The landscape of L-functions

David Farmer
AIM

joint work with
Sally Koutsoliotas, Stefan Lemurell, and David P. Roberts

L-functions: the glue that holds the (number theors) world together

Many sources: varieties, modular forms, number fields, ...
But we want to view them as their own independent objects.

Degree 1:

Dirichlet series with an Euler product:

$$
\begin{aligned}
L(s, \chi) & =\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} \\
& =\prod_{p}\left(1-\chi(p) p^{-s}\right)^{-1}
\end{aligned}
$$

Functional equation:

$$
\begin{aligned}
\Lambda(s, \chi) & =N^{s / 2} \Gamma_{\mathbb{R}}\left(s+\delta_{\chi}\right) L(s, \chi) \\
& =\varepsilon_{\chi} \bar{\Lambda}(1-s, \chi) \\
& =\varepsilon_{\chi} \Lambda(1-s, \bar{\chi})
\end{aligned}
$$

χ is a (primitive) character of conductor N.

A constraint and some notation

$$
\Lambda(s, \chi)=N^{s / 2} \Gamma_{\mathbb{R}}\left(s+\delta_{\chi}\right) L(s, \chi)=\varepsilon_{\chi} \bar{\Lambda}(1-s, \chi)
$$

$$
\delta_{\chi}=0 \text { or } 1, \text { with } \chi(-1)=(-1)^{\delta_{\chi}} .
$$

$$
\begin{aligned}
\Gamma_{\mathbb{R}}(s) & =\pi^{-s / 2} \Gamma(s / 2) \\
\Gamma_{\mathbb{C}}(s) & =2(2 \pi)^{-s} \Gamma(s)
\end{aligned}
$$

$$
\Gamma_{\mathbb{R}}(s) \Gamma_{\mathbb{R}}(s+1)=\Gamma_{\mathbb{C}}(s)
$$

Degree 2: two types

Case 1: $f \in S_{k}\left(\Gamma_{0}(N), \chi\right), k \geq 2$.
Dirichlet series with an Euler product:

$$
\begin{aligned}
L(s, f) & =\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \\
& =\prod_{p}\left(1-a(p) p^{-s}+\chi(p) p^{-2 s}\right)^{-1}
\end{aligned}
$$

Functional equation:

$$
\begin{aligned}
\Lambda(s, f) & =N^{s / 2} \Gamma_{\mathbb{C}}(s+\kappa) L(s, f) \\
& =\varepsilon_{f} \bar{\Lambda}(1-s, f) \\
& =\varepsilon_{f} \Lambda(1-s, \bar{f})
\end{aligned}
$$

$\kappa=\frac{k-1}{2}$. The constraint: $\chi(-1)=(-1)^{2 \kappa+1}$.

Degree 2: two types

Case 2: f a Maass newform of weight 0 or 1 , on $\Gamma_{0}(N)$ with character χ and spectral parameter $\lambda \in \mathbb{R}$.

Dirichlet series with an Euler product:

$$
\begin{aligned}
L(s, f) & =\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \\
& =\prod_{p}\left(1-a(p) p^{-s}+\chi(p) p^{-2 s}\right)^{-1}
\end{aligned}
$$

Functional equation:

$$
\begin{aligned}
\Lambda(s, f) & =N^{s / 2} \Gamma_{\mathbb{R}}\left(s+\delta_{1}+i \lambda\right) \Gamma_{\mathbb{R}}\left(s+\delta_{2}-i \lambda\right) L(s, f) \\
& =\varepsilon_{f} \bar{\Lambda}(1-s, f) \\
& =\varepsilon_{f} \Lambda(1-s, \bar{f})
\end{aligned}
$$

The constraint: $\chi(-1)=(-1)^{\delta_{1}+\delta_{2}}$.

Degree d

N : the conductor
χ : a character $\bmod N$, the central character
Dirichlet series with an Euler product:

$$
\begin{aligned}
L(s, f) & =\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \\
& =\prod_{p}\left(1-a(p) p^{-s}+\cdots+(-1)^{d} \chi(p) p^{-d s}\right)^{-1}
\end{aligned}
$$

Functional equation:

$$
\begin{aligned}
\Lambda(s) & =N^{s / 2}(\Gamma-\text { factors }) L(s) \\
& =\varepsilon \bar{\Lambda}(1-s)
\end{aligned}
$$

$\Gamma-$ factors: $\Gamma_{\mathbb{R}}(s+\delta+i \mu)$ and $/$ or $\Gamma_{\mathbb{C}}(s+\kappa+i \lambda)$.

General degree d Г-factor

$$
\prod_{j=1}^{d_{1}} \Gamma_{\mathbb{R}}\left(s+\delta_{j}+i \mu_{j}\right) \prod_{k=1}^{d_{2}} \Gamma_{\mathbb{C}}\left(s+\kappa_{k}+i \lambda_{k}\right)
$$

where $d_{1}+2 d_{2}=d$.
$\delta_{j} \in\{0,1\}$
$\kappa_{k} \in\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right\}$
$\mu_{j}, \lambda_{k} \in \mathbb{R}$
The central character constraint:

$$
\chi(-1)=(-1)^{\sum \delta_{j}+\sum\left(2 \kappa_{j}+1\right)}
$$

All possible degree 3 conductor 1 functional equations

$N=1$ so χ is the trivial character, so $\chi(-1)=1$:
$(-1)^{\sum \delta_{j}+\sum\left(2 \kappa_{j}+1\right)}=1$
Case 1: 3 of $\Gamma_{\mathbb{R}}$

$$
\begin{gathered}
\Gamma_{\mathbb{R}}\left(s+i \mu_{1}\right) \Gamma_{\mathbb{R}}\left(s+i \mu_{2}\right) \Gamma_{\mathbb{R}}\left(s+i \mu_{3}\right) \\
\Gamma_{\mathbb{R}}\left(s+i \mu_{1}\right) \Gamma_{\mathbb{R}}\left(s+1+i \mu_{2}\right) \Gamma_{\mathbb{R}}\left(s+1+i \mu_{3}\right)
\end{gathered}
$$

Case 2: 1 of $\Gamma_{\mathbb{R}}$ and 1 of $\Gamma_{\mathbb{C}}$

$$
\Gamma_{\mathbb{R}}(s+i \mu) \Gamma_{\mathbb{C}}(s+\kappa+i \lambda) \quad \text { with } \quad \kappa \in\left\{\frac{1}{2}, \frac{3}{2}, \ldots\right\}
$$

$$
\Gamma_{\mathbb{R}}(s+1+i \mu) \Gamma_{\mathbb{C}}(s+\kappa+i \lambda) \quad \text { with } \kappa \in\{1,2,3, \ldots\}
$$

A normalization

If $L(s)$ is an L-function, then so is $L(s+i y)$ for any $y \in \mathbb{R}$. So in

$$
\Gamma_{\mathbb{R}}\left(s+i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s+i \lambda_{2}\right) \Gamma_{\mathbb{R}}\left(s+i \lambda_{3}\right)
$$

we may assume $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$.
By rearranging and conjugating, that functional equation is specified by a pair $\left(\lambda_{1}, \lambda_{2}\right)$ with $0 \leq \lambda_{1} \leq \lambda_{2}$.
Similarly,

$$
\Gamma_{\mathbb{R}}\left(s+i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s+1+i \lambda_{2}\right) \Gamma_{\mathbb{R}}\left(s+1+i \lambda_{3}\right)
$$

is specified by $\left(\lambda_{1}, \lambda_{2}\right)$ with $\lambda_{1} \geq 0$ and $\lambda_{2} \geq-\lambda_{1} / 2$. Also,

$$
\Gamma_{\mathbb{R}}(s+\delta+2 i \lambda) \Gamma_{\mathbb{C}}(s+\kappa-i \lambda)
$$

is specified by (κ, λ) with $\lambda \geq 0$.
Each of these pairs is an L-point which we can plot in the plane.

Most, but not all, of the smallest L-points of RORORO

Most, but not all, of the smallest L-points of RORORO λ_{2}

Many, but not all, of the smallest L-points of R0R1R1

Many, but not all, of the smallest L-points of CkR δ λ

Plancherel measure, main term, in L-function terms

$$
\begin{aligned}
\mu_{R O R O R O} & =\frac{P_{3}}{8}\left|\lambda_{1}-\lambda_{2}\right|+\left|2 \lambda_{1}+\lambda_{2}\right|_{+}\left|\lambda_{1}+2 \lambda_{2}\right|+d \lambda_{1} d \lambda_{2} \\
\mu_{R O R 1 R 1} & =\frac{P_{3}}{8}\left|\lambda_{1}-\lambda_{2}\right|-\left|2 \lambda_{1}+\lambda_{2}\right|_{+}\left|\lambda_{1}+2 \lambda_{2}\right|-d \lambda_{1} d \lambda_{2} \\
\mu_{C \kappa R \delta} & =\frac{P_{3}}{8} \kappa\left(4 \kappa^{2}+9 \lambda^{2}\right) d \lambda
\end{aligned}
$$

where

$$
P_{d}=\frac{d^{3 / 2}}{2^{(d+3)(d-1) / 2}} \prod_{j=2}^{d} \frac{\zeta(j)}{\pi^{j}}
$$

and

$$
|t|_{-}=t \operatorname{coth}(\pi t / 2) \quad|t|_{+}=t \tanh (\pi t / 2)
$$

One L-point in R0R0R0

```
( }\mp@subsup{\lambda}{1}{},\mp@subsup{\lambda}{2}{})=(14.14163558812745167\ldots,2.38038848881222505 \ldots.)
    a}=-0.1052409713451064
        +i0.7507269443698732...
    a3}=1.2359939151361498
        -i0.039112173325876...
    a5}=0.13457099978489\ldots..
        +i0.1546250917538...
    a7 = -0.9009535171391\ldots
        -i0.47788143263...
    a}\mp@subsup{a}{11}{}=0.690303087
        -i0.382679918...
```


Plancherel measure: L-functions and lower order terms

Two L-functions with similar functional equations:
RORORO: $\left(\lambda_{1}, \lambda_{2}\right) \approx(14.141,2.380)$
R0R1R1: $\left(\lambda_{1}, \lambda_{2}\right) \approx(14.204,2.980)$

Plancherel measure: L-functions and lower order terms

The coefficient landscape: all of degree 3 in one place

The distribution of points is "asymptotically Euclidean."
Coefficient landscape because the L-points are the roots of a polynomial, and the coefficients give the coordinates.

More 2-dimensional landscapes: degree 4, conductor 1, and self-dual

$$
\begin{gathered}
\Gamma_{\mathbb{R}}\left(s+i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s-i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s+i \lambda_{2}\right) \Gamma_{\mathbb{R}}\left(s-i \lambda_{2}\right) \\
\Gamma_{\mathbb{R}}\left(s+i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s-i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s+1+i \lambda_{2}\right) \Gamma_{\mathbb{R}}\left(s+1-i \lambda_{2}\right) \\
\Gamma_{\mathbb{R}}\left(s+1+i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s+1-i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s+1+i \lambda_{2}\right) \Gamma_{\mathbb{R}}\left(s+1-i \lambda_{2}\right)
\end{gathered}
$$

or

$$
\Gamma_{\mathbb{R}}\left(s+\delta+i \lambda_{1}\right) \Gamma_{\mathbb{R}}\left(s+\delta-i \lambda_{1}\right) \Gamma_{\mathbb{C}}(s+\kappa)
$$

or

$$
\Gamma_{\mathbb{C}}(s+\kappa+i \lambda) \Gamma_{\mathbb{C}}(s+\kappa-i \lambda)
$$

$\mathrm{C} \kappa \mathrm{R} \delta \mathrm{R} \delta$: very preliminary data

CkCk: a new wrinkle

$\Delta \in S_{12}(1)$

$$
\Lambda(s, \Delta)=\Gamma_{\mathbb{C}}\left(s+\frac{11}{2}\right) L(s, \Delta)=\Lambda(1-s, \Delta)
$$

Therefore, for every $\lambda \in \mathbb{R}$

$$
L(s+i \lambda, \Delta) L(s-i \lambda, \Delta)
$$

satisfies a functional equation of type $C \frac{11}{2} C \frac{11}{2}$.

If you are searching directly for L-functions, either you find a way to avoid non-primitive L-functions, or you have to cull them later.

Some, and some false alarms, of the L-points of CkCk

The smallest $C \frac{1}{2} C \frac{1}{2}$ example we found

$$
\begin{aligned}
& \lambda=19.0673905 \ldots \\
& a_{2}=-2.2662776959 \ldots
\end{aligned}
$$

Maass form on $\Gamma_{0}(1)$ with $R=\mathbf{9 . 5 3 3 6 9 5 2 6 1 3 5}$

The Maass form on $S L(2, \mathbb{Z})$ with the smallest eigenvalue.
Maass form invariants

Level:	1
Weight:	0
Character:	1.1
Symmetry:	odd
Fricke sign:	+1
Spectral parameter:	9.53369526135

Maass form coefficients

$$
a_{1}=+1.000000000 \quad a_{2}=-1.068333551 \quad a_{3}=-0.456197355 \quad a_{4}=+0.141336577 \quad a_{5}=-0.290672555
$$

The smallest $C \frac{1}{2} C \frac{1}{2}$ example we found

$$
\begin{aligned}
& \lambda=19.0673905 \ldots \\
& a_{2}=-2.2662776959 \ldots
\end{aligned}
$$

Maass form on $\Gamma_{0}(1)$ with $R=\mathbf{9 . 5 3 3 6 9 5 2 6 1 3 5}$

The Maass form on $S L(2, \mathbb{Z})$ with the smallest eigenvalue.
Maass form invariants

Level:	1
Weight:	0
Character:	1.1
Symmetry:	odd
Fricke sign:	+1
Spectral parameter:	9.53369526135

Maass form coefficients

$$
a_{1}=+1.000000000 \quad a_{2}=-1.068333551 \quad a_{3}=-0.456197355 \quad a_{4}=+0.141336577 \quad a_{5}=-0.290672555
$$

$$
\begin{aligned}
& \lambda=19.0673905 \ldots=2 \times 9.5336952 \ldots \\
& a_{2}=-2.2662776 \ldots=(\sqrt{2}+1 / \sqrt{2}) \times(-1.06833 \ldots) \\
& L\left(s-\frac{1}{2}, f\right) L\left(s+\frac{1}{2}, f\right)
\end{aligned}
$$

R1R1R1R1, preliminary run

R1R1R1R1, preliminary run

How to find the L-points

More ingredients:

$$
\begin{aligned}
L(s) & =\prod_{p}\left(1-a_{p} p^{-s}+\cdots+(-1)^{d} \chi(p) p^{-d s}\right)^{-1} \\
& =f_{p}\left(p^{-s}\right)^{-1}
\end{aligned}
$$

where for $p \nmid N, f_{p}$ is self-reciprocal:

$$
f_{p}(x)=(-1)^{d} \bar{\chi}(p) x^{d} f_{p}\left(x^{-1}\right)
$$

If $d=2,3$, then $\left\{a_{p}\right\}$ determine $L(s)$,
if $d=4,5$, then $\left\{a_{p}\right\}$ and $\left\{a_{p^{2}}\right\}$ determine $L(s)$, etc

Ramanujan conjecture: if $p \nmid N$ then the roots of f_{p} lie on $|z|=1$.
The Selberg conjecture restricts the possible Γ-factors.
Ramanujan + Selberg $=$ Tempered.

How to find the L-points

Main idea: secant method to find approximations to L-points.

Step 1: use an approximate L-point functional equation and make equations for the coefficients
assume $L(s)$ satisfies that functional equation
$\rightsquigarrow \quad$ a linear equation in the Dirichlet coefficients $\rightsquigarrow \quad$ a nonlinear equation in the a_{p} (and $a_{p^{2}}$ if necessary)

Step 2: find a solution to the system (or more than one)
Step 3: make auxiliary equations
Step 4. look at the residuals of the auxiliary equations
Step 5. combine the residuals from multiple inputs to make a better guess.

Some challenges

Need to work to high precision: routinely lose 40 digits.
Ramanujan bound: don't know how to make use of it.

Non-primitive L-functions: don't know how to avoid them.

Completeness: don't know when we have missed something.

Can't get started: don't find a solution to the nonlinear system

Parameter choice: how many coefficients, where to evaluate, how to evaluate,...

