algorithm 3.1 (1,1), (2,1), (3,1), (4,1), (5,1), (1,2) 65536
7 Algorithm 3.1 (7,1), (8,1), (9,1), (1,2) 40960
11 Sage (λ1, λ2) with 1 ≤ λ1, λ2 ≤ 10 and

gcd(λ1, λ2) = 1; (63 total pairs)
8192

13 Sage Same as for p = 11 5632

Factoring N(m1,m2) for p = 3, 11, 13 was completed unassisted using Sage’s
factor function. For p = 5 and 7 we used sieving to partially factor these values
as described in Section 4.2. For our implementation, we fit the data in Table 4.2
to curves, one for p = 5 and another for p = 7, and used these curves to compute a
value of prime bound for values of upper m1 not occurring in the table. For p = 5
we used

prime bound = 2e1.8(log2(upper m1)−9)

and for p = 7 we determined

prime bound = 50e1.3(log2(upper m1)−7) .
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5. Numerical Results

In this section we describe the results of our final searches for imaginary qua-
dratic fields whose class groups have large p-ranks for p = 3, 5, 7, 11 and 13. All
searches were run with lower m1 = 3, using the algorithms and parameters listed
in Table 4.4. The upper m1 values were chosen to be as large a power of 2 (or
a sum of large powers of 2) as possible so that searches could be run in roughly
a week on 239 cores running simultaneously. The exception is for p = 3, where
searches needed to be halted due to storage capacity.

Run time data are presented in Table 5.1, which lists the total run time and
number of discriminants found for each prime. Class groups were computed using
PARI/GP’s quadclassunit [30, Section 3.8.88] with the discriminants distributed
over the 239 compute nodes. This function implements the subexponential algo-
rithm mentioned in Section 4, and since the correctness of this algorithm requires
the assumption of the GRH, our p-ranks are only exact under the GRH as well.
However, the method does compute generators of each independent cyclic subgroup
of the class group and verifies that each has the correct order, so the p-ranks claimed
here are unconditionally lower bounds on the true p-ranks.

Computations were halted if not all class groups were found after 2 weeks
of real-time computing. “#∆ found” refers to the total number of discriminants
found in the search. “Search t” refers to the total time (in days) it took to run
the search. “#Class groups computed” refers to the number of discriminants for
which class groups were computed, and “Class group t (days)” refers to the total
time taken to compute these class groups. The times given are total CPU time
taken over all 239 nodes. Note that, as expected, class group computation is in

Table 5.1. Final counts and times

Prime #∆ found Search t (days) #Class groups computed Class group t (days)
3 20609841975 197.53 20609841975 1233.77
5 1331448842 1452.29 1331448842 2842.37
7 402708300 1689.29 297354233 3346.00
11 13236853 1258.75 10342190 3346.00
13 5013641 1419.18 2522501 3346.00

most cases the bottleneck with these computations. For all primes except 3 and 5,
the search methods produced far more fields with p-rank at least 2 than we were
able to compute class groups.

Table 5.2 breaks down the p-ranks of all discriminants whose class groups were
computed. “Previous* Min ∆” refers to the previously found smallest discriminant
corresponding to that p-rank; if no proof of minimality was provided for this dis-
criminant in the literature, the entry is marked with an asterisk (*). The proved
minimal discriminants for each p-rank were found in [19], aside from the proved
minimum for 3-rank 5 which was found in [2] and the previous minimal 5-rank 4
example (identified with a *) was found in [24]. If no discriminant of that p-rank
had previously been found, that entry is left blank. “Min ∆ found“ refers to the
minimal discriminant found with that p-rank in our computations, and “#∆ found”
refers to the number of discriminants found in our computations corresponding to
that p-rank.
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Table 5.2. p-rank results

p-rank Previous* Min ∆ Min ∆ found # ∆ found
3-rank ≥ 2 -3299 -3299 19465189858
3-rank ≥ 3 -3321607 -3321607 1138191130
3-rank ≥ 4 -653329427 -653329427 6454019
3-rank ≥ 5 -5393946914743 -5393946914743 6968
5-rank ≥ 2 -11199 -11199 1318152618
5-rank ≥ 3 -11203620 -11203620 13291706
5-rank ≥ 4 -258559351511807* -1264381632596 4518
7-rank ≥ 2 -63499 -149519 296341915
7-rank ≥ 3 -501510767 -16974157711 1012251
7-rank ≥ 4 -469874684955252968120 67
11-rank ≥ 2 -65591 -126407 10333664
11-rank ≥ 3 -3035884424 -3532321517865683 8526
13-rank ≥ 2 -228679 -4060728916 2521258
13-rank ≥ 3 -38630907167 -256334768068303410107449987 1243

Overall, the most notable entries are the 67 discriminants defining fields with
7-rank at least 4. To the best of our knowledge, these are the first fields found
with this 7-rank. Additionally, the minimal discriminant ∆ = −126438163259 that
we found is the smallest known example of a discriminant of a field with 5-rank
4. It is important to note that 3 fields with a 3-rank equal to 6 were found in
[22]. Although this rank was not matched by our computations, a vast number of
new 3-part structures were found. Arguably the most interesting among these are
the two fields whose class groups have 3-part C(39)× C(3)× C(3)× C(3)× C(3).
Further data on exotic p-Sylow subgroups can be found in Tables A.1–A.5 in the
Appendix.

Although a few examples of fields with 7-rank 3 were found in [28] and [18], and
a few examples of fields of 11-rank 3 were found in [14], all the previous minimal
discriminants for p = 7, 11 and 13 were found through our class computations
described in [19]. This attests to the difficulty of developing effective techniques
for constructing quadratic fields of high p-rank for larger primes p.

6. Conclusion

The numerical results show that our efforts to generalize and improve Diaz y
Diaz’s method for finding imaginary quadratic fields with 3-rank at least 2 have
been successful in that they rapidly produce many fields with p-rank at least 2
with reasonably small discriminants. It is probable that the speed could be im-
proved even more by implementing the algorithms in a lower-level language such
as C/C++ as opposed to a high-level interpreted language like Sage. This would
especially improve the efficiency of the sieving method for factoring described in
Algorithm 3.1, as sieving benefits greatly from access to lower-level memory ma-
nipulation functionality.

The biggest obstacle to extending our search is the cost of class group computa-
tion. An obvious consideration would be to simply explore more efficient implemen-
tations for computing class groups. After testing a handful of large discriminants
we found that Magma’s ClassGroup [29] performed very similarly to PARI/GP’s
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quadclassunit, so we opted for PARI/GP due to it being open-source and easier
to access. There may be other implementations that can improve upon these by a
small factor; although these would still have the same asymptotic complexity.

A more intriguing possibility for improvement is to devise a means to filter
discriminants and identify, perhaps heuristically, those fields that are likely to have
p-rank exceeding 2 before computing their class groups. This is exactly the ap-
proach that Quer used in his work finding imaginary quadratic fields with 3-rank
equal to 6. The approach, mentioned briefly in [22] and in more detail in [23],
is to estimate the L-function of an associated elliptic curve and, appealing to the
Birch and Swinnerton-Dyer Conjecture, filter based on the estimated rank of the
elliptic curve. The fact that elliptic curves with high rank correspond to imaginary
quadratic fields with high 3-rank implies that this strategy heuristically picks out
fields for which the 3-rank is likely to be large. We are currently exploring ideas
for a similar approach for p > 3 which, if successful, should allow us to expand the
search much further and hopefully find more interesting examples of exotic class
group structures.

It would also be of interest to compare our methods to those of Mestre [17],
Schoof [24], Léprevost [14], and Gillibert and Levin [10] that exploit the connec-
tions to algebraic geometry directly. Extending these methods and ours to search
for real quadratic fields with large p-rank is another interesting project. Both of
these research directions are under current investigation.
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Appendix A. Data on Specific p-group Structures Found

Tables A.1–A.5 break down the different structures of the non-cyclic p-Sylow
subgroups of the fields whose class groups were computed. In the column “p-part”,
a tuple (e1, e2, ..., ek) refers to a group structure C(pe1)×C(pe2)× ...×C(pek) where
C(n) denotes the cyclic group of order n. In Table A.1, all previous discriminants
marked with a * were found in [23]. In Table A.2, they were found in [18]. To the
best of our knowledge, these are the only examples provided in prior literature.

3-part Previous* Min ∆ Min ∆ Found # ∆ Found
(9,1,1,1,1) -4781652142938583 2
(7,1,1,1,1) -119901455891268 12
(6,2,1,1,1) -21790632078441743 1
(6,1,1,1,1) -606158852322299 28
(5,2,1,1,1) -1139287867275027 4
(5,1,1,1,1) -5579945937284287* -16259689667204 72
(4,2,1,1,1) -1502261884415659 8
(4,1,1,1,1) -658417328546819* -27551810196712 202
(3,2,1,1,1) -9535792005606052* -191422314332263 43
(3,1,1,1,1) -1635609136827227* -9516914581379 676
(2,2,1,1,1) -1849337998495619* -95959313694239 73
(2,1,1,1,1) -35102371403731* -20947933269332 1956
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(1,1,1,1,1) -5393946914743 -5393946914743 3891
(12,1,1,1) -1189356312906079 13
(11,2,1,1) -10641554173287823 1
(11,1,1,1) -80496682329383 58
(10,2,1,1) -232066870660487 12
(10,1,1,1) -27009533351831 210
(9,2,2,1) -13604166347353367 2
(9,2,1,1) -59370495709911 37
(9,1,1,1) -2706427613479 831
(8,3,1,1) -434531603748116 6
(8,2,1,1) -23985773289067 119
(8,1,1,1) -226138531999 -226138531999 2493
(7,3,1,1) -4817582128879 11
(7,2,2,1) -56036578472779 1
(7,2,1,1) -1792545911411 396
(7,1,1,1) -513092626699 -513092626699 7344
(6,4,1,1) -740469530387903 1
(6,3,2,1) -253376492551619 1
(6,3,1,1) -4032841753327 46
(6,2,2,1) -14652095044139 4
(6,2,1,1) -3930322587832 1205
(6,1,1,1) -76951070303 -76951070303 22119
(5,4,1,1) -30165947874743 3
(5,3,2,1) -7405250027331172 1
(5,3,1,1) -1190552839847 123
(5,2,2,1) -58724498929819 18
(5,2,1,1) -473827747963 -473827747963 3562
(5,1,1,1) -7993105123 -7993105123 66887
(4,4,1,1) -33516852803283 12
(4,3,2,1) -17108559215023 1
(4,3,1,1) -1579140273620 379
(4,2,2,1) -18659260771715 56
(4,2,1,1) -128589208863 -128589208863 10569
(4,1,1,1) -3146813128 -3146813128 198721
(3,3,2,1) -95139809105028 7
(3,3,1,1) -1074734433547 -1074734433547 945
(3,2,2,1) -1495321091551 128
(3,2,1,1) -34245189208 -34245189208 32214
(3,1,1,1) -5288116947 -5288116947 598482
(2,2,2,1) -4324341977848 296
(2,2,1,1) -32543535351 -32543535351 72053
(2,1,1,1) -3972542271 -3972542271 1799341
(1,1,1,1) -653329427 -653329427 3635311
(15,1,1) -7412784971602919 4
(14,1,1) -1199445898709711 41
(13,2,1) -1959152115575119 11
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(13,1,1) -57329915311679 477
(12,3,1) -7783345889181383 3
(12,2,1) -315196348878431 72
(12,1,1) -126690112721206499* -6908116009031 2833
(11,3,1) -868976039657431 8
(11,2,1) -43222693504559 424
(11,1,1) -797107037711 -1175416234151 12080
(10,4,1) -5111867434551467 2
(10,3,1) -179809468172935 40
(10,2,2) -240547603651519 1
(10,2,1) -2514065281111 1800
(10,1,1) -146114436719 -146114436719 43389
(9,4,1) -627212963493203 4
(9,3,1) -9275890698391 214
(9,2,2) -96789353990963 15
(9,2,1) -581116399159 -581116399159 6574
(9,1,1) -12792023879 -12792023879 139014
(8,4,1) -110609652344647 20
(8,3,1) -124071345551 -124071345551 703
(8,2,2) -2668360754663 52
(8,2,1) -59714529551 -86507761799 20457
(8,1,1) -5347129751 -5347129751 426505
(7,5,1) -251555051620699 1
(7,4,1) -16488161012495 76
(7,3,2) -71467687560212 10
(7,3,1) -338926563823 -338926563823 2201
(7,2,2) -484468933679 -484468933679 191
(7,2,1) -4163792239 -4163792239 62982
(7,1,1) -461309711 -461309711 1285263
(6,5,1) -667219375024612 11
(6,4,1) -276331426207 -276331426207 236
(6,3,2) -2447509863143 31
(6,3,1) -27291040424 -27291040424 6948
(6,2,2) -9483757583 -9483757583 616
(6,2,1) -376424303 -376424303 190687
(6,1,1) -124438679 -124438679 3862973
(5,5,1) -3115620789695 28
(5,4,1) -186447381556 -186447381556 780
(5,3,2) -78852105815 -1619378573304 93
(5,3,1) -2232519167 -2232519167 21234
(5,2,2) -45248632247 -45248632247 1786
(5,2,1) -413771887 -413771887 572471
(5,1,1) -32852423 -32852423 11593161
(4,4,2) -134714111090772 5
(4,4,1) -26320580987 -26320580987 1734
(4,3,2) -295863285976 -583203069268 255

30 Jun 2023 15:37:26 PDT
230122-Bagshaw Version 3 - Submitted to LuCaNT



24 BAGSHAW, JACOBSON, SCHEIDLER, AND ROLLICK

(4,3,1) -522302531 -522302531 63043
(4,2,2) -9766538987 -9766538987 5361
(4,2,1) -53209523 -53209523 1718077
(4,1,1) -13275687 -13275687 34762130
(3,3,3) -13274921249572 4
(3,3,2) -20687610651 -130708347771 565
(3,3,1) -559587163 -559587163 143101
(3,2,2) -18741973496 -18741973496 16009
(3,2,1) -57236692 -57236692 5154730
(3,1,1) -5153431 -5153431 104281796
(2,2,2) -364435991 -364435991 32868
(2,2,1) -101375499 -101375499 11598214
(2,1,1) -3321607 -3321607 312801191
(1,1,1) -4447704 -4447704 649355525
(16,1) -6180709870676039 8
(15,1) -419350731274151 258
(14,2) -1416506636537519 23
(14,1) -58458005876399 2291
(13,3) -1659668122287311 5
(13,2) -81328110739151 266
(13,1) -7173077767151 13867
(12,3) -271053539736983 28
(12,2) -9360659630111 1549
(12,1) -512068796879 -709319343599 62177
(11,4) -1372147936838871 3
(11,3) -11942231289719 181
(11,2) -677250946319 -682812704279 6952
(11,1) -52623967679 -97618013951 227654
(10,4) -20528606822687 19
(10,3) -766483839959 -1455104718671 778
(10,2) -65798421911 -142692318479 25140
(10,1) -8795475911 -11024762591 743425
(9,5) -3069611062600312 1
(9,4) -4478460907199 85
(9,3) -60543925679 -60543925679 2863
(9,2) -11901791639 -20980261727 82881
(9,1) -1106108639 -1106108639 2312018
(8,5) -18401222970803 11
(8,4) -225796561799 -1819146689119 284
(8,3) -37703425007 -52110784391 9331
(8,2) -1173834359 -1173834359 256522
(8,1) -98311919 -98311919 7012912
(7,5) -253237383431 -42609838884859 41
(7,4) -47649110911 -61201223599 1038
(7,3) -3541241903 -6562836479 28716
(7,2) -167885231 -167885231 780815
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(7,1) -32681951 -37648463 21096688
(6,6) -28277864999519 3
(6,5) -133786229531 -759780713491 107
(6,4) -7274282423 -15644731279 3132
(6,3) -636617543 -1043281091 87112
(6,2) -19180391 -19180391 2347194
(6,1) -3582743 -3582743 63312111
(5,5) -6743415071 -423637980855 253
(5,4) -4301015239 -12544040891 9715
(5,3) -152637311 -152637311 261599
(5,2) -15042011 -15042011 7039473
(5,1) -508847 -599927 189936506
(4,4) -136071631 -136071631 21968
(4,3) -41361815 -49386703 782100
(4,2) -1332167 -1332167 21134173
(4,1) -29399 -153247 569760770
(3,3) -6207263 -6207263 1762030
(3,2) -351751 -351751 63397044
(3,1) -17399 -17399 1709318817
(2,2) -134059 -134059 142631063
(2,1) -3299 -3299 5127934647
(1,1) -3896 -3896 11532781211

Table A.1. 3-part structures

5-part Previous* Min ∆ Min ∆ Found # ∆ Found

(6,1,1,1) -29223692703960901844 3

(5,1,1,1) -23115910878760939104487 2

(4,2,1,1) -39747358488997861867135 2

(4,1,1,1) -2064918363990920 45

(3,2,1,1) -713870092543251083672 1

(3,1,1,1) -347546457876142204847* -41131207995112 157

(2,2,1,1) -2184031325678101777304 7

(2,1,1,1) -630912818628505329119* -238350381462199 881

(1,1,1,1) -258559351511807* -1264381632596 3420

(10,2,1) -196282504615780102426427 1

(10,1,1) -719668888494180546644 3

(9,1,1) -601170377876508571 35

(8,2,1) -11871279752301453854056 2

(8,1,1) -106101520102380728 152

(7,2,1) -88195933163985991143 6

(7,1,1) -2659523746691179 826

(6,2,1) -213409811170526583 58

(6,1,1) -349008665407 -24339061404303 4013

(5,2,1) -2665221927068163908 204

(5,1,1) -25384593659 -3229265987256 20133

(4,3,1) -6092229602869683 8
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(4,2,1) -116279191211 -1337006161770292 948

(4,1,1) -3511272455 -66876865492 100883

(3,3,1) -562954585788148276 35

(3,2,1) -29867315295 -10241065678255 4797

(3,1,1) -145367147 -890032871 502153

(2,2,2) -287442559199 -15277416532031012543 5

(2,2,1) -6896149079 -25987659771 20299

(2,1,1) -51213139 -51213139 2512349

(1,1,1) -11203620 -11203620 10124797

(14,1) -283676995425795804340247 1

(13,1) -110155263811937746685419 3

(12,1) -317201690376439042287 26

(11,2) -33291171086505137344699 1

(11,1) -2594595364223905823 111

(10,2) -46003432873651660003 4

(10,1) -90960234921563435 608

(9,2) -8369135150361181239 26

(9,1) -7084251892338788 3012

(8,4) -970644487236804090392 1

(8,3) -20315924592054543155963 1

(8,2) -25707908413976747 111

(8,1) -941197327199 -68451950941652 15247

(7,3) -4256081362984796723 3

(7,2) -2769444241850843 622

(7,1) -48662190359 -3270227349799 78092

(6,3) -625532870037127003 36

(6,2) -75913193999 -1078462086857560 3095

(6,1) -1614153239 -57368333887 388458

(5,3) -213265691687 -2861689046682709695 122

(5,2) -5180829911 -155081563523 15706

(5,1) -88527911 -1879050223 1945948

(4,4) -1467852793757614031079 2

(4,3) -10036313687 -103425154875416 663

(4,2) -290810159 -36014679763 78091

(4,1) -5820119 -5820119 9724229

(3,3) -1068156239 -4455150346735 2581

(3,2) -52456111 -670409895 389687

(3,1) -621599 -621599 48614191

(2,2) -1390367 -24994327 1626490

(2,1) -50783 -50783 243070212

(1,1) -11199 -11199 1012195234

Table A.2. 5-part structures

7-part Previous* Min ∆ Min ∆ Found # ∆ Found

(3,1,1,1) -664652160708627486250579106056 1

(2,1,1,1) -1884247051609224813123120596 8

(1,1,1,1) -469874684955252968120 58

(9,1,1) -1174046771147427850869466988072 1
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(7,1,1) -28446119246040006170662550815 6

(6,1,1) -1709722545947903362406383 45

(5,1,1) -44221073445452514723 416

(4,2,1) -5438832486874599358067624 9

(4,1,1) -356820088964 -429069139515571 2899

(3,3,1) -211034216341933901480376896440 1

(3,2,1) -2978654744508703 89

(3,1,1) -19379510159 -27055504465317940 20359

(2,2,1) -439240920004 -18841640731453242055 393

(2,1,1) -648153647 -16974157711 140292

(1,1,1) -501510767 -59220867124 847741

(11,1) -31214462172510763995245455064 1

(10,1) -362275360982619993364171755 10

(9,2) -8603822104544671948771409471 1

(9,1) -35194533384565143944891 45

(8,2) -41829635402356017308666856635 1

(8,1) -3485307074457345815895 355

(7,2) -495829917565772785395811252 8

(7,1) -65038453278281599 2376

(6,2) -8884871244454699931797348 47

(6,1) -174018745031 -137311936815726372 16983

(5,3) -63799761056182467041071901543 1

(5,2) -336699684383 -67208196536937832292 341

(5,1) -5800676279 -1767950776916 118697

(4,3) -1833032352201402190610115827 4

(4,2) -16336216607 -835973339811751208 2330

(4,1) -172820591 -66636642507 828102

(3,3) -40111506371 -10848805860774663710437508 42

(3,2) -528784319 -20261380249163 17068

(3,1) -4603007 -115427951 5804875

(2,2) -59288543 -11368726430052 103844

(2,1) -480059 -3963944 40633451

(1,1) -63499 -149519 248813333

Table A.3. 7-part structures
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Table A.4. 11-part structures

11-part Previous* Min ∆ Min ∆ Found # ∆ Found
(5,1,1) -482933822333784474655653100292965667 1
(4,1,1) -241783869822537801905159591587 10
(3,1,1) -1056523328545691539122184797287 78
(2,1,1) -145931588651 -103121510852479373211114483 776
(1,1,1) -3035884424 -3532321517864683 7661
(7,1) -161246983809593497938056210142160841924 5
(6,1) -8122060022255594570849043012 67
(5,1) -935094698711 -1501588177054837992580 693
(4,2) -42177966913676462762644 7
(4,1) -7219509359 -139318644407667431 7690
(3,2) -91355041631 -59268487604121704397283720 53
(3,1) -218130623 -9955922266504 84028
(2,2) -4536377039 -440953217421746725439861684 647
(2,1) -7948999 -185328519 925340
(1,1) -65591 -126407 9315134

Table A.5. 13-part structures

13-part Previous* Min ∆ Min ∆ Found # ∆ Found
(4,1,1) -87316676344488903524279655272175378685698683 1
(3,1,1) -26265546266831052453902561606133576 7
(2,1,1) -105479207735 -61135051463420753760463404996 90
(1,1,1) -38630907167 -256334768068303410107449987 1145
(7,1) -22699509446220122346230885149354335802405399 1
(6,1) -2963202904487970204245304707253023539 6
(5,1) -8161147001077266804922786243 89
(4,1) -55385334839 -76285684167795951751982711 1138
(3,2) -366445322799 -4762935306033350578180863390302834359 12
(3,1) -781846103 -43422255887258040 14787
(2,2) -10692322055 -310637201042047641950817066472 85
(2,1) -14127343 -50909788816791 191938
(1,1) -228679 -4060728916 2313202
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