
Introductions Parking Functions Unit Interval Parking Functions Conclusions

Parking Functions with Fixed Ascent and Descent Sets

S. Alex Bradt Pamela E. Harris Gordon Rojas Kirby
Eva Reutercrona Susan Wang Juliet Whidden

1Arizona State University
2University of Wisconsin-Milwaukee

3San Diego State University
4Pacific Lutheran University

5Mount Holyoke College
6Vassar College

August 3, 2022

Eva, Susan, Juliet Stats on PFs Summer@ICERM 2022



Introductions Parking Functions Unit Interval Parking Functions Conclusions

Table of Contents

1 Introductions
I Motivations
I Definitions and Established Results

2 Parking Functions
I Descent-Ascent Symmetry Theorem
I Connections to Narayana Numbers
I Tie/Ascent/Descent Subsets

3 Unit Interval Parking Functions
I Definitions
I Fubini Bijection
I r -Fubini Bijection

4 Conclusions and Future Directions

Eva, Susan, Juliet Stats on PFs Summer@ICERM 2022



Introductions Parking Functions Unit Interval Parking Functions Conclusions

Our Research Focus

Theme: Statistics in parking functions and unit interval parking functions
— ascents, descents, ties.

This research is inspired by
1 Billey et al. (2013): studied permutations with a given peak set
2 Schumacher (2018): enumerated parking functions with k descents

and i ties
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Definitions

Given a parking function α = (a1,a2, . . . ,an) :
An ascent is defined as an index i such that ai < ai+1.
A descent is defined as an index i such that ai > ai+1.
A tie is defined as an index i such that ai = ai+1.

Example:

α = 132441
α = 132441
α = 132441
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Definitions

Given a parking function α = (a1,a2, . . . ,an) :
The ascent set is defined as the set I with all ascents of α.
The descent set is defined as the set I with all descents of α.
The tie set is defined as the set I with all ties of α.
A ascent/descent/tie subset is defined as any subset of α’s
ascent/descent/tie set.

Example: α = 132441
Ascent set: {1,3}
Descent set: {2,5}
Tie set: {4}
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Classical Parking Functions
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Established Results

Known Enumerations:
Parking functions: (n +1)n−1 (Riordan, 1969)
Weakly increasing/decreasing parking functions: Catalan (Stanley,
1999)
Parking functions with k ties (Yan, 2015)
Parking functions with k descents and i ties (Schumacher, 2018)
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Descent-Ascent Symmetry Theorem
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Introduction to the Descent-Ascent Symmetry Theorem
Definition: Given a set I = {i1, . . . , ik} ⊆ [n −1], let
I−1 := {n − i1, . . . ,n − ik}.

Example: n = 5, I = {1,2} ⇒ I−1 =

{3,4}.

n
I 3 4 5

{1} 5 21 84
{2} 5 31 154
{3} 21 154
{4} 84

n
I 3 4 5

{1,2} 1 9 56
{1,3} 19 161
{1,4} 126
{2,3} 9 91
{2,4} 161
{3,4} 56

n
I 4 5

{1,2,3} 1 14
{1,2,4} 49
{1,3,4} 49
{2,3,4} 14

{1,2,3,4} 1

Table: The number of parking functions of length n with the descent/ascent sets I
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Descent-Ascent Symmetry Theorem (JES)

PFs with
descent set I

PFs with
descent set I−1

PFs with
ascent set I

PFs with
ascent set I−1
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Descent-Ascent Inverse Equality

Theorem (Descent-Ascent Symmetry Theorem — JES)
The number of parking functions with descent set I = {i1, i2, . . .} is equal
to the number of parking functions with ascent set
I−1 = {n − i1,n − i2, . . .}.

Proof idea: bijection with reverse

α = (a1,a2, . . . ,an) = 142345
l

α′ = (an,an−1, . . . ,a1) = 543241

For each descent i ∈ I, n − i is in the ascent set of α′.
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Descent-Ascent Equality

Theorem (JES)
The number of parking functions with ascent set I is equal to the number
of parking functions with descent set I.

Proven by strong induction.
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Open Exercise!!

Exercise
The bijection between parking functions with descent set I and parking
functions with descent set I−1 or a direct proof that these sets of parking
functions are equinumerous.
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Connection to Narayana Numbers!

Play
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Connection to Narayana Numbers!
Play
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Parking Functions with Descent Set {1, . . . ,k}

Theorem (JES)
The number of parking functions of length n with descent set {1, . . . ,k} is

n∑
i=1

1
n

(
n
i

)(
n

i −1

)(
i −1

k

)
.
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Parking Functions with Descent Set {1, . . . ,k}

Theorem (JES)
The number of parking functions of length n with descent set {1, . . . ,k} is

n∑
i=1

1
n

(
n
i

)(
n

i −1

) (
i −1

k

)
.

Proof Sketch:
Weakly increasing parking functions of length n with i distinct values
— Narayana numbers (Stanley, 1999).
Choose any k of the i −1 distinct values greater than 1 to move to
the front in decreasing order.
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Conjecture

Conjecture
Parking functions of length n with descent subset {1, . . . , k̂, . . . ,n −1} are
counted by the Narayana number

N(n +1,k +1) = 1
n+1

(n+1
k+1
)(n+1

k
)
.
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Parking functions with given
ascent/descent/tie subsets
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Parking Functions with Tie Subsets

aaaaaaa
n

m 1 2 3 4 5 6

2 1
3 4 1
4 25 5 1
5 216 36 6 1
6 2401 343 49 7 1
7 32768 4096 512 64 8 1

Table: The number of parking functions of length n with tie subset of size m

The entries of this table are given by (n +1)n−1−m.
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Parking Functions with Given Tie Subsets

Theorem (JES)
For any I ⊆ [n −1], let T (n, I) be the set of parking functions of length n
whose tie set contains I. Then,

|T (n, I)| = (n +1)n−1−|I|.

Proof using Prüfer Code:
The Prüfer Code of parking function α = (a1, . . . ,an) is
ρ = (a2 −a1,a3 −a2, . . . ,an −an−1).
A “0” in the Prüfer Code means a tie in the parking function.
Each entry of the Prüfer Code has n +1 possible values.
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Parking Functions with Consecutive Descent/Ascent
Subsets

Theorem (JES)
For any I = {i , i +1, . . . , i +m −1} ⊆ [n −1], the number of parking
functions whose descent set contains I is

D(n, I) =
(

n +1
|I|+1

)
(n +1)n−|I|−2.
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Parking Functions Starting with k Distinct Values

Theorem (JES)
The number of parking functions of length n that start with k distinct
values is

k! · |D(n, [k −1])|.
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Unit Interval Parking Functions
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Definitions

Let α = (a1, . . . ,an) be a parking function. If car i parks in spot si , we
call si −ai the displacement of car i .

A unit interval parking function is a parking function
α = (a1,a2, . . . ,an) where the individual displacement of each car is at
most 1. We refer to the set of unit interval parking functions of
length n as UPFn.

Example: Consider α = (1,1,2,3) ∈ UPF4.

C1 C2 C3 C4

� � � �

1 2 3 4
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IS IT A UNIT INTERVAL?

α = (1,1,2) YES!!
α = (2,1,1) NO!!
α = (1,2,1,3) NO!!
α = (4,1,1,2) YES!!
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Fubini Numbers!
Play
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Number of Unit Interval Parking Functions

n 1 2 3 4 5 6
|PFn| 1 3 16 125 1296 16807
|UPFn| 1 3 13 75 541 4683

Table: The number of unit interval parking functions of length n
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Definitions

A Fubini ranking is a sequence β = (b1, . . . ,bn) that represents one
way n players can rank in a competition, allowing ties. We denote
FRn as the set of all Fubini rankings of length n. (Hadaway, 2022)

The Fubini numbers are defined as Fbn = |FRn|.
Note: The n-tuple β = (b1, . . . ,bn) ∈ [n]n is a Fubini ranking of
length n if the following holds: For all i ∈ [n], if k entries of β are
equal to i , then the next largest value in β is i +k.
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IS IT A FUBINI RANKING?

β = (1,1,2) NO!!
β = (1,2,2) YES!!
β = (1,1,1,3) NO!!
β = (4,1,1,3) YES!!
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Definitions

An r-Fubini ranking is a Fubini ranking that begins with r distinct
values. We denote FRr

n as the set of all Fubini rankings of length n.
Note: FRi

n ⊂ FRj
n for i > j.

The r-Fubini numbers are defined as Fbr
n = |FRr

n|.

Example: α = (1,1,3) is a 1-Fubini ranking and β = (1,2,3,4) is a
4-Fubini ranking.
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Established Results

Unit interval parking functions are in bijection with:
Fubini rankings (Hadaway, 2022).
Dyck paths with height at most 2 (Baril, Kirgizov and Petrossian,
2018).
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Fubini Ranking Observations

Lemma (MSRI-UP 2021, JES 2022)
Fubini rankings are permutation invariant.

Lemma (MSRI-UP 2021, JES 2022)
Fubini rankings are a subset of parking functions.

Furthermore, the kth occurrence of any i in β ∈ FRn parks in spot i +k −1.
Ex:

4 3 1 4 8 4 4 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
4 3 1 5 8 6 7 2
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Fubini Ranking to Unit Interval PF Bijection

Definition
Define φ : FRn 7→ UPFn as follows: Given β = (b1, . . . ,bn) ∈ FRn,
φ(β) = (a1, . . . ,an) ∈ UPFn, where

ai =
{

bi if index i has the first or second occurrence of bi

bi +k −2 if index i has the kth occurrence of bi (k > 2)
.

Ex:
β φ(β)

4 3 1 4 8 4 4 1 4 3 1 4 8 5 6 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
4 3 1 5 8 6 7 2 4 3 1 5 8 6 7 2
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Fubini Bijection Exercises

β ∈ FR5 φ(β) ∈ UPF5
12345

12345

11111

11234

14141

14142

31415

31415
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β ∈ FR5 φ(β) ∈ UPF5
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31415

31415
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Fubini Bijection Exercises

β ∈ FR5 φ(β) ∈ UPF5
12345 12345
11111 11234
14141 14142
31415 31415
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UPFn Enumeration

Theorem (JES)
The number of unit interval parking functions of length n is Fbn.

Proof Sketch: We proved φ is a bijection from FRn to UPFn, so

|UPFn| = |FRn| = Fbn.
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Weakly Increasing/Decreasing Unit
Interval Parking Functions
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Weakly Increasing Unit Interval Parking Functions

n |WIUPFn|
1 1
2 2
3 4
4 8
5 16
6 32
7 64

Table: The number of weakly increasing unit interval parking functions of length n

2n−1 Play
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Weakly Increasing Unit Interval Parking Functions

n |WIUPFn|
1 1
2 2
3 4
4 8
5 16
6 32
7 64

Table: The number of weakly increasing unit interval parking functions of length n

2n−1 Play
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Weakly Increasing Unit Interval Parking Functions

Theorem (JES)
The number of weakly increasing unit interval parking functions of length
n is 2n−1.

Weaking increasing unit interval parking functions:
n = 1: 1
n = 2: 11, 12
n = 3: 112 , 113, 122, 123
n = 4: 1123, 1124, 1133, 1134, 1223, 1224, 1233, 1234
n = 5: 11234, 11244, 11334, 11344, 12234, 12244, 12334, 12344,
11235, 11245, 11335, 11345, 12235, 12245, 12335, 12345
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Weakly Increasing Unit Interval Parking Functions
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n = 4: 1123, 1124, 1133, 1134, 1223, 1224, 1233, 1234
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Weakly Increasing Unit Interval Parking Functions

Theorem (JES)
The number of weakly increasing unit interval parking functions of length
n is 2n−1.

Weaking increasing unit interval parking functions:
n = 1: 1
n = 2: 11, 12
n = 3: 112 , 113, 122, 123
n = 4: 1123, 1124, 1133, 1134, 1223, 1224, 1233, 1234
n = 5: 11234, 11244, 11334, 11344, 12234, 12244, 12334, 12344,
11235, 11245, 11335, 11345, 12235, 12245, 12335, 12345
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Connections to Fubini Rankings

n WIUPFn WIFRn
1 1 1
2 11, 12 11, 12
3 112 , 113, 122, 123 111 , 113, 122, 123
4 1123 , 1124 , 1133, 1134,

1223 , 1224, 1233, 1234
1111 , 1114 , 1222 , 1133,

1134, 1224, 1233, 1234

Table: WIUPFn and WIFRn
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Weakly Decreasing Unit Interval Parking Functions

n |WDUPFn|
1 1
2 2
3 3
4 5
5 8
6 13
7 21

Table: Weakly decreasing unit interval parking functions of length n

Fibonacci Play
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Weakly Decreasing Unit Interval Parking Functions

n |WDUPFn|
1 1
2 2
3 3
4 5
5 8
6 13
7 21

Table: Weakly decreasing unit interval parking functions of length n

Fibonacci Play
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Weakly Decreasing Unit Interval Parking Functions

Theorem (JES)
The number of weakly decreasing unit interval parking functions of length
n is Fn+1.
(Fn is the Fibonacci sequence: F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2.)

Weaking decreasing unit interval parking functions:
n = 1: 1
n = 2: 11, 21
n = 3: 221, 311, 321
n = 4: 3311, 3321, 4221, 4311, 4321
n = 5: 44221, 44311, 44321, 53311, 53321, 54221, 54311, 54321

Eva, Susan, Juliet Stats on PFs Summer@ICERM 2022



Introductions Parking Functions Unit Interval Parking Functions Conclusions

Weakly Decreasing Unit Interval Parking Functions

Theorem (JES)
The number of weakly decreasing unit interval parking functions of length
n is Fn+1.
(Fn is the Fibonacci sequence: F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2.)

Weaking decreasing unit interval parking functions:
n = 1: 1
n = 2: 11, 21
n = 3: 221, 311, 321
n = 4: 3311, 3321, 4221, 4311, 4321
n = 5: 44221, 44311, 44321, 53311, 53321, 54221, 54311, 54321

Eva, Susan, Juliet Stats on PFs Summer@ICERM 2022



Introductions Parking Functions Unit Interval Parking Functions Conclusions

Weakly Decreasing Unit Interval Parking Functions

Theorem (JES)
The number of weakly decreasing unit interval parking functions of length
n is Fn+1.
(Fn is the Fibonacci sequence: F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2.)

Weaking decreasing unit interval parking functions:
n = 1: 1
n = 2: 11, 21
n = 3: 221, 311, 321
n = 4: 3311, 3321, 4221, 4311, 4321
n = 5: 44221, 44311, 44321, 53311, 53321, 54221, 54311, 54321
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Connections to Fubini Rankings

n WDUPFn WDFRn
1 1 1
2 11, 21 11, 21
3 221, 311, 321 111 , 221, 311, 321
4 3311, 3321, 4221, 4311,

4321
1111,4111,2221 , 3311,
3321, 4221, 4311, 4321

Table: WDUPFn and WDFRn
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r -Fubini Numbers
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r -Fubini Rankings

Definition

The n-tuple β = (b1, . . . ,bn) ∈ [n]n is an r-Fubini ranking of length n if β
is a Fubini ranking starting with r distinct values, we denote FRr

n.

Example: β = (1,2,2) ∈ FR2
3
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r -Fubini Bijection

Theorem
The number unit interval parking functions of length n starting with r
distinct values is Fbr

n.

Proof Sketch: The bijection φ : FRn 7→ UPFn maintains the maximal
number of distinct starting values.

β ∈ FR4 φ(β) ∈ UPF4
1234 1234
123 3 123 3
14 11 14 12
12 22 12 23

So |UPFr
n| = |FRr

n| = Fbr
n.
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Bijection to Unit Interval Parking Functions with Certain
Tie Subsets

Theorem (JES)
Each of the following is equal to Fbr

n :
1 UPFr

n
2 The number of unit interval parking functions of length n + r −1 with

tie subset {2,4, . . . ,2r −2}.

3 The number of unit interval parking functions of length n + r with tie
subset {1,3, . . . ,2r −1}.
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Add Tie Algorithm

Question: Given a k ∈ [n], α ∈ UPFk
n, can we find a unique α′ ∈ UPFk

n+1
with an added tie at index k?
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Add Tie Algorithm

Definition (JES)
Define λ(α,k) : UPFk

n, [n] 7→ UPFk
n+1 as λ(α,k) = (a′

1, . . . ,a′
n,a′

n+1), where

a′
i =


ai if i < k and ai < ak , or i = k, or i = k +1
ai +1 if i < k and ai ≥ ak

ai−1 if i > k +1 and ai−1 < ak

ai−1 +1 if i > k +1 and ai−1 ≥ ak

.

For any α ∈ UPFk
n, λ(α,k) ∈ UPFk

n+1.

Example: α = (5,1,3,3,2) ∈ UPF3
5 7→ λ(α,3) = (6,1,3,3,4,2) ∈ UPF3

6
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Bijections Summary

FRr
n UPFr

n

UPFn+r−1 with tie
subset {2,4, . . . ,2r − 2}

UPFn+r with tie subset
{1,3, . . . ,2r − 1}
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Future Directions

Finding a bijection between descent set and inverse descent set

Using inclusion/exclusion principle to get ascent/descent/tie set
formulas from subset formulas

Enumerating parking function with a given peak or valley set

Analyzing these statistics for `-interval parking functions
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Thanks for listening!
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Sequence Music
Sound example

NARAYANA Play
FUBINI Play
POWER OF 2 Play
FIBONACCI Play
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