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Definitions

Given a word w = w1w2 . . .wn

▶ The index i is an ascent if wi ≤ wi+1

▶ The index i is a descent if wi > wi+1

▶ A run is a maximal string of consecutive ascents

Example

Let n = 6

1 2 5 3 6 4
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Background

▶ Zhuang provided enumerations of permutations having certain
restrictions on run lengths (2021)

▶ Nabawanda, Rakotondrajao, Bamunoba (2020) and Beyene,
Mantaci (2022) studied distribution of runs in flattened
partitions

▶ We extend these ideas to parking functions (i.e. flatness,
enumerations, run distribution)



Flattened Parking Functions

Flattened Parking Functions ⊂ Parking Functions

Definition
A parking function π is said to be a flattened parking function if
its leading values of each runs are arranged in weakly increasing
order.

Example

Parking Functions Leading Terms Flattened?

1 2 5 1 4 3
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A parking function π is said to be a flattened parking function if
its leading values of each runs are arranged in weakly increasing
order.

Example

Parking Functions Leading Terms Flattened?

1 2 5 1 4 3 113 ✓

1 5 4 5 2 3



Flattened Parking Functions

Flattened Parking Functions ⊂ Parking Functions

Definition
A parking function π is said to be a flattened parking function if
its leading values of each runs are arranged in weakly increasing
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Flattened Parking Functions

Flattened Parking Functions ⊂ Parking Functions

Definition
A parking function π is said to be a flattened parking function if
its leading values of each runs are arranged in weakly increasing
order.

Example

Parking Functions Leading Terms Flattened?

1 2 5 1 4 3 113 ✓

1 5 4 5 2 3 142 ×



Flattened Parking Functions

H
HHH

HHn
k

Total 1 Run 2 Runs 3 Runs 4 Runs

1 1 1 0 0 0
2 2 2 0 0 0
3 8 5 3 0 0
4 46 14 32 0 0
5 336 42 245 49 0
6 2937 132 1656 1149 0
7 29629 429 10563 17008 1629
8 336732 1430 65472 204815 65015

Table: Total flattened parking functions of length n with k runs
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Flattened S-Insertion Parking Functions

Example

Take a permutation of length n

1 2 4 3

and insert every element of the multiset S = {2, 2, 3}

1 2 2 4 2 3 3

Then, check if it’s flattened

1 2 2 4 2 3 3.

We have a flattened parking function of length 7 with the multiset
{2, 2, 3} inserted.



Flattened S-Insertion Parking Functions

Definition
Let S be a multiset containing elements from [n + 1]. A
S-insertion parking functions is formed by taking a permutation
π ∈ Sn and inserting each element s ∈ S into π. We will denote
this set of parking functions as PFn (S).

Lemma
The elements in the set PFn (S) are parking functions of length
n + |S|.

Proof.
Arrange the permutation π in weakly increasing order, so πi = i .
Since, for all s ∈ S, we have s ≤ n + 1, inserting s into π and
rearranging in weakly increasing order will satisfy ai ≤ i . Thus,
resulting in a parking function of length n + |S|.



Flattened S-Insertion Parking Functions

Definition
Let S be a multiset containing elements from [n + 1]. A
S-insertion parking functions is formed by taking a permutation
π ∈ Sn and inserting each element s ∈ S into π. We will denote
this set of parking functions as PFn (S)

▶ We denote the flattened subset of these as flat (PFn (S)).

▶ We denote the flattened subset of these with k runs as
flatk (PFn (S)).

▶ The cardinality of flat (PFn (S)) is denoted f (S; n).

▶ The cardinality of flatk (PFn (S)) is denoted f (S; n, k).



Bijection 1

Theorem
Let S be a multiset with elements in [n] and
S ′ = {s − 1 | 1 < s ∈ S} ∪ {1}. Then, the set flat(PFn(S)) is in
bijection with flat(PFn−1(S ′)).

Example

Let n = 4 and S = {2, 2, 3}.
Then, flat (PF4 ({2, 2, 3})) ⇐⇒ flat (PF3 ({1, 1, 1, 2})).
Consider =⇒

1 2 2 4 2 3 3 7→ 1 1 1 3 1 2 2.

To go from flat (PF4 ({2, 2, 3})) to flat (PF3 ({1, 1, 1, 2})),
subtract 1 from every term other than the first.



Bijection 1

Theorem
Let S be a multiset with elements in [n] and
S ′ = {s − 1 | 1 < s ∈ S} ∪ {1}. Then, the set flat(PFn(S)) is in
bijection with flat(PFn−1(S ′)).

Example

Let n = 4 and S = {2, 2, 3}.
Then, flat (PF4 ({2, 2, 3})) ⇐⇒ flat (PF3 ({1, 1, 1, 2})).
Consider ⇐=

1 1 1 3 1 2 2 7→ 1 2 2 4 2 3 3.

To go from flat (PF3 ({1, 1, 1, 2})) to flat (PF4 ({2, 2, 3})), add 1
to every term other than the first.



Bijection 1

Theorem
Let S be a multiset with elements in [n] and
S ′ = {s − 1 | 1 < s ∈ S} ∪ {1}. Then, the set flat(PFn(S)) is in
bijection with flat(PFn−1(S ′)).

In general,

▶ ( =⇒ ) Subtract 1 from the value at every index other than
the first.

▶ ( ⇐= ) Add 1 to the value at every index other than the first.



Bijective Results

Theorem (Bijection 1)

Let S be a multiset with elements in [n] and
S ′ = {s − 1 | 1 < s ∈ S} ∪ {1}. Then, the set flat(PFn(S)) is in
bijection with flat(PFn−1(S ′)).

Theorem (Bijection 2)

Let S be a multiset with elements in [n] where, for all s ∈ S, we
have s < n − 1. Then, the set flat(PFn(S ∪ {n})) is in bijection
with flat(PFn(S ∪ {n − 1})).

Theorem (Bijection 3)

Let 2 ≤ ℓ ≤ n. The set flat2 (PFn ({ℓ− 1})) is in bijection with
flat2 (PFn ({ℓ})).



Flattened {1}-Insertion Parking Functions

HH
HHHHn

k
Total 1 Run 2 Runs 3 Runs 4 Runs

1 1 1 0 0 0
2 2 1 1 0 0
3 5 1 4 0 0
4 15 1 11 3 0
5 52 1 26 25 0
6 203 1 57 130 15
7 877 1 120 546 210

Table: flatk (PFn ({1}))
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Eulerian Numbers

H
HHH

HHn
k

Total 1 Run 2 Runs 3 Runs 4 Runs

1 1 1 0 0 0
2 2 1 1 0 0
3 5 1 4 0 0
4 15 1 11 3 0
5 52 1 26 25 0
6 203 1 57 130 15
7 877 1 120 546 210

Definition
The Eulerian numbers A(n,m) are the number of permutations
of [n] with exactly m descents.



Eulerian Numbers

Theorem
The set flat2(PFn ({1})) is enumerated by A(n, 1).

Example

Let n = 5.

2 3 4 1 5
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▶ Notice that

Permutations with 2 runs ⇔ Permutations with 1 descent
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Theorem
The set flat2(PFn ({1})) is enumerated by A(n, 1).

Example

Let n = 5.

2 3 4 1 5

▶ Notice that

Permutations with 2 runs ⇔ Permutations with 1 descent

▶ Question: where can a 1 be inserted in a permutation without
changing the number of runs and so that the new object is
flat?
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Eulerian Numbers

Theorem
The set flat2(PFn ({1})) is enumerated by A(n, 1).

Example

Let n = 5.

1 2 3 4 1 5

▶ Notice that

Permutations with 2 runs ⇔ Permutations with 1 descent

▶ Question: where can a 1 be inserted in a permutation without
changing the number of runs and so that the new object is
flat?

|flat2 (PFn ({1})) | = A(n, 1)



Connection to Set Partitions

Definition
The numbers T (n, k) are the number of ways to partition [n] such
that there are exactly k set partitions with at least two elements.

Theorem
For n, k ≥ 1, we have

|flatk+1PFn ({1}) | = T (n, k).



Connection to Set Partitions

Example

Let n = 3 and k = 1.

▶ We want to partition {1, 2, 3} into subsets where exactly one
subset has greater than 2 elements

123, 1/23, 2/13, 3/12 ⇒ T (3, 1) = 4

▶ flat2 (PF3 ({1}))
1213, 1231, 1132, and 1312 ⇒ |flat2(PF3 ({1}))| = 4

▶ To map from T (3, 1) to flat2 (PF3 ({1})):

1/23 7→ 1/32 7→ 132 7→ 1132



Connection to Set Partitions

Example

Let n = 3 and k = 1.

▶ We want to partition {1, 2, 3} into subsets where exactly one
subset has greater than 2 elements

123, 1/23, 2/13, 3/12 ⇒ T (3, 1) = 4

▶ flat2 (PF3 ({1}))
1213, 1231, 1132, and 1312 ⇒ |flat2(PF3 ({1}))| = 4

▶ To map from T (3, 1) to flat2 (PF3 ({1})):

1/23 7→ 1/32 7→ 132 7→ 1132

13/2 7→ 31/2 7→ 312 7→ 1312



1r -Insertion Parking Functions

Let 1r be the multiset consisting of r ones. Then, we have the
following:

n flat (PFn (11)) n flat (PFn (12)) n flat (PFn (13))
1 1 1 1 1 1
2 2 2 3 2 4
3 5 3 10 3 17
4 15 4 37 4 77
5 52 5 151 5 372
6 203 6 674 6 1915



r -Bell Numbers

Definition
The r-Bell numbers, denoted B(n, r), count the number of set
partitions of [n + r ] where the first r elements are in different
blocks.

Theorem
B(n, r) is in bijection with flat(PFn+1 (1r ))



r -Bell Numbers

Theorem
B(n, r) is in bijection with flat(PFn+1 (1r ))

Example

We construct a bijection from B(2, 3) to flat(PF3 (13)):

1 / 24 / 35 7→ 1 42 53 7→ 12131 7→ 1 12131



r -Bell Numbers

Theorem
B(n, r) is in bijection with flat(PFn+1 (1r ))

Example

We construct a bijection from B(2, 3) to flat(PF3 (13)):

1 / 24 / 35 7→ 1 42 53 7→ 12131 7→ 1 12131

145 / 2 / 3 7→



r -Bell Numbers

Theorem
B(n, r) is in bijection with flat(PFn+1 (1r ))

Example

We construct a bijection from B(2, 3) to flat(PF3 (13)):

1 / 24 / 35 7→ 1 42 53 7→ 12131 7→ 1 12131

145 / 2 / 3 7→ 451 2 3 7→



r -Bell Numbers

Theorem
B(n, r) is in bijection with flat(PFn+1 (1r ))

Example

We construct a bijection from B(2, 3) to flat(PF3 (13)):

1 / 24 / 35 7→ 1 42 53 7→ 12131 7→ 1 12131

145 / 2 / 3 7→ 451 2 3 7→ 23111 7→



r -Bell Numbers

Theorem
B(n, r) is in bijection with flat(PFn+1 (1r ))

Example

We construct a bijection from B(2, 3) to flat(PF3 (13)):

1 / 24 / 35 7→ 1 42 53 7→ 12131 7→ 1 12131

145 / 2 / 3 7→ 451 2 3 7→ 23111 7→ 1 23111



Recursions Recursions Recursions!

We have three different ways of recursively counting
flatk(PFn+1(1r )).

▶ Method 1: Count by where n + 1 shows up

▶ Method 2: Count by construction of the first run

▶ Method 3: Count by whether the ones are in the same run or
different runs



Recursions Recursions Recursions!

We have three different ways of recursively counting
flatk(PFn+1(1r )).

▶ Method 1: Count by where n + 1 shows up

▶ Method 2: Count by construction of the first run

▶ Method 3: Count by whether the ones are in the same run or
different runs



Recursion (#1)

Method 1: Count by where n + 1 shows up

2(n + 1)1 1(n + 1)2 1(n + 1)1



Recursion (#1)

2(n + 1)1

▶ 2(n + 1)1 or (n + 1) at the end means removing n + 1 does
not reduce the number of runs
▶ Start with flatk(PFn(1r ))
▶ n + 1 gets inserted at the end of any of the k runs.

▶ k · |flatk(PFn(1r ))|



Recursion (#1)

1(n + 1)2

▶ 1(n + 1)2 means removing n + 1 reduces the number of runs.
We establish the i , π method
▶ Take a word π ∈ flatk−1(PFn−1(1r ))
▶ Pick an element i , 1 ≤ i ≤ n − 1. Take every element in π

that is greater than i and add 1.
▶ Now take the sequence (n + 1)(i + 1) and insert it after the

rightmost element of {1, 2, 3, . . . , i}.
▶ (n − 1) · |flatk−1(PFn−1(1r ))|



Recursion (#1)

1(n + 1)1

▶ 1(n+ 1)1 means removing n+ 1 reduces the number of runs.
▶ Start with the word π ∈ flatk−1(PFn(1r−1))
▶ Take the sequence (n + 1)1. Insert this after any 1 in π.

▶ r · |flatk−1(PFn(1r−1))|



Recursion (#1)

2(n + 1)1 1(n + 1)2 1(n + 1)1

Theorem (EHMTV)

|flatk(PFn+1(1r ))| = k · |flatk(PFn(1r ))|
+ (n − 1) · |flatk−1(PFn−1(1r ))|

+ r · |flatk−1(PFn(1r−1))|



Run Distribution

What happens if we let the first s terms be in different runs?

Example

Let s = 3.

1423657 ×
1425736 ✓

These had already been counted for permutations! (Nabawanda,
Rakotondrajao, Bamunoba 2020)

Theorem (NRB)

f
(s+1)
n+s+1,k =

∑
i1,i2,...,is≥1

(
n

i1, i2, . . . , is

)
fn+1−

∑s−1
j=1 ij ,k−s



Run Distribution - Generalization?

What happens if we let the first s terms be in different runs?

Example

Let s = 3.

▶ All ones in one run:

111456273

▶ All ones in different runs:

141516273

▶ Something in between?

114156273



Run Distribution - Generalization! (#1)
All 1’s in one run:

Example

flat2(PF4(13)), with (s = 2)

▶ Take the list of flattened permutations on n with the first s
terms in different runs:

1423, 1342, 1324

▶ Place all ones in the first run:

1111423, 1111342, 1111324

This gives us the same formula as for flattened permutations:

f (s+1)(1r ; n + s + 1, k) =
∑

i1,i2,...,is≥1

(
n

i1, i2, . . . , is

)
fn+1−

∑s−1
j=1 ij ,k−s



Run Distribution - Generalization (#2)

All 1’s in different runs:

Example

flat4(PF5(13)) with (s = 2)

▶ Treat each of the ones as a separate integer, i.e. 1a, 1b, 1c .
Set up an ordering of the ones, i.e. 1a < 1b < 1c .

▶ Find the number of flattened permutations on n + r with
r + s integers in different runs.



Run Distribution - Generalization (#2)

All 1’s in different runs:

Example

flat4(PF5(13)) with (s = 2)

▶ Treat each of the ones as a separate integer, i.e. 1a, 1b, 1c .
Set up an ordering of the ones, i.e. 1a < 1b < 1c .

▶ Find the number of flattened permutations on n + r with
r + s integers in different runs.

This gives us a modified formula from flattened partitions:

f (s+r+1) (1r ; n + s + 1, k) =
∑

i1,...,is+r≥1

(
n

i1, . . . , is+r

)
fn+1−

∑s+r
j=1 ij ,k−s−r



Run Distribution - Generalization (#3)

All 1’s in any arrangement:

Example

flat3(PF4(13)) with (s = 2)

▶ Set your number of “boxes” that ones are in to
1 ≤ x ≤ r + 1. This means the ones are in x different runs

▶ Start by assuming that there are x ones in different runs,

13142

▶ Multiply by the number of ways to distribute the ones across j
boxes: 111/1, 11/11, 1/111

1113142, 1131142, 1311142

▶ Integer compositions:
( r
x−1

)



Run Distribution - Generalization (#3)

All 1’s in any arrangement:
This gives us a very modified formula from flattened permutations:

f (s+1)(1r ; n + s + 1, k) =

r+1∑
x=1

(
r

x − 1

) ∑
i1,...,is+x≥1

(
n

i1, . . . , is+x

)
fn+1−

∑s+x
j=1 ij ,k−s−x





Generating FUN-ctions

▶ A generating function is a way of encoding information from
a recursion

▶ We used exponential generating functions to encode our
sequence as the coefficients of a power series

Example

Take our favorite recursion fn+2 = fn+1 + fn

▶ G (x) =
∑

n≥0 fn
xn

n! using what we know about Maclaurin series

▶ d
dxG (x) =

∑
n≥1 fn ·

xn−1

(n−1)! =
∑

n≥0 fn+1 · xn

n!





Generating FUN-ctions

Theorem
The exponential generating function F (x , y , z) of the run
distribution over flat(PFn (1r )) has the closed differential form

∂2F (x , y , z)

∂y2
= x

∂F

∂y
((exp(y)− 1) + exp(y))

(
1− z

r

)−1
.

Theorem
The exponential generating function F [s+1](x , u) for the numbers

f
(s)
n+s,k has closed differential form

∂s+1F [s+1](x , u)

∂us+1
= (x(exp(u)− 1)s

∂F (x , u)

∂u
.



Future Directions

▶ Recursive and/or closed formula for total number of flattened
parking functions

▶ Recursive and/or closed formula for general S-insertion
parking functions

▶ Where do the flattened parking functions live in the poset of
set partitions?

▶ Pattern avoidance: the only pattern of length 3 that every
flattened partition avoids is 321. What about flattened
parking functions?
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Questions?

Email us at parkingfunctions@gmail.com
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