Computing invariants of Hilbert modular surfaces

Sam Schiavone

LuCaNT July 10, 2023

Joint work with

- Eran Assaf
- Angelica Babei
- Benjamin Breen
- Edgar Costa
- Juanita Duque-Rosero

- Aleksander Horawa
- Jean Kieffer
- Avinash Kulkarni
- Grant Molnar
- John Voight

Proposition

Let k be an algebraically closed field and E be an elliptic curve over k. Then $\operatorname{End}^{0}(E) = \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ is one of the following types.

- ► I(1): ℚ,
- ▶ III(1): a definite quaternion algebra over ℚ; or
- ► *IV*(1,1): an imaginary quadratic field.

Proposition (Albert, Oort)

Let k be an algebraically closed field and A be a simple abelian surface over k. Then $\text{End}^0(A) = \text{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$ is one of the following types.

- ► I(1): ℚ,
- ► I(2): a real quadratic field,
- ► II(1): an indefinite quaternion algebra over Q; or
- ► IV(2,1): a degree 4 CM field.

g = 1	g = 2	Dimension
	Siegel moduli spaces	3
	Hilbert modular surfaces	2
Modular curves	Shimura curves	1
CM points	CM points	0

What's the first thing you want to know about a curve C?

Its genus!

$$2-2g(\mathcal{C})=\deg(\mathcal{T}_{\mathcal{C}})=c_1(\mathcal{T}_{\mathcal{C}}).$$

What's the first thing you want to know about a surface S?

Its invariants!

 $c_1(\mathcal{T}_S)^2$, $c_2(\mathcal{T}_S)$, Hodge diamond, Kodaira dimension.

Geometric invariants of surfaces

Let S be a smooth algebraic surface.

Hodge decomposition: $H^{r}(S, \mathbb{C}) = \bigoplus_{p+q=r} H^{p,q}(S).$

$$\begin{array}{cccc} h^{0,0} & b_0 := \dim H^0(S,\mathbb{C}) \\ h^{1,0} & h^{0,1} & b_1 := \dim H^1(S,\mathbb{C}) \\ h^{2,0} & h^{1,1} & h^{0,2} & b_2 := \dim H^2(S,\mathbb{C}) \\ h^{2,1} & h^{1,2} & b_3 := \dim H^3(S,\mathbb{C}) \\ h^{2,2} & b_4 := \dim H^4(S,\mathbb{C}) \end{array}$$

 $h^{2,2} \qquad b_4 := \dim H^4(S,\mathbb{C})$ $\frac{c_1^2 + c_2}{12} = \chi(\mathcal{O}_S) := h^{0,0} - h^{1,0} + h^{2,0} \qquad \text{(holomorphic Euler char.)}$ $c_2 = e(S) := \sum_{i=0}^4 (-1)^i b_i = 2 - 2b_1 + b_2 \quad \text{(Euler number)}$

$$h^{1,1} = e - 2\chi(\mathcal{O}_S) = c_2 - 2\chi(\mathcal{O}_S)$$

Geometric invariants of surfaces

Let S be a smooth (connected) Hilbert modular surface. Hodge decomposition: $H^r(S, \mathbb{C}) = \bigoplus_{p+q=r} H^{p,q}(S)$.

$$1 \qquad b_0 = 1 \\ 0 \qquad 0 \qquad b_1 = 0 \\ h^{2,0} \qquad h^{1,1} \qquad h^{0,2} \qquad b_2 := \dim H^2(S, \mathbb{C}) \\ 0 \qquad 0 \qquad b_3 = 0 \\ 1 \qquad b_4 = 1 \end{cases}$$
$$\frac{c_1^2 + c_2}{12} = \chi(\mathcal{O}_S) := 1 - 0 + h^{2,0} \qquad \text{(holomorphic Euler char.)} \\ c_2 = e(S) := \sum_{i=0}^4 (-1)^i b_i = 2 + b_2 \qquad \text{(Euler number)} \\ h^{1,1} = e - 2\chi(\mathcal{O}_S) = c_2 - 2\chi(\mathcal{O}_S)$$

Thus c_1^2 and c_2 determine the Hodge diamond.

Complex uniformization

- $\mathfrak{H} = \operatorname{complex} \operatorname{upper} \operatorname{half-plane}$
- F = real quadratic number field
- $\blacktriangleright \mathbb{Z}_F$ its ring of integers

If $A = \mathbb{C}^2/\Lambda$ has RM by \mathbb{Z}_F , then $\Lambda \simeq \mathbb{Z}_F \cdot (z_1, z_2) \oplus \mathfrak{b} \subseteq \mathbb{C}^2$ for some $z = (z_1, z_2) \in \mathfrak{H}^2$ and some fractional ideal $\mathfrak{b} \subseteq F$. This gives an identification of the relevant moduli space with

$$\mathsf{SL}(\mathbb{Z}_F\oplus\mathfrak{b})\backslash\mathfrak{H}^2$$

where $SL(\mathbb{Z}_F \oplus \mathfrak{b}) \hookrightarrow SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$ acts on \mathfrak{H}^2 coordinatewise by linear fractional transformations.

From now on, assume $\mathfrak{b} = \mathbb{Z}_F$.

(*Technical detail:* the \mathbb{Z}_{F} -linear polarizations on A equip Λ with an orientation, determining $[\mathfrak{b}] \in Cl^{+}(F)$.)

Hilbert modular surfaces

We focus on the congruence subgroups

$$\Gamma = \Gamma_0^1(\mathfrak{N}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}_F) : c \in \mathfrak{N} \right\}.$$

(Similar definition for Γ_0 replacing SL_2 by GL_2^+ ; also for $\mathfrak{b} \neq \mathbb{Z}_F$.) Quotient: $\Gamma \setminus \mathfrak{H}^2 =: Y(\Gamma)$ is a Hilbert modular surface.

Compactify: Let $(\mathfrak{H}^2)^* := \mathfrak{H}^2 \cup \mathbb{P}^1(F)$ and

 $\overline{Y}(\Gamma) \mathrel{\mathop:}= \Gamma \backslash (\mathfrak{H}^2)^*$

The **cusps** of Γ are the orbits of $\mathbb{P}^1(F)$ under Γ .

Resolve: $\overline{Y}(\Gamma)$ is singular at the cusps (and elliptic points). Need to compute a minimal resolution

$$\pi\colon X(\Gamma)\to \overline{Y}(\Gamma).$$

Theorem Let $X(\Gamma)$ be the minimal desingularization of $\overline{\Gamma \setminus \mathfrak{H}^2}$. Then

 $c_1^2(X(\Gamma)) = 2 \operatorname{vol}(\Gamma \setminus \mathfrak{H}^2) + cusps \ term + elliptic \ points \ term,$ $c_2(X(\Gamma)) = \operatorname{vol}(\Gamma \setminus \mathfrak{H}^2) + cusps \ term + elliptic \ points \ term.$

Ingredients for these formulas:

- 1. The volume: this is given by $2[SL_2(\mathbb{Z}_F):\Gamma]\zeta_F(-1)$.
- 2. Cuspidal singularities and their resolutions.
- 3. Elliptic singularities and their resolutions.

The **cusps** of Γ are the orbits of $\mathbb{P}^1(F)$ under Γ . We compute them by adapting work of Dasgupta–Kakde.

Consider $(1:0) = \infty$. Its **stabilizer** can be written as

$$\mathsf{Stab}_{\mathsf{\Gamma}}(\infty)/\{\pm 1\} = G(M,V) = \left\{ \begin{pmatrix} v & m \\ 0 & 1 \end{pmatrix} : v \in V, \ m \in M
ight\}$$

where $V \leq \mathbb{Z}_{F,>0}^{\times}$ and $M \subset F$ is a fractional ideal. We determine M and V, then apply Hirzebruch's method to compute the resolution using continued fractions and toric geometry.

Note: for other congruence subgroups, $G(M, V) \leq \text{Stab}_{\Gamma}(c)$ with finite index.

Resolution of a cusp

Elliptic points

A point $z \in \mathfrak{H}^2$ is an **elliptic point** of Γ if $\operatorname{Stab}_{\Gamma}(z) \neq \{\pm 1\}$. In this case, $\operatorname{Stab}_{\Gamma}(z)/\{\pm 1\} = \langle \gamma \rangle$ is finite cyclic.

The group $G = \mathbb{Z}/m\mathbb{Z}$ acts on \mathbb{C}^2 by

$$(z_1, z_2) \mapsto (\zeta_m^a z_1, \zeta_m^b z_2)$$

where ζ_m is a primitive m^{th} root of 1 and $a, b \in \{0, \ldots, m-1\}$.

The elliptic point z is of **type** (m; a, b) if locally its image in $\Gamma \setminus \mathfrak{H}^2$ looks like the image of the origin in $G \setminus \mathbb{C}^2$ with the above action. The type determines the resolution.

Let \mathcal{O} be the order generated by Γ in $M_2(F)$. To determine the number of elliptic points of each type, we compute the number of embeddings of quadratic orders $\mathbb{Z}_F[\gamma] \hookrightarrow \mathcal{O}$ up to Γ -conjugacy.

Kodaira classification of minimal surfaces

A surface S is **minimal** if it contains no curves with self-intersection -1.

Kodaira dim	type	χ	<i>K</i> ²
$\kappa = -1$	rational	1	8 or 9
$\kappa = 0$	Enriques	1	0
	K3	2	0
$\kappa = 1$	honestly elliptic	≥ 1	0
$\kappa = 2$	general type	≥ 1	≥ 1

When S is a Hilbert modular surface, χ and K^2 completely determine the Kodaira dimension, except when:

1. $\chi = 1$, $K^2 = 8,9$: rational or general type, 2. $\chi = 2$, $K^2 = 0$: K3 or honestly elliptic.

Lemma

If S is an algebraic surface with $h^{0,1} = 0$, $\chi(S) > 1$ and $c_1^2(S) > 0$, then S is a surface of general type.

Proposition (van der Geer)

Let $\Gamma = \mathsf{PSL}(\mathbb{Z}_F \oplus \mathfrak{b})$ where \mathfrak{b} is a nonzero fractional ideal. If F has discriminant D > 500, then $\chi(Y(\Gamma)) > 1$ and $c_1^2(Y(\Gamma)) > 0$, and thus $Y(\Gamma)$ is of general type.

Conjecture

If F has discriminant D and $D^{3/2} \operatorname{Nm}(\mathfrak{N}) > 500^{3/2}$, then $\chi(X_0^1(\mathfrak{N})) > 1$ and $c_1^2(X_0^1(\mathfrak{N})) > 0$, and thus $X_0^1(\mathfrak{N})$ is of general type.

Results

Туре	Kodaira dimension	Γ ₀	Γ_0^1
rational	$\kappa = -1$	18	15
honestly elliptic	$\kappa = 1$	7	16
general type	$\kappa = 2$	4308	4311
unknown	$\kappa \in \{-1,2\}$	61	44
	$\kappa \in \{0,1\}$	5	12
	$\kappa \in \{0, 1, 2\}$	51	43
	$\kappa \in \{1,2\}$	67	76
	total unknown	184	175
total		4517	4517

Summary:

- New ideas to enumerate all cusps.
- New ideas to enumerate all elliptic points.
- Computing invariants for many Hilbert modular surfaces.
- Identify the Kodaira dimension in many cases.

Future directions:

 Computing the Kodaira dimension. (Better, Hilbert series for canonical sheaf.)

Equations!

https://teal.lmfdb.xyz/HilbertModularSurface/Q/
https://github.com/edgarcosta/hilbertmodularforms

Thank you!

d _F	Genus of \mathfrak{b}	n
5	+	$\mathfrak{p}_2, \mathfrak{p}_5, \mathfrak{p}_3, \mathfrak{p}_{11}, \mathfrak{p}_2^2, \mathfrak{p}_{19}, \mathfrak{p}_2\mathfrak{p}_5, \mathfrak{p}_5^2, \mathfrak{p}_{29}, \mathfrak{p}_2\mathfrak{p}_{11}, \mathfrak{p}_{59}$
8	+	\mathfrak{p}_2^2 , \mathfrak{p}_7 , \mathfrak{p}_2^3 , $\mathfrak{p}_2\mathfrak{p}_7$, \mathfrak{p}_2^4 , \mathfrak{p}_{23}
12	++	\mathfrak{p}_2 , \mathfrak{p}_3 , \mathfrak{p}_2^2 , $\mathfrak{p}_2\mathfrak{p}_3$, \mathfrak{p}_3^2 , \mathfrak{p}_{11}
12		p2, p3, p2p3, p11
13	+	$\mathfrak{p}_3, \mathfrak{p}_3^2$
17	+	$\mathfrak{p}_2, \mathfrak{p}_2^2$
24	++	p ₃
28	++	p ₂

Table: Hilbert surfaces $X^1_0(\mathfrak{N})_{\mathfrak{b}}$ for $\mathfrak{N} \neq (1)$ satisfying $\chi = 1$

K3 (?) surfaces

d _F	Genus of \mathfrak{b}	N
5	+	p ₃₁
8	+	p_3, p_{17}, p_2^5
12	++	$p_2^3, p_2^2 p_3, p_2^4$
12		p_2^2 , p_2^3 , $p_2^2 p_3$
13	+	$\mathfrak{p}_2,\ \mathfrak{p}_3\overline{\mathfrak{p}_3}=(3)$
17	+	$\mathfrak{p}_2\overline{\mathfrak{p}_2}=(2),\ \mathfrak{p}_2^3$
21	++	$\mathfrak{p}_3, \mathfrak{p}_2, \mathfrak{p}_5, \mathfrak{p}_7, \mathfrak{p}_3^2$
21		p3, p5
24	++	$\mathfrak{p}_2, \mathfrak{p}_2^2$
24		\mathfrak{p}_2
28	++	\mathfrak{p}_3 , \mathfrak{p}_2^2 , \mathfrak{p}_3^2
28		p ₃
33	++	$\mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}_2^2$
33		\mathfrak{p}_2

Table: Hilbert surfaces $X^1_0(\mathfrak{N})_\mathfrak{b}$ for $\mathfrak{N} \neq (1)$ satisfying $\chi = 2$ and $\mathcal{K}^2 \leq 0$