Parking Functions with Fixed Ascent and Descent Sets

S. Alex Bradt Pamela E. Harris Gordon Rojas Kirby
Eva Reutercrona Susan Wang Juliet Whidden

1 Arizona State University
2 University of Wisconsin-Milwaukee
3 San Diego State University
4 Pacific Lutheran University
5 Mount Holyoke College
6 Vassar College

August 3, 2022
Table of Contents

1. Introductions
 ▶ Motivations
 ▶ Definitions and Established Results

2. Parking Functions
 ▶ Descent-Ascent Symmetry Theorem
 ▶ Connections to Narayana Numbers
 ▶ Tie/Ascent/Descent Subsets

3. Unit Interval Parking Functions
 ▶ Definitions
 ▶ Fubini Bijection
 ▶ r-Fubini Bijection

4. Conclusions and Future Directions
Our Research Focus

Theme: Statistics in parking functions and unit interval parking functions — ascents, descents, ties.

This research is inspired by

1. Billey et al. (2013): studied permutations with a given peak set
2. Schumacher (2018): enumerated parking functions with k descents and i ties
Definitions

Given a parking function $\alpha = (a_1, a_2, \ldots, a_n)$:

- An **ascent** is defined as an index i such that $a_i < a_{i+1}$.
- A **descent** is defined as an index i such that $a_i > a_{i+1}$.
- A **tie** is defined as an index i such that $a_i = a_{i+1}$.

Example:

$\alpha = 132441$

$\alpha = 132441$

$\alpha = 132441$
Definitions

Given a parking function $\alpha = (a_1, a_2, \ldots, a_n)$:

- The **ascent set** is defined as the set I with all ascents of α.
- The **descent set** is defined as the set I with all descents of α.
- The **tie set** is defined as the set I with all ties of α.
- A **ascent/descent/tie subset** is defined as any subset of α’s ascent/descent/tie set.

Example: $\alpha = 132441$

- Ascent set: $\{1, 3\}$
- Descent set: $\{2, 5\}$
- Tie set: $\{4\}$
Classical Parking Functions
Established Results

Known Enumerations:

- Parking functions: \((n + 1)^{n-1}\) (Riordan, 1969)
- Weakly increasing/decreasing parking functions: Catalan (Stanley, 1999)
- Parking functions with \(k\) ties (Yan, 2015)
- Parking functions with \(k\) descents and \(i\) ties (Schumacher, 2018)
Descent-Ascent Symmetry Theorem
Introduction to the Descent-Ascent Symmetry Theorem

Definition: Given a set \(I = \{i_1, \ldots, i_k\} \subseteq [n-1], \) let \(I^{-1} := \{n-i_1, \ldots, n-i_k\}. \)
Introduction to the Descent-Ascent Symmetry Theorem

Definition: Given a set $I = \{i_1, \ldots, i_k\} \subseteq [n-1]$, let $I^{-1} := \{n-i_1, \ldots, n-i_k\}$.

Example: $n = 5$, $I = \{1, 2\} \Rightarrow I^{-1} =$
Introduction to the Descent-Ascent Symmetry Theorem

Definition: Given a set $I = \{i_1, \ldots, i_k\} \subseteq [n - 1]$, let $I^{-1} := \{n - i_1, \ldots, n - i_k\}$.

Example: $n = 5$, $I = \{1, 2\} \Rightarrow I^{-1} = \{3, 4\}$.
Introduction to the Descent-Ascent Symmetry Theorem

Definition: Given a set $I = \{i_1, \ldots, i_k\} \subseteq [n-1]$, let

$I^{-1} := \{n-i_1, \ldots, n-i_k\}$.

Example: $n = 5$, $I = \{1, 2\} \Rightarrow I^{-1} = \{3, 4\}$.

<table>
<thead>
<tr>
<th>l</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>${1}$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>84</td>
</tr>
<tr>
<td>${2}$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>154</td>
</tr>
<tr>
<td>${3}$</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>154</td>
</tr>
<tr>
<td>${4}$</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>l</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>${1,2}$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>56</td>
</tr>
<tr>
<td>${1,3}$</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>161</td>
</tr>
<tr>
<td>${1,4}$</td>
<td>126</td>
</tr>
<tr>
<td>${2,3}$</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>91</td>
</tr>
<tr>
<td>${2,4}$</td>
<td>161</td>
</tr>
<tr>
<td>${3,4}$</td>
<td>56</td>
</tr>
</tbody>
</table>

Table: The number of parking functions of length n with the descent/ascent sets l.
Descent-Ascent Symmetry Theorem (JES)

- PFs with descent set I
- PFs with descent set I^{-1}
- PFs with ascent set I
- PFs with ascent set I^{-1}
Descent-Ascent Inverse Equality

Theorem (Descent-Ascent Symmetry Theorem — JES)

The number of parking functions with descent set \(I = \{i_1, i_2, \ldots \} \) is equal to the number of parking functions with ascent set \(I^{-1} = \{n - i_1, n - i_2, \ldots \} \).

Proof idea: bijection with reverse

\[
\alpha = (a_1, a_2, \ldots, a_n) = 142345 \\
\uparrow \\
\alpha' = (a_n, a_{n-1}, \ldots, a_1) = 543241
\]

For each descent \(i \in I \), \(n - i \) is in the ascent set of \(\alpha' \).
Descent-Ascent Symmetry Theorem (JES)

PFs with descent set I

PFs with ascent set I^{-1}

PFs with descent set I

PFs with ascent set I^{-1}
Descent-Ascent Equality

Theorem (JES)

The number of parking functions with ascent set I is equal to the number of parking functions with descent set I.

Proven by strong induction.
Descent-Ascent Symmetry Theorem (JES)

PFs with
descent set I

PFs with
descent set I^{-1}

PFs with
ascent set I

PFs with
ascent set I^{-1}
Descent-Ascent Symmetry Theorem (JES)
Open Exercise!!

Exercise

The bijection between parking functions with descent set I and parking functions with descent set I^{-1} or a direct proof that these sets of parking functions are equinumerous.
Connection to Narayana Numbers!
Connection to Narayana Numbers!
Parking Functions with Descent Set \{1, \ldots, k\}

Theorem (JES)

The number of parking functions of length \(n\) with descent set \(\{1, \ldots, k\}\) is

\[
\sum_{i=1}^{n} \frac{1}{n} \binom{n}{i} \binom{n}{i-1} \binom{i-1}{k}.
\]
Parking Functions with Descent Set \(\{1, \ldots, k\} \)

Theorem (JES)

The number of parking functions of length \(n \) with descent set \(\{1, \ldots, k\} \) is

\[
\sum_{i=1}^{n} \frac{1}{n} \binom{n}{i} \binom{n}{i-1} \binom{i-1}{k}.
\]
Parking Functions with Descent Set \{1, \ldots, k\}

Theorem (JES)

The number of parking functions of length \(n \) with descent set \(\{1, \ldots, k\} \) is

\[
\sum_{i=1}^{n} \frac{1}{n} \binom{n}{i} \binom{n}{i-1} \binom{i-1}{k}.
\]

Proof Sketch:

- Weakly increasing parking functions of length \(n \) with \(i \) distinct values — Narayana numbers (Stanley, 1999).
Parking Functions with Descent Set \{1, \ldots, k\}

Theorem (JES)

The number of parking functions of length \(n\) with descent set \(\{1, \ldots, k\}\) is

\[
\sum_{i=1}^{n} \frac{1}{n} \binom{n}{i} \binom{n}{i-1} \binom{i-1}{k}.
\]

Proof Sketch:

- Weakly increasing parking functions of length \(n\) with \(i\) distinct values — Narayana numbers (Stanley, 1999).
- Choose any \(k\) of the \(i-1\) distinct values greater than 1 to move to the front in decreasing order.
Conjecture

Parking functions of length n with descent subset $\{1, \ldots, \hat{k}, \ldots, n-1\}$ are counted by the Narayana number

$$N(n+1, k+1) = \frac{1}{n+1} \binom{n+1}{k+1} \binom{n+1}{k}.$$
Parking functions with given ascent/descent/tie subsets
Parking Functions with Tie Subsets

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>25</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>216</td>
<td>36</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2401</td>
<td>343</td>
<td>49</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>32768</td>
<td>4096</td>
<td>512</td>
<td>64</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: The number of parking functions of length n with tie subset of size m
Parking Functions with Tie Subsets

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>216</td>
<td>36</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2401</td>
<td>343</td>
<td>49</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>32768</td>
<td>4096</td>
<td>512</td>
<td>64</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: The number of parking functions of length \(n\) with tie subset of size \(m\)
Parking Functions with Tie Subsets

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>216</td>
<td>36</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2401</td>
<td>343</td>
<td>49</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>32768</td>
<td>4096</td>
<td>512</td>
<td>64</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: The number of parking functions of length n with tie subset of size m

The entries of this table are given by $(n + 1)^{n-1-m}$.
Parking Functions with Given Tie Subsets

Theorem (JES)

For any $I \subseteq [n-1]$, let $T(n, I)$ be the set of parking functions of length n whose tie set contains I. Then,

$$|T(n, I)| = (n + 1)^{n-1-|I|}.$$
Theorem (JES)

For any $I \subseteq [n-1]$, let $T(n, I)$ be the set of parking functions of length n whose tie set contains I. Then,

$$|T(n, I)| = (n + 1)^{n-1-|I|}.$$

Proof using Prüfer Code:

- The Prüfer Code of parking function $\alpha = (a_1, \ldots, a_n)$ is $\rho = (a_2 - a_1, a_3 - a_2, \ldots, a_n - a_{n-1})$.
- A “0” in the Prüfer Code means a tie in the parking function.
- Each entry of the Prüfer Code has $n + 1$ possible values.
Parking Functions with Consecutive Descent/Ascent Subsets

Theorem (JES)

For any $I = \{i, i+1, \ldots, i+m-1\} \subseteq [n-1]$, the number of parking functions whose descent set contains I is

$$D(n, I) = \binom{n+1}{|I|+1}(n+1)^{n-|I|-2}.$$
Parking Functions Starting with k Distinct Values

Theorem (JES)

The number of parking functions of length n that start with k distinct values is

$$k! \cdot |D(n, [k - 1])|.$$
Unit Interval Parking Functions
Definitions

- Let $\alpha = (a_1, \ldots, a_n)$ be a parking function. If car i parks in spot s_i, we call $s_i - a_i$ the displacement of car i.

Example
Consider $\alpha = (1, 1, 2, 3) \in \text{UPF}_4$.

\begin{table}
\begin{tabular}{cccc}
\hline
C1 & C2 & C3 & C4 \\
\hline
1 & 1 & 2 & 3 \\
\hline
\end{tabular}
\end{table}
Definitions

- Let $\alpha = (a_1, \ldots, a_n)$ be a parking function. If car i parks in spot s_i, we call $s_i - a_i$ the displacement of car i.

- A unit interval parking function is a parking function $\alpha = (a_1, a_2, \ldots, a_n)$ where the individual displacement of each car is at most 1. We refer to the set of unit interval parking functions of length n as UPF_n.
Definitions

- Let $\alpha = (a_1, \ldots, a_n)$ be a parking function. If car i parks in spot s_i, we call $s_i - a_i$ the displacement of car i.

- A **unit interval parking function** is a parking function $\alpha = (a_1, a_2, \ldots, a_n)$ where the individual displacement of each car is at most 1. We refer to the set of unit interval parking functions of length n as UPF_n.

Example: Consider $\alpha = (1, 1, 2, 3) \in \text{UPF}_4$.

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Car]</td>
<td>![Car]</td>
<td>![Car]</td>
<td>![Car]</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
IS IT A UNIT INTERVAL?

\[\alpha = (1,1,2) \]
YES!!

\[\alpha = (2,1,1) \]
NO!!

\[\alpha = (1,2,1,3) \]
NO!!

\[\alpha = (4,1,1,2) \]
YES!!
IS IT A UNIT INTERVAL?

- $\alpha = (1, 1, 2)$
IS IT A UNIT INTERVAL?

- $\alpha = (1,1,2)$ YES!! 😊
IS IT A UNIT INTERVAL?

- $\alpha = (1,1,2)$ YES!! 😊
- $\alpha = (2,1,1)$
IS IT A UNIT INTERVAL?

- $\alpha = (1,1,2)$ YES!! 😊
- $\alpha = (2,1,1)$ NO!! 👻
IS IT A UNIT INTERVAL?

- $\alpha = (1, 1, 2)$ YES!! 😊
- $\alpha = (2, 1, 1)$ NO!! 👻
- $\alpha = (1, 2, 1, 3)$
IS IT A UNIT INTERVAL?

- $\alpha = (1,1,2)$ YES!! 😊
- $\alpha = (2,1,1)$ NO!! 💀
- $\alpha = (1,2,1,3)$ NO!! 😬
IS IT A UNIT INTERVAL?

- $\alpha = (1, 1, 2)$ YES!! 😊
- $\alpha = (2, 1, 1)$ NO!! 👻
- $\alpha = (1, 2, 1, 3)$ NO!! 🙁
- $\alpha = (4, 1, 1, 2)$
IS IT A UNIT INTERVAL?

- $\alpha = (1,1,2)$ YES!! 😊
- $\alpha = (2,1,1)$ NO!! 🕷️
- $\alpha = (1,2,1,3)$ NO!! 👻
- $\alpha = (4,1,1,2)$ YES!! 👑
Fubini Numbers!
Number of Unit Interval Parking Functions

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>PF_n</td>
<td>$</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
</tr>
<tr>
<td>$</td>
<td>UPF_n</td>
<td>$</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>75</td>
</tr>
</tbody>
</table>

Table: The number of unit interval parking functions of length n
Number of Unit Interval Parking Functions

| n | $|PF_n|$ | $|UPF_n|$ |
|-----|---------|---------|
| 1 | 1 | 1 |
| 2 | 3 | 3 |
| 3 | 16 | 13 |
| 4 | 125 | 75 |
| 5 | 1296 | 541 |
| 6 | 16807 | 4683 |

Table: The number of unit interval parking functions of length n
Definitions

- A **Fubini ranking** is a sequence $\beta = (b_1, \ldots, b_n)$ that represents one way n players can rank in a competition, allowing ties. We denote FR_n as the set of all Fubini rankings of length n. (Hadaway, 2022)
Definitions

- A **Fubini ranking** is a sequence $\beta = (b_1, \ldots, b_n)$ that represents one way n players can rank in a competition, allowing ties. We denote FR_n as the set of all Fubini rankings of length n. (Hadaway, 2022)
- The **Fubini numbers** are defined as $\text{Fb}_n = |\text{FR}_n|$.
Definitions

- A **Fubini ranking** is a sequence \(\beta = (b_1, \ldots, b_n) \) that represents one way \(n \) players can rank in a competition, allowing ties. We denote \(\text{FR}_n \) as the set of all Fubini rankings of length \(n \). (Hadaway, 2022)
- The **Fubini numbers** are defined as \(\text{Fb}_n = |\text{FR}_n| \).
- **Note:** The \(n \)-tuple \(\beta = (b_1, \ldots, b_n) \in [n]^n \) is a **Fubini ranking** of length \(n \) if the following holds: For all \(i \in [n] \), if \(k \) entries of \(\beta \) are equal to \(i \), then the next largest value in \(\beta \) is \(i + k \).
IS IT A FUBINI RANKING?
IS IT A FUBINI RANKING?

- $\beta = (1,1,2)$
IS IT A FUBINI RANKING?

\[\beta = (1,1,2) \quad \text{NO!!} \quad 😞 \]
IS IT A FUBINI RANKING?

- $\beta = (1,1,2)$ NO!! 😞
- $\beta = (1,2,2)$
IS IT A FUBINI RANKING?

- \(\beta = (1,1,2) \) NO!! 😞
- \(\beta = (1,2,2) \) YES!! 🌸
IS IT A FUBINI RANKING?

- $\beta = (1, 1, 2)$ NO!! 😞
- $\beta = (1, 2, 2)$ YES!! 🌸
- $\beta = (1, 1, 1, 3)$
IS IT A FUBINI RANKING?

- $\beta = (1, 1, 2)$ NO!! 😞
- $\beta = (1, 2, 2)$ YES!! 🌸
- $\beta = (1, 1, 1, 3)$ NO!! 😞
IS IT A FUBINI RANKING?

- $\beta = (1,1,2)$ NO!! 😞
- $\beta = (1,2,2)$ YES!! 🌸
- $\beta = (1,1,1,3)$ NO!! 😞
- $\beta = (4,1,1,3)$
IS IT A FUBINI RANKING?

- $\beta = (1,1,2)$ NO!! 😞
- $\beta = (1,2,2)$ YES!! 🌸
- $\beta = (1,1,1,3)$ NO!! 😢
- $\beta = (4,1,1,3)$ YES!! 🏆
Definitions

- **r-Fubini ranking** is a Fubini ranking that begins with \(r \) distinct values. We denote \(FR_n^r \) as the set of all Fubini rankings of length \(n \).

 Note: \(FR_n^i \subset FR_n^j \) for \(i > j \).
Definitions

- **An r-Fubini ranking** is a Fubini ranking that begins with r distinct values. We denote FR_n^r as the set of all Fubini rankings of length n. Note: $\text{FR}_n^i \subset \text{FR}_n^j$ for $i > j$.
- **The r-Fubini numbers** are defined as $Fb_n^r = |\text{FR}_n^r|$.

Definitions
Definitions

- **An r-Fubini ranking** is a Fubini ranking that begins with \(r \) distinct values. We denote \(\text{FR}^r_n \) as the set of all Fubini rankings of length \(n \).

 Note: \(\text{FR}^i_n \subset \text{FR}^j_n \) for \(i > j \).

- **The r-Fubini numbers** are defined as \(\text{Fb}^r_n = |\text{FR}^r_n| \).

Example: \(\alpha = (1,1,3) \) is a 1-Fubini ranking and \(\beta = (1,2,3,4) \) is a 4-Fubini ranking.
Established Results

Unit interval parking functions are in bijection with:

- Fubini rankings (Hadaway, 2022).
- Dyck paths with height at most 2 (Baril, Kirgizov and Petrossian, 2018).
Fubini Ranking Observations

Lemma (MSRI-UP 2021, JES 2022)

Fubini rankings are permutation invariant.
Fubini Ranking Observations

Lemma (MSRI-UP 2021, JES 2022)

Fubini rankings are permutation invariant.

Lemma (MSRI-UP 2021, JES 2022)

Fubini rankings are a subset of parking functions.

Furthermore, the k^{th} occurrence of any i in $\beta \in \text{FR}_n$ parks in spot $i + k - 1$.

4 3 1 4 8 4 4 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
4 3 1 5 8 6 7 2
Fubini Ranking Observations

Lemma (MSRI-UP 2021, JES 2022)

Fubini rankings are permutation invariant.

Lemma (MSRI-UP 2021, JES 2022)

Fubini rankings are a subset of parking functions.

Furthermore, the k^{th} occurrence of any i in $\beta \in \text{FR}_n$ parks in spot $i + k - 1$.

Ex:

```
4 3 1 4 8 4 4 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
4 3 1 5 8 6 7 2
```
Fubini Ranking to Unit Interval PF Bijection

Definition

Define $\phi : FR_n \mapsto UPF_n$ as follows: Given $\beta = (b_1, \ldots, b_n) \in FR_n$, $\phi(\beta) = (a_1, \ldots, a_n) \in UPF_n$, where

$$a_i = \begin{cases} b_i & \text{if index } i \text{ has the first or second occurrence of } b_i \\ b_i + k - 2 & \text{if index } i \text{ has the } k^{\text{th}} \text{ occurrence of } b_i \ (k > 2) \end{cases}$$
Fubini Ranking to Unit Interval PF Bijection

Definition

Define $\phi : FR_n \mapsto UPF_n$ as follows: Given $\beta = (b_1, \ldots, b_n) \in FR_n$, $\phi(\beta) = (a_1, \ldots, a_n) \in UPF_n$, where

$$a_i = \begin{cases} b_i & \text{if index } i \text{ has the first or second occurrence of } b_i \\ b_i + k - 2 & \text{if index } i \text{ has the } k^{th} \text{ occurrence of } b_i \ (k > 2) \end{cases}$$

Ex:

$$\beta = \begin{pmatrix} 4 & 3 & 1 & 4 & 8 & 4 & 4 & 1 \end{pmatrix}$$
Fubini Ranking to Unit Interval PF Bijection

Definition

Define \(\phi : \text{FR}_n \mapsto \text{UPF}_n \) as follows: Given \(\beta = (b_1, \ldots, b_n) \in \text{FR}_n \), \(\phi(\beta) = (a_1, \ldots, a_n) \in \text{UPF}_n \), where

\[
a_i = \begin{cases}
 b_i & \text{if index } i \text{ has the first or second occurrence of } b_i \\
 b_i + k - 2 & \text{if index } i \text{ has the } k^{th} \text{ occurrence of } b_i (k > 2)
\end{cases}
\]

Ex:

\[
\begin{align*}
\beta & \\
4 & 3 & 1 & 4 & 8 & 4 & 4 & 1 \\
\phi(\beta) & \\
4 & 3 & 1 & 4 & 8 & 5 & 6 & 1
\end{align*}
\]
Fubini Ranking to Unit Interval PF Bijection

Definition

Define $\phi : FR_n \mapsto UPF_n$ as follows: Given $\beta = (b_1, \ldots, b_n) \in FR_n$, $\phi(\beta) = (a_1, \ldots, a_n) \in UPF_n$, where

$$a_i = \begin{cases}
 b_i & \text{if index } i \text{ has the first or second occurrence of } b_i \\
 b_i + k - 2 & \text{if index } i \text{ has the } k^{\text{th}} \text{ occurrence of } b_i \ (k > 2)
\end{cases}$$

Ex:

<table>
<thead>
<tr>
<th>β</th>
<th>$\phi(\beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 3 1 4 8 4 4 1</td>
<td>4 3 1 4 8 5 6 1</td>
</tr>
<tr>
<td>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓</td>
<td>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓</td>
</tr>
<tr>
<td>4 3 1 5 8 6 7 2</td>
<td>4 3 1 5 8 6 7 2</td>
</tr>
</tbody>
</table>
Fubini Bijection Exercises

\[\beta \in \text{FR}_5 \quad \text{and} \quad \phi(\beta) \in \text{UPF}_5 \]

<table>
<thead>
<tr>
<th>\beta \in \text{FR}_5</th>
<th>\phi(\beta) \in \text{UPF}_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td></td>
</tr>
<tr>
<td>11111</td>
<td></td>
</tr>
<tr>
<td>14141</td>
<td></td>
</tr>
<tr>
<td>31415</td>
<td></td>
</tr>
</tbody>
</table>
Fubini Bijection Exercises

<table>
<thead>
<tr>
<th>$\beta \in \text{FR}_5$</th>
<th>$\phi(\beta) \in \text{UPF}_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>12345</td>
</tr>
<tr>
<td>11111</td>
<td></td>
</tr>
<tr>
<td>14141</td>
<td></td>
</tr>
<tr>
<td>31415</td>
<td></td>
</tr>
</tbody>
</table>
Fubini Bijection Exercises

<table>
<thead>
<tr>
<th>$\beta \in \mathbf{FR}_5$</th>
<th>$\phi(\beta) \in \mathbf{UPF}_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>12345</td>
</tr>
<tr>
<td>11111</td>
<td>11234</td>
</tr>
<tr>
<td>14141</td>
<td></td>
</tr>
<tr>
<td>31415</td>
<td></td>
</tr>
</tbody>
</table>
Fubini Bijection Exercises

<table>
<thead>
<tr>
<th>$\beta \in \mathit{FR}_5$</th>
<th>$\phi(\beta) \in \mathit{UPF}_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>12345</td>
</tr>
<tr>
<td>11111</td>
<td>11234</td>
</tr>
<tr>
<td>14141</td>
<td>14142</td>
</tr>
<tr>
<td>31415</td>
<td></td>
</tr>
</tbody>
</table>
Fubini Bijection Exercises

<table>
<thead>
<tr>
<th>$\beta \in \text{FR}_5$</th>
<th>$\phi(\beta) \in \text{UPF}_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>12345</td>
</tr>
<tr>
<td>11111</td>
<td>11234</td>
</tr>
<tr>
<td>14141</td>
<td>14142</td>
</tr>
<tr>
<td>31415</td>
<td>31415</td>
</tr>
</tbody>
</table>
Theorem (JES)

The number of unit interval parking functions of length n is F_{b_n}.

Proof Sketch: We proved ϕ is a bijection from FR_n to UPF_n, so

$$|\text{UPF}_n| = |\text{FR}_n| = F_{b_n}.$$
Weakly Increasing/Decreasing Unit Interval Parking Functions
Weakly Increasing Unit Interval Parking Functions

| n | $|\text{WIUPF}_n|$ |
|-----|--------------------|
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| 4 | 8 |
| 5 | 16 |
| 6 | 32 |
| 7 | 64 |

Table: The number of weakly increasing unit interval parking functions of length n
Weakly Increasing Unit Interval Parking Functions

| n | $|\text{WIUPF}_n|$ |
|-----|-----------------|
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| 4 | 8 |
| 5 | 16 |
| 6 | 32 |
| 7 | 64 |

Table: The number of weakly increasing unit interval parking functions of length n

$2^{n-1} \quad \text{Play}$
Weakly Increasing Unit Interval Parking Functions

Theorem (JES)

The number of weakly increasing unit interval parking functions of length n is 2^{n-1}.

Weakening increasing unit interval parking functions:

- $n = 1$: 1
- $n = 2$: 11, 12
- $n = 3$: 112, 113, 122, 123
- $n = 4$: 1123, 1124, 1133, 1134, 1223, 1224, 1233, 1234
- $n = 5$: 11234, 11244, 11334, 11344, 12234, 12244, 12334, 12344, 11235, 11245, 11335, 11345, 12235, 12245, 12335, 12345
Weakly Increasing Unit Interval Parking Functions

Theorem (JES)

The number of weakly increasing unit interval parking functions of length \(n \) is \(2^{n-1} \).

Weaking increasing unit interval parking functions:

- \(n = 1 \): 1
- \(n = 2 \): 11, 12
- \(n = 3 \): 112, 113, 122, 123
- \(n = 4 \): 1123, 1124, 1133, 1134, 1223, 1224, 1233, 1234
- \(n = 5 \): 11234, 11244, 11334, 11344, 12234, 12244, 12334, 12344, 11235, 11245, 11335, 11345, 12235, 12245, 12335, 12345
Weakly Increasing Unit Interval Parking Functions

Theorem (JES)

The number of weakly increasing unit interval parking functions of length n is 2^{n-1}.

Weaking increasing unit interval parking functions:

- $n = 1$: 1
- $n = 2$: 11, 12
- $n = 3$: 112, 113, 122, 123
- $n = 4$: 1123, 1124, 1133, 1134, 1223, 1224, 1233, 1234
- $n = 5$: 11234, 11244, 11334, 11344, 12234, 12244, 12334, 12344, 11235, 11245, 11335, 11345, 12235, 12245, 12335, 12345
Connections to Fubini Rankings

<table>
<thead>
<tr>
<th>n</th>
<th>WIUPF_n</th>
<th>WIFR_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11, 12</td>
<td>11, 12</td>
</tr>
<tr>
<td>3</td>
<td>112, 113, 122, 123</td>
<td>111, 113, 122, 123</td>
</tr>
<tr>
<td>4</td>
<td>1123, 1124, 1133, 1134, 1223, 1224, 1233, 1234</td>
<td>1111, 1114, 1222, 1133, 1134, 1224, 1233, 1234</td>
</tr>
</tbody>
</table>

Table: WIUPF_n and WIFR_n
Weakly Decreasing Unit Interval Parking Functions

| n | $|\text{WDUPF}_n|$ |
|-----|------------------|
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 5 |
| 5 | 8 |
| 6 | 13 |
| 7 | 21 |

Table: Weakly decreasing unit interval parking functions of length n
Weakly Decreasing Unit Interval Parking Functions

| n | $|\text{WDUPF}_n|$ |
|-----|------------------|
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 5 |
| 5 | 8 |
| 6 | 13 |
| 7 | 21 |

Table: Weakly decreasing unit interval parking functions of length n

Fibonacci Play
Weakly Decreasing Unit Interval Parking Functions

Theorem (JES)

The number of weakly decreasing unit interval parking functions of length n is F_{n+1}.
(F_n is the Fibonacci sequence: $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.)

Weaking decreasing unit interval parking functions:

- $n = 1$: 1
- $n = 2$: 11, 21
- $n = 3$: 221, 311, 321
- $n = 4$: 3311, 3321, 4221, 4311, 4321
- $n = 5$: 44221, 44311, 44321, 53311, 53321, 54221, 54311, 54321
Weakly Decreasing Unit Interval Parking Functions

Theorem (JES)

The number of weakly decreasing unit interval parking functions of length n is F_{n+1}.

(F_n is the Fibonacci sequence: $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.)

Weakly decreasing unit interval parking functions:

- $n = 1$: 1
- $n = 2$: 11, 21
- $n = 3$: 221, 311, 321
- $n = 4$: 3311, 3321, 4221, 4311, 4321
- $n = 5$: 44221, 44311, 44321, 53311, 53321, 54221, 54311, 54321
The number of weakly decreasing unit interval parking functions of length n is F_{n+1}.

(F_n is the Fibonacci sequence: $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.)

Weakly decreasing unit interval parking functions:

- $n = 1$: 1
- $n = 2$: 11, 21
- $n = 3$: 221, 311, 321
- $n = 4$: 3311, 3321, 4221, 4311, 4321
- $n = 5$: 44221, 44311, 44321, 53311, 53321, 54221, 54311, 54321
Connections to Fubini Rankings

<table>
<thead>
<tr>
<th>n</th>
<th>WDUPF_n</th>
<th>WDFR_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11, 21</td>
<td>11, 21</td>
</tr>
<tr>
<td>3</td>
<td>221, 311, 321</td>
<td>111, 221, 311, 321</td>
</tr>
<tr>
<td>4</td>
<td>3311, 3321, 4221, 4311, 4321</td>
<td>1111, 4111, 2221, 3311, 3321, 4221, 4311, 4321</td>
</tr>
</tbody>
</table>

Table: WDUPF_n and WDFR_n
r-Fubini Numbers
Definition

The n-tuple $\beta = (b_1, \ldots, b_n) \in [n]^n$ is an **r-Fubini ranking** of length n if β is a Fubini ranking starting with r distinct values, we denote FR^r_n.

Example: $\beta = (1, 2, 2) \in \text{FR}^2_3$
r-Fubini Bijection

Theorem

The number unit interval parking functions of length n starting with r distinct values is $F_{b}^{r}_{n}$.

Proof Sketch: The bijection $\phi : FR_{n} \mapsto UPF_{n}$ maintains the maximal number of distinct starting values.

<table>
<thead>
<tr>
<th>$\beta \in FR_{4}$</th>
<th>$\phi(\beta) \in UPF_{4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>1234</td>
</tr>
<tr>
<td>123 3</td>
<td>123 3</td>
</tr>
<tr>
<td>14 11</td>
<td>14 12</td>
</tr>
<tr>
<td>12 22</td>
<td>12 23</td>
</tr>
</tbody>
</table>

So $|UPF_{n}^{r}| = |FR_{n}^{r}| = F_{b}^{r}_{n}$.
Bijection to Unit Interval Parking Functions with Certain Tie Subsets

Theorem (JES)

Each of the following is equal to $F_{b,n}^r$:

1. UPF_{n}^r
2. The number of unit interval parking functions of length $n + r - 1$ with tie subset $\{2, 4, \ldots, 2r - 2\}$.
3. The number of unit interval parking functions of length $n + r$ with tie subset $\{1, 3, \ldots, 2r - 1\}$.
Add Tie Algorithm

Question: Given a $k \in [n]$, $\alpha \in \text{UPF}_n^k$, can we find a unique $\alpha' \in \text{UPF}_{n+1}^k$ with an added tie at index k?
Add Tie Algorithm

Definition (JES)

Define \(\lambda(\alpha, k) : \text{UPF}_{n}^{k}, [n] \mapsto \text{UPF}_{n+1}^{k} \) as \(\lambda(\alpha, k) = (a'_1, \ldots, a'_n, a'_{n+1}) \), where

\[
a'_i = \begin{cases}
 a_i & \text{if } i < k \text{ and } a_i < a_k, \text{ or } i = k, \text{ or } i = k + 1 \\
 a_i + 1 & \text{if } i < k \text{ and } a_i \geq a_k \\
 a_{i-1} & \text{if } i > k + 1 \text{ and } a_{i-1} < a_k \\
 a_{i-1} + 1 & \text{if } i > k + 1 \text{ and } a_{i-1} \geq a_k
\end{cases}
\]

For any \(\alpha \in \text{UPF}_{n}^{k} \), \(\lambda(\alpha, k) \in \text{UPF}_{n+1}^{k} \).
Add Tie Algorithm

Definition (JES)

Define $\lambda(\alpha, k) : \text{UPF}_n^k, [n] \mapsto \text{UPF}_{n+1}^k$ as $\lambda(\alpha, k) = (a'_1, \ldots, a'_n, a'_{n+1})$, where

$$a'_i = \begin{cases}
 a_i & \text{if } i < k \text{ and } a_i < a_k, \text{ or } i = k, \text{ or } i = k + 1 \\
 a_i + 1 & \text{if } i < k \text{ and } a_i \geq a_k \\
 a_{i-1} & \text{if } i > k + 1 \text{ and } a_{i-1} < a_k \\
 a_{i-1} + 1 & \text{if } i > k + 1 \text{ and } a_{i-1} \geq a_k
\end{cases}.$$

For any $\alpha \in \text{UPF}_n^k$, $\lambda(\alpha, k) \in \text{UPF}_{n+1}^k$.

Example: $\alpha = (5, 1, 3, 3, 2) \in \text{UPF}_5^3 \mapsto \lambda(\alpha, 3) = (6, 1, 3, 3, 4, 2) \in \text{UPF}_6^3$
Bijections Summary

\[\text{FR}_n^r \leftrightarrow \text{UPF}_n^r \]

\[\text{UPF}_{n+r-1}^r \text{ with tie subset } \{2,4,\ldots,2r-2\} \]

\[\text{UPF}_{n+r}^r \text{ with tie subset } \{1,3,\ldots,2r-1\} \]
Future Directions

- Finding a bijection between descent set and inverse descent set
- Using inclusion/exclusion principle to get ascent/descent/tie set formulas from subset formulas
- Enumerating parking function with a given peak or valley set
- Analyzing these statistics for ℓ-interval parking functions
Thanks for listening!
References I

Sequence Music
Sound example

NARAYANA Play
FUBINI Play
POWER OF 2 Play
FIBONACCI Play