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Definitions

Given a word w = wiwy ... w,
» The index i is an ascent if w; < wj
» The index i is a descent if w; > wj;1

> A run is a maximal string of consecutive ascents

Example
Let n=06
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Background

» Zhuang provided enumerations of permutations having certain
restrictions on run lengths (2021)

» Nabawanda, Rakotondrajao, Bamunoba (2020) and Beyene,
Mantaci (2022) studied distribution of runs in flattened
partitions

» We extend these ideas to parking functions (i.e. flatness,
enumerations, run distribution)



Flattened Parking Functions

Flattened Parking Functions C Parking Functions

Definition

A parking function 7 is said to be a flattened parking function if
its leading values of each runs are arranged in weakly increasing
order.

Example

Parking Functions Leading Terms Flattened?
125143
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Flattened Parking Functions

Flattened Parking Functions C Parking Functions

Definition

A parking function 7 is said to be a flattened parking function if
its leading values of each runs are arranged in weakly increasing
order.

Example

Parking Functions Leading Terms Flattened?
125143 113 v
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Flattened Parking Functions

Flattened Parking Functions C Parking Functions

Definition

A parking function 7 is said to be a flattened parking function if
its leading values of each runs are arranged in weakly increasing
order.

Example

Parking Functions Leading Terms Flattened?
125143 113 v

154523 142 x




Flattened Parking Functions

2937 132 1656 1149 0
29629 | 429 10563 | 17008 | 1629
336732 | 1430 | 65472 | 204815 | 65015

N k Total 1 Run | 2 Runs | 3 Runs | 4 Runs
1 1 1 0 0 0

2 2 2 0 0 0

3 8 5 3 0 0

4 46 14 32 0 0

5 336 42 245 49 0

6

7

8

Table: Total flattened parking functions of length n with k runs
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Flattened S-Insertion Parking Functions

Example
Take a permutation of length n

1243
and insert every element of the multiset S = {2,2,3}
1224233
Then, check if it's flattened

1224233.

We have a flattened parking function of length 7 with the multiset
{2,2,3} inserted.



Flattened S-Insertion Parking Functions

Definition

Let S be a multiset containing elements from [n+ 1]. A
S-insertion parking functions is formed by taking a permutation
m € &, and inserting each element s € S into m. We will denote
this set of parking functions as PF, (S).

Lemma
The elements in the set PF,, (S) are parking functions of length
n+1S|.

Proof.

Arrange the permutation 7 in weakly increasing order, so m; = i.
Since, for all s € S, we have s < n+ 1, inserting s into 7w and
rearranging in weakly increasing order will satisfy a; < /. Thus,
resulting in a parking function of length n+ |S|. Ol



Flattened S-Insertion Parking Functions

Definition

Let S be a multiset containing elements from [n+ 1]. A
S-insertion parking functions is formed by taking a permutation
m € &, and inserting each element s € S into m. We will denote
this set of parking functions as PF, (S)

» We denote the flattened subset of these as flat (PF, (S)).

» We denote the flattened subset of these with k runs as
flatg (PFn (S)).

» The cardinality of flat (PF, (S)) is denoted f (S; n).
» The cardinality of flat, (PF,(S)) is denoted f (S; n, k).



Bijection 1

Theorem

Let S be a multiset with elements in [n] and

S§' ={s—1|1<se8S}U{1l}. Then, the set flat(PFn(S)) is in
bijection with flat(PF ,_1(S")).

Example

Let n=4and S = {2,2,3}.

Then, flat (PF4({2,2,3})) <= flat (PF3({1,1,1,2})).
Consider —

1224233—1113122.

To go from flat (PF4 ({2,2,3})) to flat (PF3({1,1,1,2})),
subtract 1 from every term other than the first.



Bijection 1

Theorem

Let S be a multiset with elements in [n] and

S§' ={s—1|1<se8S}U{1l}. Then, the set flat(PFn(S)) is in
bijection with flat(PF ,_1(S")).

Example

Let n=4and S = {2,2,3}.

Then, flat (PF4({2,2,3})) <= flat (PF3({1,1,1,2})).
Consider <=

1113122—1224233.

To go from flat (PF3 ({1,1,1,2})) to flat (PF4({2,2,3})), add 1
to every term other than the first.



Bijection 1

Theorem

Let S be a multiset with elements in [n] and

S§' ={s—1|1<se8S}U{1l}. Then, the set flat(PFn(S)) is in
bijection with flat(PF ,_1(S")).

In general,

» ( =) Subtract 1 from the value at every index other than
the first.

» (<= ) Add 1 to the value at every index other than the first.



Bijective Results

Theorem (Bijection 1)

Let S be a multiset with elements in [n] and
S ={s—1|1<seS}U{1l}. Then, the set flat(PF,(S)) is in
bijection with flat(PF p—1(S")).

Theorem (Bijection 2)

Let S be a multiset with elements in [n] where, for all s € S, we
have s < n—1. Then, the set flat(PF (S U {n})) is in bijection
with flat(PF (S U {n —1})).

Theorem (Bijection 3)

Let 2 < ¢ < n. The set flato (PF, ({¢ — 1})) is in bijection with
flaty (PFn ({£1)).



Flattened {1}-Insertion Parking Functions

" k Total | 1 Run | 2 Runs | 3 Runs | 4 Runs
1 1 1 0 0 0

2 2 1 1 0 0

3 5 1 4 0 0

4 15 1 11 3 0

5 52 1 26 25 0

6 203 1 57 130 15

7 877 1 120 546 210

Table: flat, (PF, ({1}))
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1 1 1 0 0 0
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Eulerian Numbers

k

N Total | 1 Run | 2 Runs | 3 Runs | 4 Runs
1 1 1 0 0 0

2 2 1 1 0 0

3 5 1 4 0 0

4 15 1 11 3 0

5 52 1 26 25 0

6 203 1 57 130 15

7 877 1 120 546 210

Definition

The Eulerian numbers A(n, m) are the number of permutations
of [n] with exactly m descents.



Eulerian Numbers

Theorem
The set flata(PF, ({1})) is enumerated by A(n, 1).

Example
Let n =5.

23415
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Example
Let n =5.

2341

» Notice that

Permutations with 2 runs < Permutations with 1 descent
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Theorem
The set flata(PF, ({1})) is enumerated by A(n, 1).

Example
Let n=5.
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» Notice that
Permutations with 2 runs < Permutations with 1 descent

» Question: where can a 1 be inserted in a permutation without

changing the number of runs and so that the new object is
flat?



Eulerian Numbers

Theorem
The set flata(PF, ({1})) is enumerated by A(n, 1).

Example
Let n=5.

12341

» Notice that
Permutations with 2 runs < Permutations with 1 descent

» Question: where can a 1 be inserted in a permutation without

changing the number of runs and so that the new object is
flat?



Eulerian Numbers

Theorem
The set flata(PF, ({1})) is enumerated by A(n, 1).

Example
Let n=5.

12341

» Notice that
Permutations with 2 runs < Permutations with 1 descent

» Question: where can a 1 be inserted in a permutation without

changing the number of runs and so that the new object is
flat?

|flato (PF, ({1})) | = A(n, 1)



Connection to Set Partitions
Definition

The numbers T(n, k) are the number of ways to partition [n] such
that there are exactly k set partitions with at least two elements.

Theorem
For n, k > 1, we have

]flatk+173.7:n ({1}) ‘ = T(n, k).



Connection to Set Partitions
Example

Let n=3and k=1.

» We want to partition {1, 2,3} into subsets where exactly one
subset has greater than 2 elements

123,1/23,2/13,3/12 = T(3,1) = 4

> flaty (PF3 ({1}))
1213, 1231, 1132, and 1312 = [flaty(PF3 ({1}))| = 4

» To map from T(3,1) to flaty (PF3 ({1})):
1/23 + 1/32 +— 132 — 1132



Connection to Set Partitions

Example
Let n=3 and k=1.

» We want to partition {1, 2,3} into subsets where exactly one
subset has greater than 2 elements

123,1/23,2/13,3/12 = T(3,1) = 4

> flaty (PF3 ({1}))
1213, 1231, 1132, and 1312 = |[flaty(PF3 ({1}))| = 4

» To map from T(3,1) to flaty (PF3 ({1})):

1/23+—1/32+ 132+ 1132
13/2 + 31/2 +— 312 — 1312



1,-Insertion Parking Functions

Let 1, be the multiset consisting of r ones. Then, we have the
following:

n | flat(PF,(11)) | [ n | flat(PF,(12)) | [ n | flat(PF,(13))
1)1 11 11

22 23 24

35 310 3|17

415 4|37 477

5| 52 5| 151 5| 372

6 | 203 6| 674 6 | 1915




r-Bell Numbers

Definition

The r-Bell numbers, denoted B(n, r), count the number of set
partitions of [n + r] where the first r elements are in different
blocks.

Theorem
B(n, r) is in bijection with flat(PF ,11 (1,))



r-Bell Numbers

Theorem
B(n, r) is in bijection with flat(PF pt+1(1,))

Example
We construct a bijection from B(2,3) to flat(PF3(13)):

1/24/35 +— 14253 +— 12131 + 112131



r-Bell Numbers

Theorem
B(n, r) is in bijection with flat(PF pt+1(1,))

Example
We construct a bijection from B(2,3) to flat(PF3(13)):

1/24/35 +— 14253 +— 12131 +— 112131
145/2/3



r-Bell Numbers

Theorem
B(n, r) is in bijection with flat(PF pt+1(1,))

Example
We construct a bijection from B(2,3) to flat(PF3(13)):

1/24/35 +— 14253 +— 12131 +— 112131
145/2/3 w» 45123 &



r-Bell Numbers

Theorem
B(n, r) is in bijection with flat(PF pt+1(1,))

Example
We construct a bijection from B(2,3) to flat(PF3(13)):

1/24/35 + 14253 — 12131 ~ 112131
145/2/3 45123 23111



r-Bell Numbers

Theorem
B(n, r) is in bijection with flat(PF pt+1(1,))

Example
We construct a bijection from B(2,3) to flat(PF3(13)):

1/24/35 +— 14253 +— 12131 +— 112131
145/2/3 +— 45123 +— 23111 +~— 123111



Recursions Recursions Recursions!

We have three different ways of recursively counting
ﬂatk(P]-",,H(Il,)).

» Method 1: Count by where n+ 1 shows up
» Method 2: Count by construction of the first run

» Method 3: Count by whether the ones are in the same run or
different runs
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We have three different ways of recursively counting
ﬂatk(P]-",,H(Il,)).

» Method 1: Count by where n+ 1 shows up
» Method 2: Count by construction of the first run

» Method 3: Count by whether the ones are in the same run or
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Recursion (#1)
Method 1: Count by where n+ 1 shows up

2(n+1)1 1(n+1)2 1(n+1)1



Recursion (#1)

2(n+1)1

» 2(n+1)1 or (n+ 1) at the end means removing n+ 1 does
not reduce the number of runs
» Start with flate(PF,(1,))
» n -+ 1 gets inserted at the end of any of the k runs.

> k- [flate(PF (1))



Recursion (#1)

1(n+1)2

» 1(n+ 1)2 means removing n+ 1 reduces the number of runs.
We establish the /, 7 method
» Take a word 7 € flaty_1(PF—1(1,))
» Pick an element i, 1 < i < n— 1. Take every element in 7
that is greater than / and add 1.
> Now take the sequence (n+ 1)(i + 1) and insert it after the
rightmost element of {1,2,3,...,/}.

| 2 (n — ].) . |f|atk_1('P]:n71(]lr))|



Recursion (#1)

1(n+1)1

» 1(n+ 1)1 means removing n+ 1 reduces the number of runs.
> Start with the word 7 € flatx_1(PF,(1,-1))
> Take the sequence (n+ 1)1. Insert this after any 1 in 7.

> r. |f|atk_1(73]:n(11r—1))|



Recursion (#1)

2(n+1)1 1(n+1)2 1(n+1)1
Theorem (EHMTV)
[flate(PFnt1(1,))| = k - [flat (PF n(1,))]

+ (n—1) - [flaty_1(PFn_1(1,))|
+r - |flate_1(PFn(1,-1))|



Run Distribution

What happens if we let the first s terms be in different runs?
Example
Let s =3.

1423657 x
1425736 v

These had already been counted for permutations! (Nabawanda,
Rakotondrajao, Bamunoba 2020)

Theorem (NRB)

f(s-i-l) . n £ .
- . . . _ s—L1- 0
nts+l.k Z iy iny ..., is) MTIT20 ks

150250050521



Run Distribution - Generalization?

What happens if we let the first s terms be in different runs?

Example
Let s = 3.
» All ones in one run:
111456273
» All ones in different runs:
141516273

» Something in between?
114156273



Run Distribution - Generalization! (#1)

All 1's in one run:

Example
flata(PFa(13)), with (s = 2)

» Take the list of flattened permutations on n with the first s
terms in different runs:

1423, 1342, 1324
» Place all ones in the first run:
1111423, 1111342, 1111324

This gives us the same formula as for flattened permutations:

n
FED(Lyin+s+1,k) = ( i ) 1o ks
> : -

i
iy is>1 N2



Run Distribution - Generalization (#2)
All 1's in different runs:
Example

flat4(P]-"5(]l3)) with (S = 2)

» Treat each of the ones as a separate integer, i.e. 15,15, 1c.
Set up an ordering of the ones, i.e. 1, < 1, < 1..

» Find the number of flattened permutations on n 4+ r with
r + s integers in different runs.



Run Distribution - Generalization (#2)

All 1's in different runs:

Example
flata(PFs(13)) with (s = 2)

P> Treat each of the ones as a separate integer, i.e. 15,15, 1.
Set up an ordering of the ones, i.e. 1, < 1, < 1..

» Find the number of flattened permutations on n + r with
r + s integers in different runs.

This gives us a modified formula from flattened partitions:

f(s+r+1) (1,;n+s+1,k) = Z ( n )an S ey

. s+r .
, - yoooylstr j=11°
M1yesisr>1 ’ Pt



Run Distribution - Generalization (#3)

All 1's in any arrangement:

Example
flats(PFa(13)) with (s = 2)

» Set your number of “boxes” that ones are in to
1 < x < r+4 1. This means the ones are in x different runs

> Start by assuming that there are x ones in different runs,
13142

» Multiply by the number of ways to distribute the ones across j
boxes: 111/1, 11/11, 1/111

1113142, 1131142, 1311142

P Integer compositions: (Xil)



Run Distribution - Generalization (#3)

All 1's in any arrangement:
This gives us a very modified formula from flattened permutations:

FED(,n+ s+ 1,k) =

r+1
Z (xil) Z ( i )fn—i-l— T jk—s—x

My ennl.
x—1 s>l NL7or o istx



Generating FUN-ctions

> A generating function is a way of encoding information from
a recursion

> We used exponential generating functions to encode our
sequence as the coefficients of a power series

Example
Take our favorite recursion f, o = i1 + fp

> G(x) =250 f,,’;—: using what we know about Maclaurin series

anl Xn
HC() =2 1o o = Lm0 fv1 - o7
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Generating FUN-ctions

Theorem
The exponential generating function F(x,y,z) of the run
distribution over flat(PF, (1,)) has the closed differential form

2F(x,y,z Zy -1
TEEL2) O ((epl) -+ ewly)) (1-2)

Theorem
The exponential generating function FIs*1(x, u) for the numbers
fn( +) « has closed differential form

as-l—lF[s-i-l] X, U
)~ (o) - 1)

s OF(x, u)
ou



Future Directions

» Recursive and/or closed formula for total number of flattened
parking functions

» Recursive and/or closed formula for general S-insertion
parking functions

» Where do the flattened parking functions live in the poset of
set partitions?

> Pattern avoidance: the only pattern of length 3 that every
flattened partition avoids is 321. What about flattened
parking functions?
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Questions?

Email us at parkingfunctions@gmail.com
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