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Endomorphism algebras of elliptic curves

Proposition

Let k be an algebraically closed field and E be an elliptic curve over
k . Then End0(E ) = End(E )⊗Z Q is one of the following types.

▶ I(1): Q,

▶ III(1): a definite quaternion algebra over Q; or

▶ IV(1,1): an imaginary quadratic field.
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Endomorphism algebras of abelian surfaces

Proposition (Albert, Oort)

Let k be an algebraically closed field and A be a simple abelian
surface over k . Then End0(A) = End(A)⊗Z Q is one of the
following types.

▶ I(1): Q,

▶ I(2): a real quadratic field,

▶ II(1): an indefinite quaternion algebra over Q; or

▶ IV(2,1): a degree 4 CM field.
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Moduli of abelian varieties

g = 1 g = 2 Dimension

Siegel moduli spaces 3

Hilbert modular surfaces 2

Modular curves Shimura curves 1

CM points CM points 0
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Basic invariants

What’s the first thing you want to know about a curve C?

Its genus!

2− 2g(C ) = deg(TC ) = c1(TC ).

What’s the first thing you want to know about a surface S?

Its invariants!

c1(TS)2, c2(TS), Hodge diamond, Kodaira dimension.
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Geometric invariants of surfaces

Let S be a smooth algebraic surface.

Hodge decomposition: H r (S ,C) =
⊕

p+q=r H
p,q(S).

h0,0 b0 := dimH0(S ,C)
h1,0 h0,1 b1 := dimH1(S ,C)

h2,0 h1,1 h0,2 b2 := dimH2(S ,C)
h2,1 h1,2 b3 := dimH3(S ,C)

h2,2 b4 := dimH4(S ,C)
c21 + c2

12
= χ(OS) := h0,0 − h1,0 + h2,0 (holomorphic Euler char.)

c2 = e(S) :=
4∑

i=0

(−1)ibi = 2− 2b1 + b2 (Euler number)

h1,1 = e − 2χ(OS) = c2 − 2χ(OS)

Thus c21 and c2 determine the Hodge diamond.

6 / 18



Geometric invariants of surfaces

Let S be a smooth (connected) Hilbert modular surface.

Hodge decomposition: H r (S ,C) =
⊕

p+q=r H
p,q(S).

1 b0 = 1
0 0 b1 = 0

h2,0 h1,1 h0,2 b2 := dimH2(S ,C)
0 0 b3 = 0

1 b4 = 1

c21 + c2
12

= χ(OS) := 1− 0 + h2,0 (holomorphic Euler char.)

c2 = e(S) :=
4∑

i=0

(−1)ibi = 2 + b2 (Euler number)

h1,1 = e − 2χ(OS) = c2 − 2χ(OS)

Thus c21 and c2 determine the Hodge diamond.
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Complex uniformization

▶ H = complex upper half-plane

▶ F = real quadratic number field

▶ ZF its ring of integers

If A = C2/Λ has RM by ZF , then Λ ≃ ZF · (z1, z2)⊕ b ⊆ C2 for
some z = (z1, z2) ∈ H2 and some fractional ideal b ⊆ F . This
gives an identification of the relevant moduli space with

SL(ZF ⊕ b)\H2

where SL(ZF ⊕ b) ↪→ SL2(R)× SL2(R) acts on H2 coordinatewise
by linear fractional transformations.

From now on, assume b = ZF .

(Technical detail: the ZF -linear polarizations on A equip Λ with an
orientation, determining [b] ∈ Cl+(F ).)
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Hilbert modular surfaces

We focus on the congruence subgroups

Γ = Γ10(N) =

{(
a b
c d

)
∈ SL2(ZF ) : c ∈ N

}
.

(Similar definition for Γ0 replacing SL2 by GL+2 ; also for b ̸= ZF .)

Quotient: Γ\H2 =: Y (Γ) is a Hilbert modular surface.

Compactify: Let (H2)∗ := H2 ∪ P1(F ) and

Y (Γ) := Γ\(H2)∗

The cusps of Γ are the orbits of P1(F ) under Γ.

Resolve: Y (Γ) is singular at the cusps (and elliptic points). Need
to compute a minimal resolution

π : X (Γ) → Y (Γ).
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Chern numbers: key takeaway

Theorem
Let X (Γ) be the minimal desingularization of Γ\H2. Then

c21 (X (Γ)) = 2 vol(Γ\H2) + cusps term+ elliptic points term,

c2(X (Γ)) = vol(Γ\H2) + cusps term+ elliptic points term.

Ingredients for these formulas:

1. The volume: this is given by 2 [SL2(ZF ) : Γ] ζF (−1).

2. Cuspidal singularities and their resolutions.

3. Elliptic singularities and their resolutions.
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Cusps and stabilizers

The cusps of Γ are the orbits of P1(F ) under Γ. We compute
them by adapting work of Dasgupta–Kakde.

Consider (1 : 0) = ∞. Its stabilizer can be written as

StabΓ(∞)/{±1} = G (M,V ) =

{(
v m
0 1

)
: v ∈ V , m ∈ M

}
where V ≤ Z×

F ,>0 and M ⊂ F is a fractional ideal. We determine
M and V , then apply Hirzebruch’s method to compute the
resolution using continued fractions and toric geometry.

Note: for other congruence subgroups, G (M,V ) ⪇ StabΓ(c) with
finite index.

10 / 18



Resolution of a cusp
284 

(14) 

f K ~ 

cusp at 

/ £or 

v 

and otherwise interc-hanges the curves according to the symmetry o£ the continued 

£raction o£ a quadratic irrationality w , which is equivalent to -w' under 

SL2(Z ) (Theore~a o£ Galois, see [11] § 23). The corresponding singulax'ity o9 

(H x H/G)/(T is a quotient singularity admitting a "linear resolution" 

_______I -2 
-9 / 

f 
(comp~e [9] § 3.4) 

obtained by "dividing" the diagram (14) by ~ and using that curves o9 sel£- 

intersection number -I can be "blown down" . 
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Elliptic points

A point z ∈ H2 is an elliptic point of Γ if StabΓ(z) ̸= {±1}.

In this case, StabΓ(z)/{±1} = ⟨γ⟩ is finite cyclic.

The group G = Z/mZ acts on C2 by

(z1, z2) 7→ (ζamz1, ζ
b
mz2)

where ζm is a primitive mth root of 1 and a, b ∈ {0, . . . ,m − 1}.

The elliptic point z is of type (m; a, b) if locally its image in Γ\H2

looks like the image of the origin in G\C2 with the above action.
The type determines the resolution.

Let O be the order generated by Γ in M2(F ). To determine the
number of elliptic points of each type, we compute the number of
embeddings of quadratic orders ZF [γ] ↪→ O up to Γ-conjugacy.
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Kodaira classification of minimal surfaces

A surface S is minimal if it contains no curves with
self-intersection −1.

Kodaira dim type χ K 2

κ = −1 rational 1 8 or 9

κ = 0
Enriques 1 0

K3 2 0

κ = 1 honestly elliptic ≥ 1 0

κ = 2 general type ≥ 1 ≥ 1

When S is a Hilbert modular suface, χ and K 2 completely
determine the Kodaira dimension, except when:

1. χ = 1, K 2 = 8, 9: rational or general type,

2. χ = 2, K 2 = 0: K3 or honestly elliptic.
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van der Geer’s classification

Lemma
If S is an algebraic surface with h0,1 = 0, χ(S) > 1 and c21 (S) > 0,
then S is a surface of general type.

Proposition (van der Geer)

Let Γ = PSL(ZF ⊕ b) where b is a nonzero fractional ideal. If F
has discriminant D > 500, then χ(Y (Γ)) > 1 and c21 (Y (Γ)) > 0,
and thus Y (Γ) is of general type.

Conjecture

If F has discriminant D and D3/2Nm(N) > 5003/2, then
χ(X 1

0 (N)) > 1 and c21 (X
1
0 (N)) > 0, and thus X 1

0 (N) is of general
type.
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Results

Type Kodaira dimension Γ0 Γ10

rational κ = −1 18 15

honestly elliptic κ = 1 7 16

general type κ = 2 4308 4311

unknown



κ ∈ {−1, 2}
κ ∈ {0, 1}
κ ∈ {0, 1, 2}
κ ∈ {1, 2}
total unknown

61

5

51

67

184

44

12

43

76

175

total 4517 4517
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Summary:

▶ New ideas to enumerate all cusps.

▶ New ideas to enumerate all elliptic points.

▶ Computing invariants for many Hilbert modular surfaces.

▶ Identify the Kodaira dimension in many cases.

Future directions:

▶ Computing the Kodaira dimension. (Better, Hilbert series for
canonical sheaf.)

▶ Equations!

https://teal.lmfdb.xyz/HilbertModularSurface/Q/
https://github.com/edgarcosta/hilbertmodularforms

Thank you!
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Rational (?) surfaces

dF Genus of b N

5 + p2, p5, p3, p11, p
2
2, p19, p2p5, p

2
5, p29, p2p11, p59

8 + p22, p7, p
3
2, p2p7, p

4
2, p23

12 ++ p2, p3, p
2
2, p2p3, p

2
3, p11

12 −− p2, p3, p2p3, p11
13 + p3, p

2
3

17 + p2, p
2
2

24 ++ p3
28 ++ p2

Table: Hilbert surfaces X 1
0 (N)b for N ̸= (1) satisfying χ = 1
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K3 (?) surfaces

dF Genus of b N

5 + p31
8 + p3, p17, p

5
2

12 ++ p32, p
2
2p3, p

4
2

12 −− p22, p
3
2, p

2
2p3

13 + p2, p3p3 = (3)
17 + p2p2 = (2), p32
21 ++ p3, p2, p5, p7, p

2
3

21 −− p3, p5
24 ++ p2, p

2
2

24 −− p2
28 ++ p3, p

2
2, p

2
3

28 −− p3
33 ++ p2, p3, p

2
2

33 −− p2

Table: Hilbert surfaces X 1
0 (N)b for N ̸= (1) satisfying χ = 2 and K 2 ≤ 0

18 / 18


