The A, C, shifted Berenstein-Kirillov groups and cacti

Olga Azenhas

Centre for Mathematics, University of Coimbra

Research Community in Algebraic Combinatorics ICERM, August 5-6, 2021

Plan

- The cactus group $J_{\mathfrak{g}}$: $\mathfrak{g} = \mathfrak{gl}_n$, \mathfrak{sp}_{2n} .
- A_{n-1} , C_n -crystals of tableaux and restrictions.
 - ► Full and partial Schützenberger-Lusztig involutions.
- Internal cactus group action on a normal crystal.
- Berenstein-Kirillov groups: A and shifted.

► C.

The cactus group J_{g}

- $\bullet \ \mathfrak{g}$ finite dimensional, complex, semisimple Lie algebra
 - *I* the Dynkin diagram, $\Delta = {\alpha_i}_{i \in I}$ the simple roots.
 - W the Weyl group, w_0 the long element.
 - $\theta: I \rightarrow I$ the Dynkin diagram automorphism of I, defined by

$$\alpha_{\theta(i)} = -w_0.\alpha_i, \ i \in I.$$

 θ_J: J → J the Dynkin diagram automorphism of a connected subdiagram J ⊆ I, defined by

$$\alpha_{\theta_J(j)} = -w_0^J . \alpha_j, \ j \in J,$$

 w_0^J the long element of the parabolic subgroup $W^J \subseteq W$.

The cactus group $J_{\mathfrak{g}}$

- [Halacheva 2016]. The *cactus group* $J_{\mathfrak{g}}$ corresponding to \mathfrak{g} is the group defined by:
 - Generators: s_J, J ⊆ I running over all connected subdiagrams of the Dynkin diagram I of g, and
 - Relations:

1 g.
$$s_J^2 = 1$$
 , for all $J \subseteq I$,

2 g.
$$s_J s_{J'} = s_{J'} s_J$$
, for all $J, J' \subseteq I$ and $J \cap J' = \emptyset$,

 $3 \mathfrak{g}. s_J s_{J'} = s_{\theta_J(J')} s_J$, for all $J' \subseteq J \subseteq I$.

The cacti $J_{\mathfrak{gl}_n}$ and $J_{\mathfrak{sp}_{2n}}$

• Cartan type A_{n-1} : I = [n-1], $\Delta = \{\alpha_i = e_i - e_{i+1}\}_{i \in [n-1]}$, $W = \mathfrak{S}_n$, $\theta(i) = n - i$,

• Cartan type C_n : I = [n], $\Delta = \{\alpha_i = e_i - e_{i+1}\}_{i \in [n-1]} \cup \{\alpha_n = 2e_n\}$, $\theta(i) = i$, $W = B_n = \langle r_1, \dots, r_{n-1}, r_n : R1, R2, R3, R4 \rangle$

$$\begin{array}{ll} R1: & r_i^2 = 1, & 1 \le i \le n, \\ R2: & (r_i r_j)^2 = 1, & |i-j| > 1, \\ R3: & (r_i r_{i+1})^3 = 1, & 1 \le i \le n-2, \\ R4: & (r_{n-1} r_n)^4 = 1 \end{array}$$

,

 $w_0.\alpha_i = -\alpha_i, \quad \theta(i) = i.$

The cacti $J_{\mathfrak{gl}_n}$ and $J_{\mathfrak{sp}_{2n}}$

- The cactus group $J_{\mathfrak{gl}_n} = J_n$ is the group defined by
 - Generators: s_J , J connected subdiagram of the A_{n-1} Dynkin diagram,

► Relations:
1A.
$$s_J^2 = 1, J \subseteq [n-1],$$

2A. $s_J s_{J'} = s_{J'} s_J, J \cap J' = \emptyset, J, J' \subseteq [n-1],$
3A. $s_{[p,q]} s_{[k,l]} = s_{[p+q-l,p+q-k]} s_{[p,q]}, [k, l] \subset [p,q] \subseteq [n-1].$

- The cactus group $J_{\mathfrak{sp}_{2n}}$ is the group defined by
 - Generators: s_J , J connected subdiagrams of the C_n Dynkin diagram,

Relations: 1C.
$$s_J^2 = 1, J \subseteq [n],$$
2C. $s_J s_{J'} = s_{J'} s_J, J \cap J' = \emptyset, J, J' \subseteq [n],$
3C $s_{[p,n]} s_{[q,l]} = s_{[q,l]} s_{[p,n]}, [q, l] \subset [p, n] \subseteq [n],$
a $s_{[p,q]} s_{[k,l]} = s_{[p+q-l,p+q-k]} s_{[p,q]}, [k, l] \subset [p, q] \subseteq [n-1]$

• Alternative n-1 generators for J_n , and 2n-1 generators for $J_{\mathfrak{sp}_{2n}}$

$$s_{[1,j]}, \ 1 \le j \le n-1, \qquad s_{[j,n]}, \ 1 \le j \le n.$$

Normal crystals

A \mathfrak{g} -crystal B is a finite set B together with the maps

$$e_i, f_i : \mathsf{B} \to \mathsf{B} \sqcup \{0\}, \ i \in I, \ \mathsf{wt} : \mathsf{B} \to \Lambda,$$

where for all $b, c \in B$ and $i \in I$,

•
$$f_i(b) = c$$
 if and only if $b = e_i(c)$,

• if $e_i(b) \in B$, then $wt(e_i(b)) = wt(b) + \alpha_i$, if $f_i(b) \in B$, then $wt(f_i(b)) = wt(b) - \alpha_i$,

•
$$\varphi_i(b) = max\{k : f_i^k(b) \neq 0\}$$
, $\varepsilon_i(b) = max\{k : e_i^k(b) \neq 0\}$,

•
$$\varphi_i(b) - \varepsilon_i(b) = \langle wt(b), \alpha_i^{\vee} \rangle$$

- Let B be a normal crystal (crystal corresponding to the finite-dimensional quantum enveloping algebra $U_q(\mathfrak{g})$ -representation).
 - For J ⊆ I, B_J is the restriction of the normal crystal B to the connected subdiagram J of I.
 - The crystal graph of B_J has the same vertices as B but the arrows are only those labelled in J, that is, we forget the crystal maps e_i, f_i, φ_i, and ε_i, for i ∉ J.

Crystals of A_{n-1} and C_n tableaux and restrictions

- SSYT(λ, n) crystal of semistandard Young tableaux of straight shape λ in the alphabet [n].
- KN(λ, n) crystal of C_n Kashiwara-Nakashima (De Concini) tableaux of straight shape λ in the alphabet [±n] = {1 < 2 < · · · < n < n̄ < · · · < 2̄ < 1̄}

Type C_2 crystal KN((2,1),2)

Full and partial Schützenberger-Lusztig involutions

- Let $B(\lambda)$ a normal crystal with highest weight λ , and
 - \blacktriangleright $u_{\lambda}^{\rm high}$, $u_{\lambda}^{\rm low}$ highest and lowest weight elements.
- The Schützenberger-Lusztig involution ξ is the unique set involution $\xi : B(\lambda) \to B(\lambda)$ such that, for all $b \in B(\lambda)$, and $i \in I$,
 - $e_i\xi(b) = \xi f_{\theta(i)}(b)$
 - $f_i\xi(b) = \xi e_{\theta(i)}(b)$
 - $wt(\xi(b)) = w_0.wt(b)$, w_0 the long element of the Weyl group W.
- Let b ∈ B(λ) and b = f_{j_r} ··· f_{j1}(u^{high}_λ).
 in type A_{n-1}, ξ(b) = e_{n-j_r} ··· e_{n-j1}(u^{low}_λ), wt(ξ(b)) = reverse wt(b)
 in type C_n, ξ(b) = e_{i_r} ··· e_{i₁}(u^{low}_λ), wt(ξ(b)) = -wt(b)

Full evacuation and reversal: C_n direct algorithms

$$T = \frac{\boxed{1 \ 2 \ \overline{1}}}{\boxed{3 \ \overline{2}}} \in \mathsf{KN}((3,2,1),3) \quad Q = \frac{\boxed{2}}{\boxed{3 \ \overline{2}}} \in \mathsf{KN}((3,2,1)/(1),3)$$

• [Santos, 2021] $evac^{C}(T) = \xi(T)$

• reversal $(Q) = \xi(Q)$

Problems to explore

Problem

A symplectic version for the Benkart-Sottille-Stroomer tableau-switching on KN tableaux.

Problem

A symplectic rectification Fomin's growth diagram-like for KN tableaux.

Partial Schützenberger involutions

- For J ⊆ I, the partial Schützenberger-Lusztig involution ξ_J is the Schützenberger involution defined on the normal crystal B_J(λ).
- J has a sole node: the Weyl group action on the crystal
 - [Kashiwara 94] The ξ_i , for $i \in I$, define an action of the Weyl group W on B(λ),

$$r_i.b = \xi_i(b), \quad r_i.wtb = wt\xi_i(b), \ b \in B, \ u_{\lambda}^{\mathsf{low}} = w_0.u_{\lambda}^{\mathsf{high}}$$

$$e_{i}^{\varepsilon_{i}(\overrightarrow{b})}(b) \xrightarrow{e_{i}(b)} \overrightarrow{b} \overrightarrow{f_{i}(b)} \xrightarrow{\varphi_{i}(b)} \overrightarrow{\xi_{i}(b)} \xrightarrow{\varphi_{i}(b)} (b)$$

J has more than one node

Problem

Problem

• For $1 , a direct procedure to calculate <math>\xi_{[p,n]}$ on the type C_{n-p+1} crystal $KN_{[p,n]}(\lambda, n)$.

$$n = 3, \ p = 2$$
 $\begin{array}{c} 1 & 2 & 1 \\ \hline 3 & \overline{2} \\ \hline \overline{3} \end{array}$

• For $1 \le p \le n-1$, a direct procedure to calculate $\xi_{[1,p]}$ on the type A_p crystal $KN_{[1,p]}(\lambda, n)$.

$$n = 3, \ p = 1$$
 $\frac{12}{32}$

Internal cactus group action on a normal crystal

Theorem

[Halacheva, 2016] The following is a group homomorphism

$$\begin{array}{rccc} J_{\mathfrak{g}} & \to & \mathfrak{S}_B \\ s_J & \mapsto & \xi_J, \end{array}$$

 $wt(\xi_J(b)) = w_0^J.wt(b), b \in B.$

For the gl_n-crystal SSYT(λ, n), the map

$$s_{[1,j]}\mapsto \xi_{[1,j]}=\mathsf{evac}_{j+1},\ 1\leq j\leq n-1,$$

defines an action of the cactus group J_n on the set SSYT(λ , n).

• For the \mathfrak{sp}_{2n} -crystal KN (λ, n) , the map

$$\begin{split} \mathbf{s}_{[1,j]} & \mapsto \quad \boldsymbol{\xi}_{[1,j]}^A, \quad 1 \leq j \leq n-1, \\ \mathbf{s}_{[j,n]} & \mapsto \quad \boldsymbol{\xi}_{[j,n]}^C, \quad 1 \leq j \leq n, \end{split}$$

defines an action of $J_{\mathfrak{sp}_{2n}}$ on the set $KN(\lambda, n)$.

The A and shifted Berenstein-Kirillov groups

The Berenstein–Kirillov group \mathcal{BK} (Gelfand-Tsetlin group) [Berenstein, Kirillov, 1995], is the free group generated by the Bender-Knuth involutions t_i , for i > 0, modulo the relations they satisfy on straight shaped semistandard Young tableaux.

List of known relations satisfied by the t_i 's in \mathcal{BK} :

1
$$t_i^2 = 1,$$
 $t_i t_j = t_j t_i,$ for $|i - j| > 1$ [BK 95],

2
$$(t_1q_{[1,i]})^4 = 1$$
, for $i > 2$ [BK95],

$$(t_1 t_2)^6 = 1$$
 [BK 95],

▶
$$q_{[1,i]} := t_1(t_2t_1) \cdots (t_it_{i-1} \cdots t_1)$$
, for $i \ge 1$,
▶ $q_{[j,k-1]} := q_{[1,k-1]}q_{[1,k-j]}q_{[1,k-1]}$, for $j < k$.

Remark

$$q_{[1,i]} = \xi_{[1,i]}, \ i \ge 1$$
, and $q_{[j,k-1]} = \xi_{[j,k-1]}, \ j < k$.

The \mathcal{BK}_n , \mathcal{SBK}_n groups and the cactus J_n

Proposition

[Berenstein, Kirillov, 1995] The elements $q_{[1,1]}, \ldots, q_{[1,n-1]}$ are generators of \mathcal{BK}_n ,

$$t_1 = q_{[1,1]}, \qquad t_i = q_{[1,i-1]}q_{[1,i]}q_{[1,i-1]}q_{[1,i-2]}, \text{ for } i \ge 2, \ q_0 := 1.$$

- The following are group epimorphisms from J_n to \mathcal{BK}_n .
 - $\begin{array}{l} \textcircled{0}{1} s_{[i,j]} \mapsto q_{[i,j]} \text{ [Chmutov, Glick, Pylyavskii 2016].} \\ \textcircled{0}{0}{0} s_{[1,i]} \mapsto q_{[1,j]} \text{ [Halacheva 2016, 2020].} \end{array}$

The group \mathcal{BK}_n is isomorphic to a quotient of J_n .

[Rodrigues, 2020] There is a natural action of cactus group J_n on a shifted tableau crystal-like ShST(λ, n) [Gillespie-Levinson-Purbhoo, 2019], given by the group homomorphism:

$$J_n \longrightarrow \mathfrak{S}_{\mathsf{ShST}(\lambda,n]}$$
$$\mathfrak{S}_{[1,i]} \longmapsto \xi_{[1,i]}.$$

• [Rodrigues, 2021] The following map is an epimorphism from J_n to \mathcal{BK}_n

$$s_{[i,j]} \mapsto q_{[i,j]}.$$

 SBK_n is isomorphic to a quotient of J_n .

The type C Berenstein-Kirillov group $\mathcal{BK}^{\mathcal{C}}$

- Neither symplectic Bender-Knuth involutions t^C_i nor symplectic tableau switching are known for KN tableaux.
- Motivation:For $n \ge 1$, the partial Schützenberger-Lusztig involutions $\xi_1^A = q_{[1,1]}, \dots, \xi_{[1,n-1]}^A = q_{[1,n-1]}$ are generators for the Berenstein-Kirillov group \mathcal{BK}_n .

Definition

[Proposal] The symplectic Berenstein–Kirillov group \mathcal{BK}_n^C , $n \ge 1$, is the free group generated by the 2n - 1 partial Schützenberger involutions

$$q^{\mathcal{A}}_{[1,i]} =: \xi^{\mathcal{A}}_{[1,i]}, \ 1 \leq i < n, \ \text{ and } \ q^{\mathcal{C}}_{[i,n]} =: \xi^{\mathcal{C}}_{[i,n]}, \ 1 \leq i \leq n,$$

on straight shaped KN tableaux on the alphabet $[\pm n]$ modulo the relations they satisfy on those tableaux.

Theorem

The following is a group epimorphism from $J_{\mathfrak{sp}_{2n}}$ to $\mathcal{BK}_n^{\mathsf{C}}$:

$$s_{[1,j]}\mapsto q^A_{[1,j]}, \ 1\leq j< n, \qquad s_{[j,n]}\mapsto q^C_{[j,n]}, \ 1\leq j\leq n$$

 \mathcal{BK}_{n}^{C} is isomorphic to a quotient of $J_{\mathfrak{sp}_{2n}}$.

Problems

Problem

Make explicit the symplectic Bender-Knuth involutions t_i^C on KN tableaux.

Problem

Find explicit relations for \mathcal{BK}_n^C using the generators t_i^C .

Problem

An approach to \mathcal{BK}_n^C via King tableaux [King 1975].