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Hyperplanes

A hyperplane in Rn is an affine subspace of dimension n− 1.
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Hyperplane Arrangements

A hyperplane arrangement is a finite collection of hyperplanes.
The hyperplane arrangement seperates the vector space into
disjoint chambers or regions.
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G-Shi Arrangement

Given a graph G, the G-Shi arrangement includes the hyperplanes
xi − xj = 0 and xi − xj = 1 for each edge {i, j} where i < j.

If G has n vertices and m edges, the G-Shi arrangement exists in
n dimensions and has 2m hyperplanes.
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G-Parking Functions

Let G be a graph on n+ 1 vertices: {0, 1, . . . , n− 1} and a sink q.

Definition

A G-parking function is an n-tuple (a0, a1, ...an−1) such that for
any non-empty subset S ⊆ {0, . . . , n− 1}, there exists v ∈ S such
that av < outdegS(v).

This is also known as a superstable configuration in chip-firing.
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An Example of G-Parking Functions

{0} {1} {2} {0, 1} {0, 2} {1, 2} {0, 1, 2}
a0 < 1 a0 < 2 a1 < 2 a0 < 1 or

a0 < 2 a1 < 3 a2 < 2 or or or a1 < 1 or
a1 < 2 a2 < 2 a2 < 1 a2 < 1

These constraints yield the G-parking functions (0, 0, 0), (0, 0, 1),
(0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), and (0, 2, 0)
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Appending Sinks: G•

Let G = (V,E) be a graph. Then, G• is the graph obtained from
G by adding a vertex q, which we call the sink, and an edge
between q and each v ∈ V . For example, let G = P3.

Then, G• is the graph below.
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Shi Adjacency Graph

The Shi adjacency graph is defined from the G-Shi arrangement by
letting each region be a vertex and placing an edge between
bordering regions.


Rendered with Manim Community v0.15.2
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Directing the Shi Adjacency Graph

First, we label the region given by x0 > x1 > · · · > xn−1 and
x0 − xn−1 < 1 by R0, and call it the base region. Then, we direct
the edges away from R0.

Above is the example for G = K3.
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Pak-Stanley Labels

In the Pak-Stanley Algorithm, we label each edge xi − xj = 0 with
i and each edge xi − xj = 1 with j. Then, starting from R0, we
label the vertices by increasing coordinate i along edges labeled i.



Background Three Rows Game Repetitions Generalizing to Trees Beyond Trees Conclusion

Pak-Stanley Labels

The set of Pak-Stanley labels for the regions of the G-Shi
arrangement are called the Pak-Stanley labels for G; these are the
same as the G•-parking functions (Hopkins-Perkinson).

Theorem (Hopkins-Perkinson, Corollary 2.8)

Every G•-parking function occurs as a label in the Pak-Stanley
algorithm on the G-Shi arrangement.

Furthermore, for complete graphs, each (Kn)•-parking function
appears exactly once. However, this is not the case for graphs
which not are not complete.
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An Example: Path Graphs

We started by studying a simple family of graphs: path graphs.

The Shi adjacency digraph of P1, P2, P3, and P4:

These graphs look like subdivided (n− 1)-dimensional cubes.



Background Three Rows Game Repetitions Generalizing to Trees Beyond Trees Conclusion

Repetitions in the Labels for Path Graphs

The Pak-Stanley labels on the Shi adjacency graph for P3.
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Three Rows Game
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Creating the Three Rows Game

=⇒
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Creating the Three Rows Game

=⇒
x0 − x1 < 0

0 < x0 − x1 < 1

x0 − x1 > 1
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Creating the Three Rows Game

=⇒
0

1
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Creating the Three Rows Game

=⇒
x1 − x2 < 0

0 < x1 − x2 < 1

x1 − x2 > 1
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Creating the Three Rows Game

=⇒
1

2
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Creating the Three Rows Game

=⇒
0 1

1 2
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Three Rows Game on Paths

The Three Rows Game for Pn uses the following board:

0 1 2 · · · n− 3 n− 2

1 2 3 · · · n− 2 n− 1

To play, pick one cell in each column and keep track of the values
selected.

Example

0 1 2 3 4

1 2 3 4 5

=⇒ {1, 2, 4, 4}
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Histories

The vertices in the Shi adjacency digraph correspond to histories in
the Three Rows Game.

Example

What history corresponds to this vertex?

=⇒
0 1

1 2

?
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Histories

The vertices in the Shi adjacency digraph correspond to histories in
the Three Rows Game.

Example

What history corresponds to this vertex?

=⇒
0 1

1 2
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Outcomes

The outcomes of the Three Rows Game correspond to the
Pak-Stanley labels.

Example

What is the Pak-Stanley label for this vertex?

=⇒
0 1

1 2

=⇒ {1, 2} =⇒ (0, 1, 1)
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Outcomes

Question

Given an outcome of the Three Rows Game (or Pak-Stanley label),
can we determine which vertex it came from?

Example

Which vertex does the outcome {1} correspond to?
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Outcomes

Question

Given an outcome of the Three Rows Game (or Pak-Stanley label),
can we determine which vertex it came from?

Example

Which vertex does the outcome {1} correspond to?

There are multiple solutions! This corresponds to the fact that the
label (0, 1, 0) appears twice, as discussed previously.
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Repetitions
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Counting Repetitions

Question

For a specific G-parking function, how many times will it appear in
the Pn-Shi arrangement?

0 1 2 3

1 2 3 4

How many histories yield the following outcomes:

{0, 2, 2}?
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Counting Repetitions

Question

For a specific G-parking function, how many times will it appear in
the Pn-Shi arrangement?

0 1 2 3

1 2 3 4

How many histories yield the following outcomes:

{1, 2, 4}?
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Counting Repetitions

Question

For a specific G-parking function, how many times will it appear in
the Pn-Shi arrangement?

0 1 2 3

1 2 3 4

How many histories yield the following outcomes:

{1, 2, 4}? −→ 3

0 1 2 3

1 2 3 4

0 1 2 3

1 2 3 4

0 1 2 3

1 2 3 4
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Path Repetition Theorem

Definition

A run of length n is a subsequence of the Pak-Stanley label of the
form 0, 1, 1, . . . , 1, 1, 0 where there are n 1’s.

Theorem (C. Bennett, A. Mock, R. Truax)

Let p be a Pak-Stanley label on Pn. If the length of a run r is
denoted l(r), then the number of vertices in ΓS (Pn) with label p
is ∏

runs r in p

(l(r) + 1).
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Using the Path Repetition Theorem

Question

How many times will the Pak-Stanley label (0, 1, 1, 1, 0, 2, 0)
appear in the P7-Shi arrangement?
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Using the Path Repetition Theorem

Question

How many times will the Pak-Stanley label (0, 1, 1, 1, 0, 2, 0)
appear in the P7-Shi arrangement?

Solution

There is one run of length 3:

(0, 1, 1, 1, 0, 2, 0)

so the label appears 3 + 1 = 4 times.
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Using the Path Repetition Theorem

Question

How many times will the Pak-Stanley label (0, 1, 1, 0, 1, 1, 0)
appear in the P7-Shi arrangement?
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Using the Path Repetition Theorem

Question

How many times will the Pak-Stanley label (0, 1, 1, 0, 1, 1, 0)
appear in the P7-Shi arrangement?

Solution

There are two runs of length 2:

(0, 1, 1, 0, 1, 1, 0)

so the label appears (2 + 1)(2 + 1) = 9 times.
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Results from the Three Rows Game

Fact (C. Bennett, A. Mock, R. Truax)

The number of regions in the Pn-Shi arrangement is equal to 3n−1.

Explanation

Recall that each region corresponds to a history in the Three Rows
Game. For the Pn-Shi arrangement, there are n− 1 columns.

0 1 · · · n− 2

1 2 · · · n− 1

We choose one cell in each column, so there are 3n−1 histories.
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Results from the Three Rows Game

Fact (C. Bennett, A. Mock, R. Truax)

The number of sinks in the Shi adjacency digraph of Pn is equal to
2n−1.

Explanation

A sink is a vertex in the Shi adjacency digraph with outdegree 0.
For paths (and indeed trees), this corresponds to having no blanks
in the history:

0 1 · · · n− 2

1 2 · · · n− 1

There are n− 1 columns, and two choices for each. Thus, there
are 2n−1 such histories.
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Generalizing to Trees
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The T -Three Rows Game

The T -Three Rows Game has a column

i

j

for each edge {i, j}.

⇒ 0 1 1 3

1 2 3 4
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Acyclicity and the Analogy

Acyclicity allows us to choose any sequence of moves.

↪→ a cycle could introduce a contradiction.

0 1 0

1 2 2

x0 − x1 < 0

x1 − x2 < 0

x0 − x2 > 1
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Acyclicity allows us to choose any sequence of moves.

↪→ a cycle could introduce a contradiction.

0 1 0

1 2 2
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Acyclicity and the Analogy

Acyclicity allows us to choose any sequence of moves.

↪→ a cycle could introduce a contradiction.

0 1 0

1 2 2

x0 − x2 < 0

x0 − x2 > 1

Since trees have no cycles, this issue doesn’t arise. Thus, the Shi
adjacency digraph still looks like a barycentrically subdivided
(n− 1)-cube, it has 3n−1 vertices and 2n−1 sinks, etc.



Background Three Rows Game Repetitions Generalizing to Trees Beyond Trees Conclusion

An Example: The Star Graph

0 0 0 · · · 0 0

1 2 3 · · · n− 1 n
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An Example: The Star Graph

0 0 0 · · · 0 0

1 2 3 · · · n− 1 n

How many histories of the game give the outcome {1, 2, 4}?

0 0 0 0 0 0 0

1 2 3 4 5 6 7
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An Example: The Star Graph

0 0 0 · · · 0 0

1 2 3 · · · n− 1 n

How many histories of the game give the outcome {0, 0, 1, 4, 5}?

0 0 0 0 0 0 0

1 2 3 4 5 6 7



Background Three Rows Game Repetitions Generalizing to Trees Beyond Trees Conclusion

An Example: The Star Graph

0 0 0 · · · 0 0

1 2 3 · · · n− 1 n

How many histories of the game give the outcome {0, 0, 1, 4, 5}?

0 0 0 0 0 0 0
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An Example: The Star Graph

0 0 0 · · · 0 0

1 2 3 · · · n− 1 n

How many histories of the game give the outcome {0, 0, 1, 4, 5}?

0 0 0 0 0 0 0

1 2 3 4 5 6 7(
4
2

)
= 6
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Classifying Repetitions in the Star Graph

Theorem (C. Bennett, A. Mock, R. Truax)

The number of times an outcome repeats in the Sn-Three Rows
Game is (

c0 + c□
c0

)
.

# of 0s # of □s

Corollary

The number of times a Pak-Stanley label p = (p0, . . . , pn) repeats
in the Sn-Shi arrangement is(

n− p1 − · · · − pn
p0

)
.

Notice that any outcome which has no □s appears precisely once.
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Beyond Trees
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Cycle Graphs

If G has a cycle, some histories of the G-Three Rows Game are
illegal (they correspond to nonexistent regions). The simplest case
is when G is a cycle: the cycle graph Cn:
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Illegal Histories in Cycle Graphs

Here are two examples of illegal histories for G = Cn:

0 1 · · · n− 2 0

1 2 · · · n− 1 n− 1

and

0 1 · · · n− 2 0

1 2 · · · n− 1 n− 1

.
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Illegal Histories in Cycle Graphs

Here are two examples of illegal histories for G = Cn:

0 1 · · · n− 2 0

1 2 · · · n− 1 n− 1

and

0 1 · · · n− 2 0

1 2 · · · n− 1 n− 1

.

To see why these histories are illegal, notice that the first n− 1
choices (“path choices”) become the inequalities

x0 − x1 < 0 x1 − x2 < 0 · · · xn−2 − xn−1 < 0
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Illegal Histories in Cycle Graphs

Here are two examples of illegal histories for G = Cn:

0 1 · · · n− 2 0

1 2 · · · n− 1 n− 1

and

0 1 · · · n− 2 0

1 2 · · · n− 1 n− 1

.

To see why these histories are illegal, notice that the first n− 1
choices (“path choices”) become the inequalities

x0 − xn−1 < 0

But the final choice (“cycle choice”) becomes 0 < x0 − xn−1 < 1
and x0 − xn−1 > 1 respectively (a contradiction).



Background Three Rows Game Repetitions Generalizing to Trees Beyond Trees Conclusion

A Classification of Illegal Histories

Case 1: All the path choices are T or M .
This case has n+ 1 illegal histories:

1

· · ·
and

· · ·
(2 illegal histories).

2

· · · · · ·
(n− 1 illegal histories).

Case 2: All the path choices are M or B.
This case has 2n − 1 illegal histories: all the path choices are M or
B and the cycle choice is M or T , except the history of all Ms.
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Corollaries of the Classification

The classification yields the following results:

Theorem (C. Bennett, A. Mock, R. Truax)

There are 2n + n illegal histories in the Cn-Three Rows Game.

Corollary

There are 3n − 2n − n legal histories in the Cn-Three Rows Game.

Corollary

There are 3n − 2n − n regions in the Cn-Shi arrangement.

It also gives a Cycle Repetition Theorem analogous to the Path
Repetition Theorem (but more complicated).
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Maximal Labels

A maximal G•-parking function is one that cannot be made any
larger and remain a G•-parking function. For example,
(1, 1, 0, 1, 1) is a maximal (P5)•-parking function.

Proposition

Suppose G has m edges. Then any maximal G•-parking function
has coordinate sum m; conversely, any G•-parking function with
coordinate sum m is maximal.

Corollary

An outcome of the G-Three Rows Game corresponds to a maximal
G•-parking function if and only if the middle row is never used.

i1 i2 · · · im

j1 j2 · · · jm
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Uniqueness of Maximal Labels

Theorem (C. Bennett, A. Mock, R. Truax)

Any outcome of the G-Three Rows Game which never uses the
middle row is the result of a unique legal history.

Proof.

The idea is to choose a legal history h inducing a maximal
outcome o, and show that any other history h′ inducing o is illegal.

Indeed, if h′ is not illegal, then it would need to have infinitely
many columns distinct from h, which is impossible.

Corollary

Any maximal G•-parking function appears uniquely.
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Uniqueness of Maximal Labels

Theorem (C. Bennett, A. Mock, R. Truax)

Any outcome of the G-Three Rows Game which never uses the
middle row is the result of a unique legal history.

Proof.

The idea is to choose a legal history h inducing a maximal
outcome o, and show that any other history h′ inducing o is illegal.

Indeed, if h′ is not illegal, then it would need to have infinitely
many columns distinct from h, which is impossible.

Corollary

Any maximal G•-parking function appears uniquely.
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Uniqueness of Maximal Labels

Theorem (C. Bennett, A. Mock, R. Truax)

Any outcome of the G-Three Rows Game which never uses the
middle row is the result of a unique legal history.

Proof.

The idea is to choose a legal history h inducing a maximal
outcome o, and show that any other history h′ inducing o is illegal.

Indeed, if h′ is not illegal, then it would need to have infinitely
many columns distinct from h, which is impossible.

Corollary

Any maximal G•-parking function appears uniquely.
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Conclusion
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Open Problems: Counting Regions

Question

How many regions are in the G-Shi arrangement of any graph?

Example

The G-Shi arrangements of these graphs have different numbers of
regions.
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Open Problems: Counting Repetitions

Question

How many times does a given label repeat in the T -Shi
arrangement of a tree graph T?

• We can find the answer using breadth-first search.

• Does a faster algorithm exist?

Question

How many times does a given label repeat in the G-Shi
arrangement for a general graph G?
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Open Problems: Sinks

Every vertex with a maximal Pak-Stanley label is a sink in the Shi
adjacency digraph.

Question

Does every sink in the Shi adjacency digraph have a maximal
Pak-Stanley label?

• We have shown that this is true for tree graphs.



Background Three Rows Game Repetitions Generalizing to Trees Beyond Trees Conclusion

Thank You!
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Appendix

Uniqueness in the T -Three Rows Game

Theorem (C. Bennett, A. Mock, R. Truax)

Any outcome of the T -Three Rows Game with no □s (i.e. with n
numbers) is the result of a unique history.

Proof.

First, we introduce the concept of distance between outcomes:

d(o,o′) =

n∑
i=0

| mo(i) − mo′(i) |.

occurences of i in o occurences of i in o′

Since T is a tree, we can relabel the vertices so that every column
(after the first) contains one old vertex and one new vertex.
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numbers) is the result of a unique history.

Proof.
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Uniqueness in the T -Three Rows Game
(Cont.)

Proof (Cont).

Suppose that h1 and h2 give the same outcome o. Since our
outcome has no □s, h1 can be transformed into h2 using “swaps”:

i

j
⇔

i

j

Now, the first swap increases the distance by 2. However, each
swap afterwards doesn’t decrease the distance (since there is one
new and one old vertex). This gives a contradiction.
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outcome has no □s, h1 can be transformed into h2 using “swaps”:

i

j
⇔

i

j

Now, the first swap increases the distance by 2. However, each
swap afterwards doesn’t decrease the distance (since there is one
new and one old vertex). This gives a contradiction.



Appendix

Cycle Graphs

Remember that if there is a cycle, some histories are illegal. In the
case G = Cn, we can count these illegal histories:

1

· · ·
and

· · ·
.

2

· · · · · ·
.

3 Any history where the first n− 1 choices are all M or B and
the last choice is M or T (except the history of all Ms).

Thus, the number of regions in the Cn-Shi arrangement is

3n − 2− (n− 1)− (2n − 1) = 3n − 2n − n.



Appendix

Patterns

A pattern is a maximal sequence of weakly-increasing choices with
exactly one middle choice.

These histories contain patterns:

0 1 2 3 4

1 2 3 4 5

0 1 2 3 4

1 2 3 4 5

These histories contain no nontrivial patterns:

0 1 2 3 4

1 2 3 4 5

0 1 2 3 4

1 2 3 4 5
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