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Displacement Preliminaries

The displacement vector for a parking function a = (a1, . . . , an)
is an n-tuple (d1, . . . , dn) where di is a nonnegative integer
denoting the number of slots, starting with its preference, that car
i passes over before it parks.

The parking function (4, 1, 1, 3, 2) has displacement vector
(0, 0, 1, 0, 3).
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Displacement Partition

The displacement partition is the integer partition comprising
d1, d2, . . . , dn rearranged into nonincreasing order with zeros
removed.

The displacement partition of (4, 1, 1, 3, 2) is 3 + 1.
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What is the closest thing to increasing order that preserves its
displacement partition?



Preliminaries Direct Enumerations The Algorithm The Permutohedron

Partition-Preserving Parking Functions

What is the closest thing to increasing order that preserves its
displacement partition?

Partition-Preserving Parking Functions

A parking function α = (a1, . . . , an) is partition-preserving if the
ith car parks in spot i .



Preliminaries Direct Enumerations The Algorithm The Permutohedron

Partition-Preserving Parking Functions

What is the closest thing to increasing order that preserves its
displacement partition?

Partition-Preserving Parking Functions

A parking function α = (a1, . . . , an) is partition-preserving if the
ith car parks in spot i .

A parking function α = (a1, . . . , an) is partition-preserving if and
only if ai ≤ i .
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Partition-Preserving Order

α = (3, 1, 2, 3, 2)

Let s = (3, 1, 2, 4, 5) be the permutation of [n] which records
where each car in β parks. Then,(

3 1 2 4 5
3 1 2 3 2

)
σ−−→

(
1 2 3 4 5
1 2 3 3 2

)
= β′.

The preference of the car which parked at si gets moved to si .
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Properties of Partition-Preserving

Theorem

Placing a parking function α into partition-preserving order α′ does
not alter the displacement partition λ of α.

Proof.

1 The parts of a displacement partition are all the differences
si − ai with 0’s removed.
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Placing a parking function α into partition-preserving order α′ does
not alter the displacement partition λ of α.

Proof.

1 The parts of a displacement partition are all the differences
si − ai with 0’s removed.

2 Because σ in the partition-preserving definition keeps si and ai
in the same column for all i ∈ [n], si − ai = sσ(i) − aσ(i) for all
i ∈ [n].
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Properties of Partition-Preserving

Theorem

Placing a parking function α into partition-preserving order α′ does
not alter the displacement partition λ of α.

Proof.

1 The parts of a displacement partition are all the differences
si − ai with 0’s removed.

2 Because σ in the partition-preserving definition keeps si and ai
in the same column for all i ∈ [n], si − ai = sσ(i) − aσ(i) for all
i ∈ [n].

3 This shows that α′ has the same displacement partition as α.
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Partition-Preserving Examples

(3, 1, 2, 3, 2)
λ = 3 + 1

σ−−→ (1, 2, 3, 3, 2)
λ = 3 + 1

(4, 1, 4, 1, 4, 1)
λ = 2 + 2 + 1 + 1

σ−−→ (1, 1, 1, 4, 4, 4)
λ = 2 + 2 + 1 + 1

(2, 3, 2, 6, 1, 1)
λ = 4 + 2

σ−−→ (1, 2, 3, 2, 1, 6)
λ = 4 + 2
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Partition-Preserving Equivalence Classes

Theorem

Let α and β be two parking functions of length n. α ∼ β if α and
β have the same partition-preserving order is an equivalence
relation on all parking functions of length n.
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Partition-Preserving Equivalence Classes

111 112 113 121 122 123

131 211 212 132
311 221 213

231
312
321

The representative of each equivalence class is the one
partition-preserving parking function.

Note: Two parking functions can have the same preferences
and displacement partition but be in different equivalence
classes. For example, 11322 and 12213.
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Prime Decomposition

We can uniquely partition any parking function into prime parking
functions after placing it in partition-preserving order
α = (2, 3, 2, 6, 1, 1)

1 Place α into partition-preserving order α′.
α = (2, 3, 2, 6, 1, 1) 7→ (1, 2, 3, 2, 1, 6).

2 Find the indices where α′ satisfies these two criteria:
1 ai = i
2 For all j > i , aj ≥ ai .

( 1, 2, 3, 2, 1 , 6 )

3 Reorder α′

( 2, 3, 2 , 6 , 1, 1 )

Key Insight

Displacement always occurs within the component prime parking
functions!
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Prime Decomposition Visualization

α = (2, 3, 2, 6, 1, 1)

1 2 3 4 5 6

5

6

1

3

2

4
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Prime Decomposition Example

(5, 3, 3, 1, 6, 5, 1)

↓
(1, 1, 3, 3, 5, 6, 5)
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Prime Decomposition Example

(5, 3, 3, 1, 6, 5, 1)

↓
( 1, 1 , 3, 3 , 5, 6, 5 )

↓
( 5 , 3, 3 , 1 , 6, 5 , 1 )
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Prime Decomposition Visualization

α = ( 5 , 3, 3 , 1 , 6, 5 , 1 )

1 2 3 4 5 6 7

4

7

2

3

1

6

5
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Part II: Direct Enumerations

when the theorem statement has so many cases that it’s 2 pages
long
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Direct Enumeration

Original motivating question: how many parking functions of
length n with a fixed displacement partition are there?

Our approach:

understand what kinds of patterns give rise to the
displacement partition

count the ways to rearrange terms inside and outside of the
pattern while preserving the displacement partition
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1 Displaced Car

Suppose a single car is displaced by k > 0 slots.
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1 Displaced Car

Suppose a single car is displaced by k > 0 slots.
Example: The parking function (1, 2, 3, 1, 5, 6).

The parking function has length n = 6 and a single car c4
displaced by k = 3 slots.



Preliminaries Direct Enumerations The Algorithm The Permutohedron

1 Displaced Car

In general, what does this kind of parking function look like?
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1 Displaced Car

In general, what does this kind of parking function look like?

Theorem (CM, J, S)

In a parking function with displacement partition k > 0, the
pattern of the partition-preserving prime that produces the
displacement is (1, 2, . . . , k︸ ︷︷ ︸

k terms

, 1)

Given the pattern, how many ways can we rearrange terms while
preserving the displacement partition?
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1 Displaced Car

We can choose where to place the pattern inside the parking
function.
Example: parking function (1, 2, 3, 4, 2, 6)

The starting point of the parking function’s pattern shifts from slot
1 to 2.
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1 Displaced Car

We can permute certain undisplaced cars inside the pattern.
Example: parking function (1, 4, 2, 3, 2, 6)

We can permute the preferences of c2, c3, and c4, which provide
the “buildup” for the displacement.
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1 Displaced Car

We can permute certain undisplaced cars inside the pattern.
Example: parking function (1, 4, 2, 3, 2, 6)

We can permute the preferences of c2, c3, and c4, which provide
the “buildup” for the displacement.

Question

Why is the position of the displaced car c5 fixed?
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1 Displaced Car

We can permute entries outside of the pattern.
Example: parking function (6, 4, 2, 3, 2, 1)

We permute the preferences of c1 and c6.
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1 Displaced Car

Theorem (CM, J, S)

The number of parking functions of length n with displacement
partition k > 0 is

n!

k + 1
(n − k).
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1 Displaced Car

Corollary

The number of parking functions of length n with one car
displaced,

n−1∑
k=1

(n − k)n!

k + 1

is equal to the Second-order Eulerian number A(n, n − 2).
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2 Displaced Cars

Now suppose the displacement partition is k + ℓ, where 1 ≤ ℓ ≤ k .
What does this kind of parking function look like?
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2 Displaced Cars

Now suppose the displacement partition is k + ℓ, where 1 ≤ ℓ ≤ k .
What does this kind of parking function look like?
Case 1: The displacements happen in disjoint primes.

The parking function (1, 2, 1, 4, 5, 5) has two cars displaced in
disjoint primes.
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2 Displaced Cars

Case 2: The displacements happen in a single prime.
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2 Displaced Cars

Case 2: The displacements happen in a single prime.

Displacement Order

The displacement order of a parking function with m displaced
cars is an m-tuple whose i-th entry is the value of the i-th
displacement that arises.

The parking function (1, 2, 1, 4, 2) has displacement order (2, 3).
Both of its displacements happen in a single prime.
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2 Displaced Cars

As before, we find the pattern for each case and then count the
number of rearrangements that preserve the displacement partition.
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2 Displaced Cars

As before, we find the pattern for each case and then count the
number of rearrangements that preserve the displacement partition.

Theorem (CM, J, S)

The number of parking functions of length n with displacement
partition k + ℓ where 1 ≤ ℓ < k is

n!(n − k)(k − ℓ)

(k + 1)(ℓ + 1)
+

ℓ+1∑
i=2

n!(k + i − 1)!(n − k − i + 1)

(ℓ + 1)(k + i)!
+

ℓ∑
i=1

n!(k + i)!(n − k − i)

(k + i + 1)!(k + 1)

+2k!ℓ!

(
n − (k + ℓ)

2

)(
n

k + 1

)(
n − (k + 1)

ℓ + 1

)
(n − (k + ℓ + 2))!

for n ≥ k + ℓ+ 2.
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2 Displaced Cars

As before, we find the pattern for each case and then count the
number of rearrangements that preserve the displacement partition.

Theorem (CM, J, S)

The number of parking functions of length n with displacement
partition k + ℓ where 1 ≤ ℓ < k is

n!(n − k)(k − ℓ)

(k + 1)(ℓ + 1)
+

ℓ+1∑
i=2

n!(k + i − 1)!(n − k − i + 1)

(ℓ + 1)(k + i)!
+

ℓ∑
i=1

n!(k + i)!(n − k − i)

(k + i + 1)!(k + 1)

+2k!ℓ!

(
n − (k + ℓ)

2

)(
n

k + 1

)(
n − (k + 1)

ℓ + 1

)
(n − (k + ℓ + 2))!

for n ≥ k + ℓ+ 2.

be honest, you did not read that formula
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3 Displaced Cars

Let’s now only consider prime parking functions. Suppose the
displacement partition of a prime parking function is k + ℓ+m
where 1 ≤ m ≤ ℓ ≤ k .
What does this kind of parking function look like?
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3 Displaced Cars

Let’s now only consider prime parking functions. Suppose the
displacement partition of a prime parking function is k + ℓ+m
where 1 ≤ m ≤ ℓ ≤ k .
What does this kind of parking function look like?

Observation

When more than 2 cars are displaced in a prime parking function,
it’s possible that not all of the displacements overlap.

For the prime parking function (1, 2, 3, 1, 4, 5, 5, 2), the second
displacement does not overlap the first.
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3 Displaced Cars

Definition

Let a prime parking function where each displacement overlaps the
previous one be called strongly grouped.
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3 Displaced Cars

Definition

Let a prime parking function where each displacement overlaps the
previous one be called strongly grouped.

The prime parking function (1, 2, 3, 1, 2, 6, 5) is strongly grouped.
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3 Displaced Cars

Definition

If a prime parking function is not strongly grouped, call it weakly
grouped.
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3 Displaced Cars

Definition

If a prime parking function is not strongly grouped, call it weakly
grouped.

The prime parking function (1, 2, 3, 1, 4, 5, 5, 2) is weakly grouped.
The second displacement does not overlap the first.
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3 Displaced Cars

Strongly grouped primes with 3 displaced cars have patterns similar
to those for 2 displaced cars, with one added subpattern for the
last displacement.

The first two displacements form a strongly grouped prime parking
function. The third displacement can overlap anywhere.
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3 Displaced Cars

Can we connect weakly grouped primes with 3 displaced cars to
known results for 2 displaced cars?
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Can we connect weakly grouped primes with 3 displaced cars to
known results for 2 displaced cars?

Let’s see what the parking function looks like before the last car
parks.
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3 Displaced Cars

Can we connect weakly grouped primes with 3 displaced cars to
known results for 2 displaced cars?

Let’s see what the parking function looks like before the last car
parks.
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3 Displaced Cars

the greatest discovery in the history of math (CM, J, S)

Removing the last entry of a weakly grouped prime parking
functions with 3 displaced cars gives a parking function with 2
displaced cars parked in disjoint primes!
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3 Displaced Cars

the greatest discovery in the history of math (CM, J, S)

Removing the last entry of a weakly grouped prime parking
functions with 3 displaced cars gives a parking function with 2
displaced cars parked in disjoint primes!

This allowed us compute the number of prime parking functions of
length n for displacement partition k + ℓ+m for 1 ≤ ℓ ≤ k .



Preliminaries Direct Enumerations The Algorithm The Permutohedron

Beyond 3 Displaced Cars

We want to recursively count the number of prime parking
functions with m > 2 displaced cars.

We found a recursive formula for the number of strongly
grouped prime parking functions with m displaced cars.

The number of weakly grouped prime parking functions
reduces to an enumerative formula for m − 1 displaced cars.

big slay (CM,J,S)

We can recursively build up the enumeration of prime parking
functions with any number of displaced cars!

However, the formulas sum over all displacement orders, so they
can get quite clunky.
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Beyond 3 Displaced Cars

We want to recursively count the number of prime parking
functions with m > 2 displaced cars.

We found a recursive formula for the number of strongly
grouped prime parking functions with m displaced cars.

The number of weakly grouped prime parking functions
reduces to an enumerative formula for m − 1 displaced cars.

big slay (CM,J,S)

We can recursively build up the enumeration of prime parking
functions with any number of displaced cars!

However, the formulas sum over all displacement orders, so they
can get quite clunky.
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Part III: The Algorithm

Photo Credit: Joe Sawada
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Displacement Vectors Revisited

In General

DV : {Parking Functions} → {Displacement Vectors}, pf 7→ v is a
many-to-one surjection.

How many displacement vectors of length n?
Hint: ith entry is between 0 and i − 1.

How many partition preservers of length n?
Recall definition: ith entry is between 1 and i .

Restricted to Partition Preserving

DV : {Partition Preserving Parking Functions} →
{Displacement Vectors}, pf 7→ v is a bijection.
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How many displacement vectors of length n?
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How to Count: a Brief Tutorial

In Displacement Vector Land

n = 6, λ = 4 + 2 + 1 + 1
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4 can only go in the 5th and 6th indices:

( , , , , 4, ) ( , , , , , 4)
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How to Count: a Brief Tutorial

In Displacement Vector Land

n = 6, λ = 4 + 2 + 1 + 1

2 can only go in the 3rd, 4th, 5th, and 6th indices:

( , , 2, , 4, ) ( , , , 2, 4, ) ( , , , , 4, 2)
( , , 2, , , 4) ( , , , 2, , 4) ( , , , , 2, 4)
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How to Count: a Brief Tutorial

In Displacement Vector Land

n = 6, λ = 4 + 2 + 1 + 1

1 can go anywhere except the first index and fill in the rest with
0’s:

(0, 1, 2, 1, 4, 0) (0, 1, 1, 2, 4, 0) (0, 1, 1, 0, 4, 2)
(0, 1, 2, 1, 0, 4) (0, 1, 1, 2, 0, 4) (0, 1, 1, 0, 2, 4)
(0, 1, 2, 0, 4, 1) (0, 1, 0, 2, 4, 1) (0, 1, 0, 1, 4, 2)
(0, 1, 2, 0, 1, 4) (0, 1, 0, 2, 1, 4) (0, 1, 0, 1, 2, 4)
(0, 0, 2, 1, 4, 1) (0, 0, 1, 2, 4, 1) (0, 0, 1, 1, 4, 2)
(0, 0, 2, 1, 1, 4) (0, 0, 1, 2, 1, 4) (0, 0, 1, 1, 2, 4)
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How to Count: a Brief Tutorial Part 2 the Squeakquel

How many parking functions have this partition preserving order?

(1, 2, 1, 4, 2)
d(1, 2, 1, 4, 2) = (0, 0, 2, 0, 3)

Which preferences must come before which other preferences?
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How to Count: a Brief Tutorial Part 2 the Squeakquel

How many parking functions have this partition preserving order?

(1, 2, 1, 4, 2)
d(1, 2, 1, 4, 2) = (0, 0, 2, 0, 3)

Which preferences must come before which other preferences?
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How to Count: a Brief Tutorial Part 2 the Squeakquel

How many parking functions have this partition preserving order?

(1, 2, 1, 4, 2)
d(1, 2, 1, 4, 2) = (0, 0, 2, 0, 3)

Which preferences must come before which other preferences?
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2

2

2

1

2

4

1

1

1

2

This is a partial ordering on the set of preferences.
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Call in lattice 007 because we have a wild poset on the
loose

2

1 4

1 2

This poset encodes all of the necessary orderings amongst
preferences to maintain the displacement partition.
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Call in lattice 007 because we have a wild poset on the
loose

2

1 4

1 2

The linear extensions of this poset are
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A Characterization of Parking Functions of Fixed
Displacement

Partition preserving order partitions parking functions and the
equivalence class representatives are partition preserving parking
functions.

Partition preserving parking functions are the same as displacement
vectors.

We can count displacement vectors. We can also count
equivalence class sizes. Bam!
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A Neat Formula

PF (n, λ) =
∑

v∈V (n,λ)

L(v)
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On efficiency
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An Interesting Pattern
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# of faces of the order 3 Permutohedron
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An Interesting Pattern

# of faces of the order 3 Permutohedron

# of faces of the order 4 Permutohedron
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Part IV: The Permutohedron

Photo Credit: Andrew Kepert
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Unit Interval Parking Functions

A unit interval parking function is a parking function of length n
where each car is displaced by at most 1 spot.
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A unit interval parking function is a parking function of length n
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Unique Prime Unit Interval PFs

Theorem

Let α be a unit interval prime parking function of length n. Then,
α = (1, 1, 2, 3, . . . , n − 2, n − 1).

α = (1, 1, 2, 3, 4, 5)

1 2 3 4 5 6

1

2

3

4

5

6
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Permutohedron Bijection

Theorem (CM, J, S)

Parking functions of length n that displace k cars by 1 are in
bijection with the k faces of the permutohedron of order n.

Vertices of the permutohedron ⇐⇒ Parking Functions with 0
displacement
Edges of the Permutohedron ⇐⇒ Parking Functions with 1
displacement
Faces of the Permutohedron ⇐⇒ Parking Functions with 1 + 1
displacement

...
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Key Insight

The faces of the permutohedron of order n are composed of
products of lower dimensional permutohedra.
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P(2)× P(1)
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P(2)× P(2)
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Thank You!

Figure: First selfie Figure: Second selfie Figure: Third selfie
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