Zoe Markman, Izah Tahir, Amanda Verga

August 3, 2022

Table of Contents

- Definitions and Background
- Insertion Parking Functions
 - Flattened S-Insertion Parking Functions
 - Flattened {1}-Insertion Parking Functions
 - Flattened $\{1, \ldots, 1\}$ Insertion Parking Functions
- Run Distribution
- Generating Functions

Definitions

Given a word $w = w_1 w_2 \dots w_n$

- ▶ The index *i* is an **ascent** if $w_i \le w_{i+1}$
- The index *i* is a **descent** if $w_i > w_{i+1}$
- A run is a maximal string of consecutive ascents

Example Let n = 6

$1\ 2\ 5\ 3\ 6\ 4$

Definitions

Given a word $w = w_1 w_2 \dots w_n$

- ▶ The index *i* is an **ascent** if $w_i \le w_{i+1}$
- The index *i* is a **descent** if $w_i > w_{i+1}$
- A run is a maximal string of consecutive ascents

Example Let n = 6

<u>125364</u>

Background

- Zhuang provided enumerations of permutations having certain restrictions on run lengths (2021)
- Nabawanda, Rakotondrajao, Bamunoba (2020) and Beyene, Mantaci (2022) studied distribution of runs in flattened partitions
- We extend these ideas to parking functions (i.e. flatness, enumerations, run distribution)

Flattened Parking Functions \subset Parking Functions

Definition

A parking function π is said to be a **flattened parking function** if its leading values of each runs are arranged in weakly increasing order.

Example

Parking FunctionsLeading TermsFlattened?1 2 5 1 4 3

Flattened Parking Functions \subset Parking Functions

Definition

A parking function π is said to be a **flattened parking function** if its leading values of each runs are arranged in weakly increasing order.

Parking Functions	Leading Terms	Flattened?
<u>1</u> 2 5 <u>1</u> 4 <u>3</u>	113	

Flattened Parking Functions \subset Parking Functions

Definition

A parking function π is said to be a **flattened parking function** if its leading values of each runs are arranged in weakly increasing order.

Parking Functions	Leading Terms	Flattened?
<u>1</u> 2 5 <u>1</u> 4 <u>3</u>	113	\checkmark

Flattened Parking Functions \subset Parking Functions

Definition

A parking function π is said to be a **flattened parking function** if its leading values of each runs are arranged in weakly increasing order.

Parking Functions	Leading Terms	Flattened?
<u>1</u> 2 5 <u>1</u> 4 <u>3</u>	113	\checkmark
154523		

Flattened Parking Functions \subset Parking Functions

Definition

A parking function π is said to be a **flattened parking function** if its leading values of each runs are arranged in weakly increasing order.

Parking Functions	Leading Terms	Flattened?
<u>1</u> 2 5 <u>1</u> 4 <u>3</u>	113	\checkmark
<u>1</u> 5 <u>4</u> 5 <u>2</u> 3	142	

Flattened Parking Functions \subset Parking Functions

Definition

A parking function π is said to be a **flattened parking function** if its leading values of each runs are arranged in weakly increasing order.

Parking Functions	Leading Terms	Flattened?
<u>1</u> 2 5 <u>1</u> 4 <u>3</u>	113	\checkmark
<u>1</u> 5 <u>4</u> 5 <u>2</u> 3	142	×

n k	Total	1 Run	2 Runs	3 Runs	4 Runs
1	1	1	0	0	0
2	2	2	0	0	0
3	8	5	3	0	0
4	46	14	32	0	0
5	336	42	245	49	0
6	2937	132	1656	1149	0
7	29629	429	10563	17008	1629
8	336732	1430	65472	204815	65015

Table: Total flattened parking functions of length n with k runs

n k	Total	1 Run	2 Runs	3 Runs	4 Runs
1	1	1	0	0	0
2	2	2	0	0	0
3	8	5	3	0	0
4	46	14	32	0	0
5	336	42	245	49	0
6	2937	132	1656	1149	0
7	29629	429	10563	17008	1629
8	336732	1430	65472	204815	65015

Table: Total flattened parking functions of length n with k runs

Flattened S-Insertion Parking Functions

Example

Take a permutation of length n

1243

and insert every element of the multiset $\mathcal{S}=\{2,2,3\}$

1 2 2 4 2 3 3

Then, check if it's flattened

<u>1 2 2 4</u> <u>2 3 3</u>.

We have a flattened parking function of length 7 with the multiset $\{2, 2, 3\}$ inserted.

Flattened S-Insertion Parking Functions

Definition

Let S be a multiset containing elements from [n + 1]. A S-insertion parking functions is formed by taking a permutation $\pi \in \mathfrak{S}_n$ and inserting each element $s \in S$ into π . We will denote this set of parking functions as $\mathcal{PF}_n(S)$.

Lemma

The elements in the set $\mathcal{PF}_n(\mathcal{S})$ are parking functions of length $n + |\mathcal{S}|$.

Proof.

Arrange the permutation π in weakly increasing order, so $\pi_i = i$. Since, for all $s \in S$, we have $s \leq n+1$, inserting s into π and rearranging in weakly increasing order will satisfy $a_i \leq i$. Thus, resulting in a parking function of length n + |S|.

Flattened S-Insertion Parking Functions

Definition

Let S be a multiset containing elements from [n + 1]. A S-insertion parking functions is formed by taking a permutation $\pi \in \mathfrak{S}_n$ and inserting each element $s \in S$ into π . We will denote this set of parking functions as $\mathcal{PF}_n(S)$

- We denote the flattened subset of these as flat $(\mathcal{PF}_n(\mathcal{S}))$.
- We denote the flattened subset of these with k runs as flat_k (PF_n(S)).
- The cardinality of flat $(\mathcal{PF}_n(\mathcal{S}))$ is denoted $f(\mathcal{S}; n)$.
- The cardinality of flat_k ($\mathcal{PF}_n(\mathcal{S})$) is denoted $f(\mathcal{S}; n, k)$.

Bijection 1

Theorem

Let S be a multiset with elements in [n] and $S' = \{s - 1 \mid 1 < s \in S\} \cup \{1\}$. Then, the set $flat(\mathcal{PF}_n(S))$ is in bijection with $flat(\mathcal{PF}_{n-1}(S'))$.

Example

Let n = 4 and $S = \{2, 2, 3\}$. Then, flat $(\mathcal{PF}_4(\{2, 2, 3\})) \iff$ flat $(\mathcal{PF}_3(\{1, 1, 1, 2\}))$. Consider \implies

$1 2 2 4 2 3 3 \mapsto 1 1 1 3 1 2 2.$

To go from flat $(\mathcal{PF}_4(\{2,2,3\}))$ to flat $(\mathcal{PF}_3(\{1,1,1,2\}))$, subtract 1 from every term other than the first.

Bijection 1

Theorem

Let S be a multiset with elements in [n] and $S' = \{s - 1 \mid 1 < s \in S\} \cup \{1\}$. Then, the set $flat(\mathcal{PF}_n(S))$ is in bijection with $flat(\mathcal{PF}_{n-1}(S'))$.

Example

Let n = 4 and $S = \{2, 2, 3\}$. Then, flat $(\mathcal{PF}_4(\{2, 2, 3\})) \iff$ flat $(\mathcal{PF}_3(\{1, 1, 1, 2\}))$. Consider \Leftarrow

$1 \ 1 \ 1 \ 3 \ 1 \ 2 \ 2 \) \rightarrow 1 \ 2 \ 2 \ 4 \ 2 \ 3 \ 3.$

To go from flat $(\mathcal{PF}_3(\{1,1,1,2\}))$ to flat $(\mathcal{PF}_4(\{2,2,3\}))$, add 1 to every term other than the first.

Bijection 1

Theorem

Let S be a multiset with elements in [n] and $S' = \{s - 1 \mid 1 < s \in S\} \cup \{1\}$. Then, the set $flat(\mathcal{PF}_n(S))$ is in bijection with $flat(\mathcal{PF}_{n-1}(S'))$.

In general,

• (\implies) Subtract 1 from the value at every index other than the first.

 \blacktriangleright (<=) Add 1 to the value at every index other than the first.

Bijective Results

Theorem (Bijection 1)

Let S be a multiset with elements in [n] and $S' = \{s - 1 \mid 1 < s \in S\} \cup \{1\}$. Then, the set $flat(\mathcal{PF}_n(S))$ is in bijection with $flat(\mathcal{PF}_{n-1}(S'))$.

Theorem (Bijection 2)

Let S be a multiset with elements in [n] where, for all $s \in S$, we have s < n - 1. Then, the set $flat(\mathcal{PF}_n(S \cup \{n\}))$ is in bijection with $flat(\mathcal{PF}_n(S \cup \{n-1\}))$.

Theorem (Bijection 3)

Let $2 \leq \ell \leq n$. The set flat₂ ($\mathcal{PF}_n(\{\ell-1\})$) is in bijection with flat₂ ($\mathcal{PF}_n(\{\ell\})$).

Flattened {1}-Insertion Parking Functions

n k	Total	1 Run	2 Runs	3 Runs	4 Runs
1	1	1	0	0	0
2	2	1	1	0	0
3	5	1	4	0	0
4	15	1	11	3	0
5	52	1	26	25	0
6	203	1	57	130	15
7	877	1	120	546	210

Table: flat_k ($\mathcal{PF}_n(\{1\})$)

Flattened {1}-Insertion Parking Functions

n k	Total	1 Run	2 Runs	3 Runs	4 Runs
1	1	1	0	0	0
2	2	1	1	0	0
3	5	1	4	0	0
4	15	1	11	3	0
5	52	1	26	25	0
6	203	1	57	130	15
7	877	1	120	546	210

Table: flat_k ($\mathcal{PF}_n(\{1\})$)

n k	Total	1 Run	2 Runs	3 Runs	4 Runs
1	1	1	0	0	0
2	2	1	1	0	0
3	5	1	4	0	0
4	15	1	11	3	0
5	52	1	26	25	0
6	203	1	57	130	15
7	877	1	120	546	210

Definition

The **Eulerian numbers** A(n, m) are the number of permutations of [n] with exactly m descents.

Theorem The set $flat_2(\mathcal{PF}_n(\{1\}))$ is enumerated by A(n,1).

Example

Let n = 5.

$2\ 3\ 4\ 1\ 5$

Theorem The set flat₂($\mathcal{PF}_n(\{1\})$) is enumerated by A(n, 1).

Example

Let n = 5.

<u>234</u><u>15</u>

Notice that

Permutations with 2 runs \Leftrightarrow Permutations with 1 descent

Theorem The set $flat_2(\mathcal{PF}_n(\{1\}))$ is enumerated by A(n, 1).

Example

Let n = 5.

<u>234</u><u>15</u>

Notice that

Permutations with 2 runs \Leftrightarrow Permutations with 1 descent

Question: where can a 1 be inserted in a permutation without changing the number of runs and so that the new object is flat?

Theorem The set $flat_2(\mathcal{PF}_n(\{1\}))$ is enumerated by A(n, 1).

Example

Let n = 5.

<u>1234</u><u>15</u>

Notice that

Permutations with 2 runs \Leftrightarrow Permutations with 1 descent

Question: where can a 1 be inserted in a permutation without changing the number of runs and so that the new object is flat?

Theorem The set $flat_2(\mathcal{PF}_n(\{1\}))$ is enumerated by A(n, 1).

Example

Let n = 5.

<u>1234</u><u>15</u>

Notice that

Permutations with 2 runs \Leftrightarrow Permutations with 1 descent

Question: where can a 1 be inserted in a permutation without changing the number of runs and so that the new object is flat?

$$|\mathsf{flat}_2\left(\mathcal{PF}_n\left(\{1\}\right)\right)| = A(n,1)$$

Connection to Set Partitions

Definition

The numbers T(n, k) are the number of ways to partition [n] such that there are exactly k set partitions with at least two elements.

Theorem For $n, k \ge 1$, we have

 $|\mathsf{flat}_{k+1}\mathcal{PF}_n(\{1\})| = T(n,k).$

Connection to Set Partitions

Example

- Let n = 3 and k = 1.
 - We want to partition {1,2,3} into subsets where exactly one subset has greater than 2 elements

123, 1/23, 2/13, 3/12 \Rightarrow T(3,1) = 4

► flat₂ ($\mathcal{PF}_3(\{1\})$) 1213, 1231, 1132, and 1312 \Rightarrow |flat₂($\mathcal{PF}_3(\{1\})$)| = 4

• To map from T(3,1) to flat₂ ($\mathcal{PF}_3(\{1\})$):

 $1/23 \mapsto 1/32 \mapsto 132 \mapsto 1132$

Connection to Set Partitions

Example

- Let n = 3 and k = 1.
 - We want to partition {1,2,3} into subsets where exactly one subset has greater than 2 elements

123, 1/23, 2/13, 3/12 \Rightarrow T(3,1) = 4

► flat₂ ($\mathcal{PF}_3(\{1\})$) 1213, 1231, 1132, and 1312 \Rightarrow |flat₂($\mathcal{PF}_3(\{1\})$)| = 4

• To map from T(3,1) to flat₂ ($\mathcal{PF}_3(\{1\})$):

 $1/23 \mapsto 1/32 \mapsto 132 \mapsto 1132$ $13/2 \mapsto 31/2 \mapsto 312 \mapsto 1312$

1_r -Insertion Parking Functions

Let $\mathbb{1}_r$ be the multiset consisting of r ones. Then, we have the following:

n	flat $(\mathcal{PF}_n(\mathbb{1}_1))$
1	1
2	2
3	5
4	15
5	52
6	203

п	flat $(\mathcal{PF}_n(\mathbb{1}_2))$
1	1
2	3
3	10
4	37
5	151
6	674

п	$flat\left(\mathcal{PF}_{n}\left(\mathbb{1}_{3} ight) ight)$
1	1
2	4
3	17
4	77
5	372
6	1915

Definition

The *r*-**Bell numbers**, denoted B(n, r), count the number of set partitions of [n + r] where the first *r* elements are in different blocks.

Theorem B(n, r) is in bijection with $flat(\mathcal{PF}_{n+1}(\mathbb{1}_r))$

Theorem B(n, r) is in bijection with flat $(\mathcal{PF}_{n+1}(\mathbb{1}_r))$

Example

We construct a bijection from B(2,3) to flat($\mathcal{PF}_3(\mathbb{1}_3)$):

$1/\underline{24}/\underline{35} \mapsto 1\underline{42}\underline{53} \mapsto 12131 \mapsto \underline{1}12131$

Theorem B(n, r) is in bijection with flat $(\mathcal{PF}_{n+1}(\mathbb{1}_r))$

Example

We construct a bijection from B(2,3) to flat($\mathcal{PF}_3(\mathbb{1}_3)$):

 $\frac{1/\underline{24}/\underline{35}}{\underline{145}/2/3} \mapsto \frac{1}{\underline{42}}\underline{53} \mapsto 12131 \mapsto \underline{1}12131$ $\underline{145}/2/3 \mapsto$

Theorem B(n, r) is in bijection with flat $(\mathcal{PF}_{n+1}(\mathbb{1}_r))$

Example

We construct a bijection from B(2,3) to flat($\mathcal{PF}_3(\mathbb{1}_3)$):

 $\frac{1/\underline{24}/\underline{35}}{\underline{145}/2/3} \mapsto \frac{1}{\underline{451}}\underline{23} \mapsto 12131 \mapsto \underline{1}12131$ $\underline{145}/2/3 \mapsto \underline{451}23 \mapsto$

r-Bell Numbers

Theorem B(n, r) is in bijection with flat $(\mathcal{PF}_{n+1}(\mathbb{1}_r))$

Example

We construct a bijection from B(2,3) to flat($\mathcal{PF}_3(\mathbb{1}_3)$):

 $\frac{1/24/35}{145/2/3} \mapsto \frac{14253}{451} \mapsto 12131 \mapsto \frac{1}{1}12131$ $\frac{145}{2/3} \mapsto \frac{451}{23} \mapsto 23111 \mapsto$

r-Bell Numbers

Theorem B(n, r) is in bijection with flat $(\mathcal{PF}_{n+1}(\mathbb{1}_r))$

Example

We construct a bijection from B(2,3) to flat($\mathcal{PF}_3(\mathbb{1}_3)$):

 $\frac{1/24}{35} \mapsto \frac{14253}{45123} \mapsto \frac{12131}{2311} \mapsto \frac{1}{2}$ $\frac{145}{2}/3 \mapsto \frac{451}{2} 3 \mapsto 23111 \mapsto \frac{1}{2}$

Recursions Recursions Recursions!

We have three different ways of recursively counting $\operatorname{flat}_k(\mathcal{PF}_{n+1}(\mathbb{1}_r)).$

- Method 1: Count by where n + 1 shows up
- Method 2: Count by construction of the first run
- Method 3: Count by whether the ones are in the same run or different runs

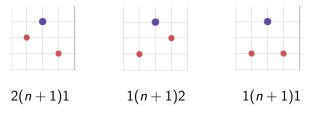
Recursions Recursions Recursions!

We have three different ways of recursively counting $\operatorname{flat}_k(\mathcal{PF}_{n+1}(\mathbb{1}_r)).$

- Method 1: Count by where n + 1 shows up
- Method 2: Count by construction of the first run
- Method 3: Count by whether the ones are in the same run or different runs

Recursion (#1)

Method 1: Count by where n + 1 shows up



2(n+1)1

- 2(n+1)1 or (n+1) at the end means removing n+1 does not reduce the number of runs
 - Start with $\operatorname{flat}_k(\mathcal{PF}_n(\mathbb{1}_r))$
 - n+1 gets inserted at the end of any of the k runs.

 $\models k \cdot |\mathsf{flat}_k(\mathcal{PF}_n(\mathbb{1}_r))|$

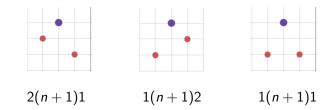
1(n+1)2

- 1(n+1)2 means removing n+1 reduces the number of runs.
 We establish the i, π method
 - Take a word $\pi \in \operatorname{flat}_{k-1}(\mathcal{PF}_{n-1}(\mathbb{1}_r))$
 - Pick an element i, 1 ≤ i ≤ n − 1. Take every element in π that is greater than i and add 1.
 - Now take the sequence (n + 1)(i + 1) and insert it after the rightmost element of {1, 2, 3, ..., i}.

$$\blacktriangleright (n-1) \cdot |\mathsf{flat}_{k-1}(\mathcal{PF}_{n-1}(\mathbb{1}_r))|$$

1(n+1)1

1(n+1)1 means removing n+1 reduces the number of runs.
 Start with the word π ∈ flat_{k-1}(PF_n(1_{r-1}))
 Take the sequence (n+1)1. Insert this after any 1 in π.
 r · |flat_{k-1}(PF_n(1_{r-1}))|



Theorem (EHMTV)

$$\begin{split} |\mathsf{flat}_k(\mathcal{PF}_{n+1}(\mathbb{1}_r))| &= k \cdot |\mathsf{flat}_k(\mathcal{PF}_n(\mathbb{1}_r))| \\ &+ (n-1) \cdot |\mathsf{flat}_{k-1}(\mathcal{PF}_{n-1}(\mathbb{1}_r))| \\ &+ r \cdot |\mathsf{flat}_{k-1}(\mathcal{PF}_n(\mathbb{1}_{r-1}))| \end{split}$$

Run Distribution

What happens if we let the first *s* terms be in different runs? Example

Let s = 3.

1423657 × 1425736 √

These had already been counted for permutations! (Nabawanda, Rakotondrajao, Bamunoba 2020)

Theorem (NRB)

$$f_{n+s+1,k}^{(s+1)} = \sum_{i_1,i_2,\ldots,i_s \ge 1} \binom{n}{i_1,i_2,\ldots,i_s} f_{n+1-\sum_{j=1}^{s-1} i_j,k-s}$$

Run Distribution - Generalization?

What happens if we let the first s terms be in different runs?

Example

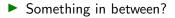
Let s = 3.

► All ones in one run:

111456273

All ones in different runs:

141516273



114156273

Run Distribution - Generalization! (#1)All 1's in one run:

Example

flat₂(
$$\mathcal{PF}_4(\mathbb{1}_3)$$
), with ($s = 2$)

Take the list of flattened **permutations** on *n* with the first *s* terms in different runs:

1423, 1342, 1324

Place all ones in the first run:

1111423, 1111342, 1111324

This gives us the same formula as for flattened permutations:

$$f^{(s+1)}(\mathbb{1}_r; n+s+1, k) = \sum_{i_1, i_2, \dots, i_s \ge 1} \binom{n}{i_1, i_2, \dots, i_s} f_{n+1-\sum_{j=1}^{s-1} i_j, k-s}$$

Run Distribution - Generalization (#2)

All 1's in different runs:

Example

$$\mathsf{flat}_4(\mathcal{PF}_5(\mathbb{1}_3))$$
 with $(s=2)$

- ► Treat each of the ones as a separate integer, i.e. 1_a, 1_b, 1_c. Set up an ordering of the ones, i.e. 1_a < 1_b < 1_c.
- Find the number of flattened permutations on n + r with r + s integers in different runs.

Run Distribution - Generalization (#2)

All 1's in different runs:

Example

flat₄(
$$\mathcal{PF}_5(\mathbb{1}_3)$$
) with ($s = 2$)

- ► Treat each of the ones as a separate integer, i.e. 1_a, 1_b, 1_c. Set up an ordering of the ones, i.e. 1_a < 1_b < 1_c.
- ► Find the number of flattened permutations on n + r with r + s integers in different runs.

This gives us a modified formula from flattened partitions:

$$f^{(s+r+1)}(\mathbb{1}_r; n+s+1, k) = \sum_{i_1, \dots, i_{s+r} \ge 1} \binom{n}{i_1, \dots, i_{s+r}} f_{n+1-\sum_{j=1}^{s+r} i_j, k-s-r}$$

Run Distribution - Generalization (#3)

All 1's in any arrangement:

Example

$$\mathsf{flat}_3(\mathcal{PF}_4(\mathbb{1}_3))$$
 with $(s=2)$

- Set your number of "boxes" that ones are in to 1 ≤ x ≤ r + 1. This means the ones are in x different runs
- Start by assuming that there are x ones in different runs,

13142

Multiply by the number of ways to distribute the ones across j boxes: 111/1, 11/11, 1/111

1113142, 1131142, 1311142

• Integer compositions: $\binom{r}{x-1}$

Run Distribution - Generalization (#3)

All 1's in any arrangement:

This gives us a very modified formula from flattened permutations:

$$f^{(s+1)}(\mathbb{1}_{r}; n+s+1, k) = \sum_{x=1}^{r+1} \left(\binom{r}{x-1} \sum_{i_{1}, \dots, i_{s+x} \ge 1} \binom{n}{i_{1}, \dots, i_{s+x}} f_{n+1-\sum_{j=1}^{s+x} i_{j}, k-s-x} \right)$$

Generating FUN-ctions

- A generating function is a way of encoding information from a recursion
- We used exponential generating functions to encode our sequence as the coefficients of a power series

Example

Take our favorite recursion $f_{n+2} = f_{n+1} + f_n$

• $G(x) = \sum_{n \ge 0} f_n \frac{x^n}{n!}$ using what we know about Maclaurin series

$$\blacktriangleright \quad \frac{d}{dx}G(x) = \sum_{n \ge 1} f_n \cdot \frac{x^{n-1}}{(n-1)!} = \sum_{n \ge 0} f_{n+1} \cdot \frac{x^n}{n!}$$

$$F(x,u) = \sum_{n+1}^{\infty} p(n, 235, k) = x^{n}$$

$$\sum_{n+1}^{\infty} \sum_{n=1}^{\infty} p(n, 235, k) = x^{n}$$

$$\sum_{n+1}^{\infty} \sum_{n=1}^{\infty} p(n, 235, k) = x^{n}$$

$$= \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} p(n, 235, k) = \sum_$$

Generating FUN-ctions

Theorem

The exponential generating function F(x, y, z) of the run distribution over flat $(\mathcal{PF}_n(\mathbb{1}_r))$ has the closed differential form

$$\frac{\partial^2 F(x, y, z)}{\partial y^2} = x \frac{\partial F}{\partial y} \left((exp(y) - 1) + exp(y) \right) \left(1 - \frac{z}{r} \right)^{-1}$$

Theorem

The exponential generating function $F^{[s+1]}(x, u)$ for the numbers $f^{(s)}_{n+s,k}$ has closed differential form

$$\frac{\partial^{s+1}F^{[s+1]}(x,u)}{\partial u^{s+1}} = (x(exp(u)-1)^s \frac{\partial F(x,u)}{\partial u}.$$

Future Directions

- Recursive and/or closed formula for total number of flattened parking functions
- Recursive and/or closed formula for general S-insertion parking functions
- Where do the flattened parking functions live in the poset of set partitions?
- Pattern avoidance: the only pattern of length 3 that every flattened partition avoids is 321. What about flattened parking functions?

Acknowledgements

Thank you! This material is based upon work supported by the National Science Foundation under Grant No. DMS-1929284 while the author was in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Summer@ICERM program.

References

- Armstrong, Drew; Loehr, Nicholas A.; Warrington, Gregory S. Rational parking functions and Catalan numbers. (English summary) Ann. Comb. 20 (2016), no. 1, 21–58. 05E10 (05A30 05E05 05E18)

Beyene, Fufa; Mantaci, Roberto. Merging-Free Partitions and Run-Sorted Permutations. *Preprint*, arxiv.org/abs/2101.07081 (2021)

Broder, Andrei Z. The r-Stirling numbers. Discrete Math. 49 (1984), no. 3, 241–259. (Reviewer: F. T. Howard) 05A10 (11B73)

Mansour, T.; Shattuck, M., Wagner, S. Counting subwords in flattened partitions of sets, Discrete Math. 338 (2015), 1989-2005.

Nabawanda, Olivia; Rakotondrajao, Fanja; Bamunoba, Alex Samuel. Run distribution over flattened partitions. J. Integer Seq. 23 (2020), no. 9, Art. 20.9.6, 14 pp. (Reviewer: Sergey Kitaev) 05A18 (05A10 05A15)

SageMath Inc. CoCalc Collaborative Computation Online, 2022. https://cocalc.com/

W. A. Stein et al., *Sage Mathematics Software (Version 9.4)*, The Sage Development Team, 2022. www.sagemath.org.

Zhuang, Y. Counting permutations by runs, J. Combin. Theory Ser. A 142 (2016), 147-176.

Questions?

Email us at parkingfunctions@gmail.com