On $\mathfrak{sl}(N)$ link homology with mod N coefficients

Joshua Wang

November 7, 2021
Theorem (Shumakovitch 2004)

Let L be an oriented link with basepoints q, r.

'Reduced Khovanov homology over $\mathbb{Z}/2$ is basepoint-independent: $\text{Kh}^p_L, q; \mathbb{Z}/2 \equiv \text{Kh}^p_L, r; \mathbb{Z}/2$.

Unreduced Khovanov homology over $\mathbb{Z}/2$ is determined by reduced Khovanov homology: $\text{Kh}^p_L; \mathbb{Z}/2 \equiv \text{Kh}^p_L, q; \mathbb{Z}/2$.

The basepoint operator $X_q: \text{Kh}^p_L; \mathbb{Z}/2 \rightarrow \text{Kh}^p_L, q; \mathbb{Z}/2$ satisfies $X_q \circ X_q = 0$.

Both statements are false for $\text{Kh}^p_L; \mathbb{Z}$ when $\text{char} \mathbb{Z} \neq 2$.

Joshua Wang
Theorem (Shumakovitch 2004)

Let L be an oriented link with basepoints $q, r \in L$.

Reduced Khovanov homology over $\mathbb{Z}/2$ is basepoint-independent:

$\text{Kh}^p_{L,q} : \mathbb{Z}/2 \to \mathbb{Z}/2$

Unreduced Khovanov homology over $\mathbb{Z}/2$ is determined by reduced Khovanov homology:

$\text{Kh}^p_{L,q} : \mathbb{Z}/2 \to \mathbb{Z}/2$

The basepoint operator X_q:

$X_q : \text{Kh}^p_{L,q} : \mathbb{Z}/2 \to \mathbb{Z}/2$

satisfies $X_q X_q = 0$.

Both statements are false for $\text{Kh}^p_{L,q} : \mathbb{R} \to \mathbb{R}$ when $\text{char } \mathbb{R} \neq 2$.

Joshua Wang

$\mathfrak{sl}(N)$ homology with mod N coefficients

November 7, 2021
Khovanov homology in characteristic 2

Theorem (Shumakovitch 2004)

Let L be an oriented link with basepoints $q, r \in L$.

- Reduced Khovanov homology over $\mathbb{Z}/2$ is basepoint-independent:

$$\overline{Kh}(L, q; \mathbb{Z}/2) \cong \overline{Kh}(L, r; \mathbb{Z}/2)$$
Theorem (Shumakovitch 2004)

Let L be an oriented link with basepoints $q, r \in L$.

- **Reduced Khovanov homology over $\mathbb{Z}/2$ is basepoint-independent:**

 $$\overline{Kh}(L, q; \mathbb{Z}/2) \cong \overline{Kh}(L, r; \mathbb{Z}/2)$$

- **Unreduced Khovanov homology over $\mathbb{Z}/2$ is determined by reduced Khovanov homology:**

 $$Kh(L; \mathbb{Z}/2) \cong \overline{Kh}(L, q; \mathbb{Z}/2) \otimes \frac{(\mathbb{Z}/2)[X]}{X^2}$$
Theorem (Shumakovitch 2004)

Let L be an oriented link with basepoints $q, r \in L$.

- **Reduced Khovanov homology over $\mathbb{Z}/2$ is basepoint-independent:**

 $$\overline{\text{Kh}}(L, q; \mathbb{Z}/2) \cong \overline{\text{Kh}}(L, r; \mathbb{Z}/2)$$

- **Unreduced Khovanov homology over $\mathbb{Z}/2$ is determined by reduced Khovanov homology:**

 $$\text{Kh}(L; \mathbb{Z}/2) \cong \overline{\text{Kh}}(L, q; \mathbb{Z}/2) \otimes \frac{(\mathbb{Z}/2)[X]}{X^2}$$

The basepoint operator $X_q : \text{Kh}(L; \mathbb{Z}/2) \to \text{Kh}(L; \mathbb{Z}/2)$ satisfies $X_q \circ X_q = 0$.
Theorem (Shumakovitch 2004)

Let L be an oriented link with basepoints $q, r \in L$.

- **Reduced Khovanov homology over $\mathbb{Z}/2$ is basepoint-independent:**

$$\overline{\text{Kh}}(L, q; \mathbb{Z}/2) \cong \overline{\text{Kh}}(L, r; \mathbb{Z}/2)$$

- **Unreduced Khovanov homology over $\mathbb{Z}/2$ is determined by reduced Khovanov homology:**

$$\text{Kh}(L; \mathbb{Z}/2) \cong \overline{\text{Kh}}(L, q; \mathbb{Z}/2) \otimes \frac{(\mathbb{Z}/2)[X]}{X^2}$$

The basepoint operator $X_q : \text{Kh}(L; \mathbb{Z}/2) \rightarrow \text{Kh}(L; \mathbb{Z}/2)$ satisfies $X_q \circ X_q = 0$.

Both statements are false for $\text{Kh}(L; R)$ when $\text{char}(R) \neq 2$.

Joshua Wang
Let L be an oriented link with basepoints $q, r \in L$. Let P be prime.

Theorem (W. 2021)

The reduced \mathfrak{sl}_P link homology over \mathbb{Z}/P is basepoint-independent:

$$KR_{P \cdot L, q} \mathbb{Z}/P - KR_{P \cdot L, r} \mathbb{Z}/P$$

The unreduced \mathfrak{sl}_P link homology over \mathbb{Z}/P is determined by reduced \mathfrak{sl}_P link homology:

$$KR_{P \cdot L, q} \mathbb{Z}/P$$

The basepoint operator X_q satisfies

$$KR_{P \cdot L, q} \mathbb{Z}/P$$

Both statements are false for $KR_{P \cdot L, r} \mathbb{Z}/P$ when char $P = 2$ does not divide N.

Joshua Wang

$\mathfrak{sl}(N)$ homology with mod N coefficients

November 7, 2021
Theorem (W. 2021)

Let L be an oriented link with basepoints $q, r \in L$. Let P be prime.
Theorem (W. 2021)

Let L be an oriented link with basepoints $q, r \in L$. Let P be prime.

• Reduced $\mathfrak{sI}(P)$ homology over \mathbb{Z}/P is basepoint-independent:

$$\overline{KR}_P(L, q; \mathbb{Z}/P) \cong \overline{KR}_P(L, r; \mathbb{Z}/P)$$
Theorem (W. 2021)

Let L be an oriented link with basepoints $q, r \in L$. Let P be prime.

- Reduced $\mathfrak{s}l(P)$ homology over \mathbb{Z}/P is basepoint-independent:

$$\overline{KR}_P(L, q; \mathbb{Z}/P) \cong \overline{KR}_P(L, r; \mathbb{Z}/P)$$

- Unreduced $\mathfrak{s}l(P)$ homology over \mathbb{Z}/P is determined by reduced $\mathfrak{s}l(P)$ homology:

$$KR_P(L; \mathbb{Z}/P) \cong \overline{KR}_P(L, q; \mathbb{Z}/P) \otimes \frac{(\mathbb{Z}/P)[X]}{X^P}$$
Theorem (W. 2021)

Let L be an oriented link with basepoints $q, r \in L$. Let P be prime.

- Reduced $\mathfrak{sl}(P)$ homology over \mathbb{Z}/P is basepoint-independent:

$$\overline{KR}_P(L, q; \mathbb{Z}/P) \cong \overline{KR}_P(L, r; \mathbb{Z}/P)$$

- Unreduced $\mathfrak{sl}(P)$ homology over \mathbb{Z}/P is determined by reduced $\mathfrak{sl}(P)$ homology:

$$KR_P(L; \mathbb{Z}/P) \cong \overline{KR}_P(L, q; \mathbb{Z}/P) \otimes \frac{(\mathbb{Z}/P)[X]}{X^P}$$

The basepoint operator $X_q : KR_P(L; \mathbb{Z}/P) \rightarrow KR_P(L; \mathbb{Z}/P)$ satisfies $X_q^P = 0$.

Joshua Wang \hspace{1cm} $\mathfrak{sl}(N)$ homology with mod N coefficients \hspace{1cm} November 7, 2021
Theorem (W. 2021)

Let L be an oriented link with basepoints $q, r \in L$. Let P be prime.

- Reduced $\mathfrak{s}l(P)$ homology over \mathbb{Z}/P is basepoint-independent:

$$\overline{KR}_P(L, q; \mathbb{Z}/P) \cong \overline{KR}_P(L, r; \mathbb{Z}/P)$$

- Unreduced $\mathfrak{s}l(P)$ homology over \mathbb{Z}/P is determined by reduced $\mathfrak{s}l(P)$ homology:

$$KR_P(L; \mathbb{Z}/P) \cong \overline{KR}_P(L, q; \mathbb{Z}/P) \otimes \frac{(\mathbb{Z}/P)[X]}{X^P}$$

The basepoint operator $X_q : KR_P(L; \mathbb{Z}/P) \to KR_P(L; \mathbb{Z}/P)$ satisfies $X_q^P = 0$.

Both statements are false for $KR_N(L; R)$ when $\text{char}(R)$ does not divide N.
\[\mathfrak{sl}(P) \text{ link homology in characteristic } P \]

Proof of \(\text{KR}_P(L; \mathbb{Z}/P) \cong \text{KR}_P(L, q; \mathbb{Z}/P) \otimes (\mathbb{Z}/P)[X]/X^P \) from basepoint-independence of reduced \(\mathfrak{sl}(P) \) link homology:
$\mathfrak{sl}(P)$ link homology in characteristic P

Proof of $KR_p(L; \mathbb{Z}/P) \cong \overline{KR}_p(L, q; \mathbb{Z}/P) \otimes (\mathbb{Z}/P)[X]/X^P$ from basepoint-independence of reduced $\mathfrak{sl}(P)$ link homology:

(The argument is due to Ozsváth-Rasmussen-Szabó 2013)
$\mathfrak{sI}(P)$ link homology in characteristic P

Proof of $\text{KR}_P(L; \mathbb{Z}/P) \cong \overline{\text{KR}}_P(L, q; \mathbb{Z}/P) \otimes (\mathbb{Z}/P)[X]/X^P$ from basepoint-independence of reduced $\mathfrak{sI}(P)$ link homology:

(The argument is due to Ozsváth-Rasmussen-Szabó 2013)

Proof.

Let $L \sqcup O$ be the split union of L and an unknot O. Let $q \in L$ and $r \in O$.

Joshua Wang

$\mathfrak{sI}(N)$ homology with mod N coefficients

November 7, 2021
$\mathfrak{s}l(P)$ link homology in characteristic P

Proof of $\text{KR}_P(L; \mathbb{Z}/P) \cong \overline{\text{KR}}_P(L, q; \mathbb{Z}/P) \otimes (\mathbb{Z}/P)[X]/X^P$ from basepoint-independence of reduced $\mathfrak{s}l(P)$ link homology:

(The argument is due to Ozsváth-Rasmussen-Szabó 2013)

Proof.

Let $L \sqcup O$ be the split union of L and an unknot O. Let $q \in L$ and $r \in O$.

$$\text{KR}_P(L) \cong \overline{\text{KR}}_P(L \sqcup O, r) \cong \overline{\text{KR}}_P(L \sqcup O, q) \cong \overline{\text{KR}}_P(L, q) \otimes \frac{(\mathbb{Z}/P)[X]}{X^P}$$
Proof of basepoint-independence uses an operator

\[\nabla : \text{KR}_N(L; R) \to \text{KR}_N(L; R) \]

defined for any \(N \geq 2 \) when \(\text{char}(R) \mid N \).
The operator ∇

Proof of basepoint-independence uses an operator

\[
\nabla : \text{KR}_N(L; R) \to \text{KR}_N(L; R)
\]

defined for any $N \geq 2$ when $\text{char}(R) | N$. Primality of N arises from the relationship between ∇ and basepoint operators.
The operator ∇

Proof of basepoint-independence uses an operator

$$\nabla : \text{KR}_N(L; R) \to \text{KR}_N(L; R)$$

defined for any $N \geq 2$ when $\text{char}(R) | N$. Primality of N arises from the relationship between ∇ and basepoint operators. For $N = 2$, ∇ agrees with Shumakovitch’s $\bar{\nu}$ map on Khovanov homology in characteristic 2.
The operator ∇

Proof of basepoint-independence uses an operator

$$\nabla : \text{KR}_N(L; R) \to \text{KR}_N(L; R)$$

defined for any $N \geq 2$ when $\text{char}(R) | N$. Primality of N arises from the relationship between ∇ and basepoint operators. For $N = 2$, ∇ agrees with Shumakovitch’s \bar{v} map on Khovanov homology in characteristic 2.

Some notation and background for $\text{KR}_N(L; R)$ for any $N \geq 2$ and any R:
The operator ∇

Proof of basepoint-independence uses an operator

$$\nabla : \text{KR}_N(L; R) \rightarrow \text{KR}_N(L; R)$$

defined for any $N \geq 2$ when $\text{char}(R) \mid N$. Primality of N arises from the relationship between ∇ and basepoint operators. For $N = 2$, ∇ agrees with Shumakovitch’s ν map on Khovanov homology in characteristic 2.

Some notation and background for $\text{KR}_N(L; R)$ for any $N \geq 2$ and any R:

- $\text{KRC}_N(D; R)$ - the $\mathfrak{s}\mathfrak{l}(N)$ chain complex of a diagram D
The operator ∇

Proof of basepoint-independence uses an operator

$$\nabla : \text{KR}_N(L; R) \to \text{KR}_N(L; R)$$

defined for any $N \geq 2$ when $\text{char}(R) \mid N$. Primality of N arises from the relationship between ∇ and basepoint operators. For $N = 2$, ∇ agrees with Shumakovitch’s \bar{v} map on Khovanov homology in characteristic 2.

Some notation and background for $\text{KR}_N(L; R)$ for any $N \geq 2$ and any R:

- $\text{KRC}_N(D; R)$ - the $\mathfrak{sl}(N)$ chain complex of a diagram D
- $X_q : \text{KRC}_N(D; R) \to \text{KRC}_N(D; R)$ - the basepoint operator associated to $q \in D$. It is a chain map satisfying $X_q^N = 0$.
The operator ∇

Proof of basepoint-independence uses an operator

$$\nabla : \text{KR}_N(L; R) \rightarrow \text{KR}_N(L; R)$$

defined for any $N \geq 2$ when $\text{char}(R) \mid N$. Primality of N arises from the relationship between ∇ and basepoint operators. For $N = 2$, ∇ agrees with Shumakovitch’s \bar{v} map on Khovanov homology in characteristic 2.

Some notation and background for $\text{KR}_N(L; R)$ for any $N \geq 2$ and any R:

- $\text{KRC}_N(D; R)$ - the $\mathfrak{sl}(N)$ chain complex of a diagram D
- $X_q : \text{KRC}_N(D; R) \rightarrow \text{KRC}_N(D; R)$ - the basepoint operator associated to $q \in D$. It is a chain map satisfying $X_q = 0$.

The homology of the subcomplex $X_q^{N-1} \text{KRC}_N(D; R)$ is $\overline{\text{KR}}_N(L, q; R)$.
The operator ∇

If $\text{char}(R) \mid N$, there is a chain map $\nabla : KRC_N(D; R) \to KRC_N(D; R)$.

If N is prime or composite, the relevant modular identity is $p_n \equiv p_0 \pmod{N}$.

Joshua Wang

$\mathfrak{sl}(N)$ homology with mod N coefficients

November 7, 2021 6 / 18
The operator ∇

If $\text{char}(R) \mid N$, there is a chain map $\nabla : \text{KRC}_N(D; R) \rightarrow \text{KRC}_N(D; R)$. It preserves h-grading and decreases q-grading by 2 (opposite of X_q).
The operator ∇

If $\text{char}(R) | N$, there is a chain map $\nabla : \text{KRC}_N(D; R) \to \text{KRC}_N(D; R)$. It preserves h-grading and decreases q-grading by 2 (opposite of X_q).

Proposition (W. 2021)

Let $q, r \in D$.

\[
X_q^{N-1} \text{KRC}_N(D; R) \xrightarrow{X_q^{N-1}\nabla^{N-1}} X_q^{N-1} \text{KRC}_N(D; R) \quad \xleftarrow{X_r^{N-1}\nabla^{N-1}} X_r^{N-1} \text{KRC}_N(D; R)
\]
The operator ∇

If $\text{char}(R) \mid N$, there is a chain map $\nabla : \text{KRC}_N(D; R) \to \text{KRC}_N(D; R)$. It preserves h-grading and decreases q-grading by 2 (opposite of X_q).

Proposition (W. 2021)

Let $q, r \in D$.

$$X_q^{N-1} \text{KRC}_N(D; R) \xrightarrow{X_q^{N-1}\nabla^{N-1}} X_r^{N-1} \text{KRC}_N(D; R)$$

Then $$(X_q^{N-1}\nabla^{N-1}) \circ (X_r^{N-1}\nabla^{N-1}) = \begin{cases} \text{Id} & \text{N is prime} \\ 0 & \text{N is composite} \end{cases}$$
The operator ∇

If $\text{char}(R) \mid N$, there is a chain map $\nabla : KRC_N(D; R) \to KRC_N(D; R)$. It preserves h-grading and decreases q-grading by 2 (opposite of X_q).

Proposition (W. 2021)

Let $q, r \in D$.

\[
\begin{align*}
X_q^{N-1} KRC_N(D; R) & \xleftarrow{X_q^{N-1} \nabla^{N-1}} X_r^{N-1} KRC_N(D; R) \\
X_r^{N-1} \nabla^{N-1} & \xrightarrow{X_r^{N-1} KRC_N(D; R)} X_q^{N-1} KRC_N(D; R)
\end{align*}
\]

Then \[
(X_q^{N-1} \nabla^{N-1}) \circ (X_r^{N-1} \nabla^{N-1}) = \begin{cases}
\text{Id} & N \text{ is prime} \\
0 & N \text{ is composite}
\end{cases}
\]

The relevant modular identity is

\[
(N - 1)! (N - 1)! \mod N = \begin{cases}
1 & N \text{ is prime} \\
0 & N \text{ is composite}
\end{cases}
\]
Version of $\mathfrak{sl}(N)$ link homology: Robert–Wagner evaluation of closed foams
The operator ∇

Version of $\mathfrak{sl}(N)$ link homology: Robert–Wagner evaluation of closed foams.

ν a vertex of the cube \mapsto MOY graph $D_\nu \mapsto$ R-module $\mathcal{F}_N(D_\nu; R)$
The operator ∇

Version of $\mathfrak{sl}(N)$ link homology: Robert–Wagner evaluation of closed foams

v a vertex of the cube \leadsto MOY graph $D_v \leadsto R$-module $\mathcal{F}_N(D_v; R)$

$$KRC_N(D; R) = \bigoplus_v \mathcal{F}_N(D_v; R)$$
The operator ∇

Version of $\mathfrak{sl}(N)$ link homology: Robert–Wagner evaluation of closed foams

ν a vertex of the cube \leadsto MOY graph $D_\nu \leadsto$ R-module $\mathcal{F}_N(D_\nu; R)$

$$KRC_N(D; R) = \bigoplus_\nu \mathcal{F}_N(D_\nu; R)$$

Both X_q and ∇ are defined on the individual $\mathcal{F}_N(D_\nu; R)$, and commute with the edge maps.
The operator ∇

Version of $\mathfrak{sl}(N)$ link homology: Robert–Wagner evaluation of closed foams

v a vertex of the cube \leadsto MOY graph $D_v \leadsto$ R-module $\mathcal{F}_N(D_v; R)$

$$KRC_N(D; R) = \bigoplus_v \mathcal{F}_N(D_v; R)$$

Both X_q and ∇ are defined on the individual $\mathcal{F}_N(D_v; R)$, and commute with the edge maps. It suffices to prove

$$(X_q^{N-1}\nabla^{N-1}) \circ (X_r^{N-1}\nabla^{N-1}) = \begin{cases}
\text{Id} & N \text{ is prime} \\
0 & N \text{ is composite}
\end{cases}$$

on $\mathcal{F}_N(D_v; R)$.
Dotted foams

MOY graph Γ.

Joshua Wang | $\mathfrak{sl}(N)$ homology with mod N coefficients | November 7, 2021 | 8 / 18
Dotted foams

MOY graph Γ. The R-module $\mathcal{F}_N(\Gamma; R)$ is a quotient of

$$\tilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis } \text{dotted foams } F : \emptyset \to \Gamma$$
Dotted foams

MOY graph Γ. The R-module $\mathcal{F}_N(\Gamma; R)$ is a quotient of

$$\tilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis dotted foams } F : \emptyset \to \Gamma$$

Dots lie on facets of the foam.
Dotted foams

MOY graph Γ. The R-module $\mathcal{F}_N(\Gamma; R)$ is a quotient of

$$\tilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis dotted foams } F : \emptyset \to \Gamma$$

Dots lie on facets of the foam. Each facet f has a label $\ell(f) \in \{0, \ldots, N\}$.
Dotted foams

MOY graph Γ. The R-module $\mathcal{F}_N(\Gamma; R)$ is a quotient of

$$\tilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis } \text{dotted foams } F : \emptyset \to \Gamma$$

Dots lie on facets of the foam. Each facet f has a label $\ell(f) \in \{0, \ldots, N\}$. Each dot d on f has a weight $w(d) \in \{1, \ldots, \ell(f)\}$.

Joshua Wang

$\mathfrak{sl}(N)$ homology with mod N coefficients

November 7, 2021 8 / 18
Dotted foams

MOY graph Γ. The R-module $\mathcal{F}_N(\Gamma; R)$ is a quotient of

$$\widetilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis dotted foams } F : \emptyset \to \Gamma$$

Dots lie on facets of the foam. Each facet f has a label $\ell(f) \in \{0, \ldots, N\}$. Each dot d on f has a weight $w(d) \in \{1, \ldots, \ell(f)\}$.

A dot of weight w \quad with elementary symmetric polynomial e_w in $\ell(f)$ formal variables associated to f
Dotted foams

MOY graph Γ. The R-module $\widetilde{\mathcal{F}}_N(\Gamma; R)$ is a quotient of

$$\widetilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis dotted foams } F: \varnothing \to \Gamma$$

Dots lie on facets of the foam. Each facet f has a label $\ell(f) \in \{0, \ldots, N\}$. Each dot d on f has a weight $w(d) \in \{1, \ldots, \ell(f)\}$.

A dot of weight $w \leftrightarrow$ with elementary symmetric polynomial e_w in $\ell(f)$ formal variables associated to f

\[
\{\text{dots on } f\} \leftrightarrow P_f = \prod_{d \in f} e_{w(d)} \in \mathbb{Z}[(X_f)_1, \ldots, (X_f)_{\ell(f)}]^{\text{Sym}}
\]
Dotted foams

MOY graph Γ. The R-module $\tilde{\mathcal{F}}_N(\Gamma; R)$ is a quotient of

$$\tilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis dotted foams } F : \emptyset \to \Gamma$$

Dots lie on facets of the foam. Each facet f has a label $\ell(f) \in \{0, \ldots, N\}$. Each dot d on f has a weight $w(d) \in \{1, \ldots, \ell(f)\}$.

A dot of weight $w \leftrightarrow \text{wth elementary symmetric polynomial } e_w$

in $\ell(f)$ formal variables associated to f

$$\{\text{dots on } f\} \leftrightarrow P_f = \prod_{d \in f} e_{w(d)} \in \mathbb{Z}[\langle X_f \rangle_1, \ldots, \langle X_f \rangle_{\ell(f)}]^{\text{Sym}}$$

$$\{\text{dots on } F\} \leftrightarrow P = \prod_f P_f \in \bigotimes_f \mathbb{Z}[\langle X_f \rangle_1, \ldots, \langle X_f \rangle_{\ell(f)}]^{\text{Sym}}$$
Dotted foams

MOY graph Γ. The R-module $\mathcal{F}_N(\Gamma; R)$ is a quotient of

$$\tilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis dotted foams } F : \emptyset \rightarrow \Gamma$$

Dots lie on facets of the foam. Each facet f has a label $\ell(f) \in \{0, \ldots, N\}$. Each dot d on f has a weight $w(d) \in \{1, \ldots, \ell(f)\}$.

A dot of weight w \longleftrightarrow with elementary symmetric polynomial e_w in $\ell(f)$ formal variables associated to f

$$\{\text{dots on } f\} \longleftrightarrow P_f = \prod_{d \in f} e_{w(d)} \in \mathbb{Z}[(X_f)_1, \ldots, (X_f)_{\ell(f)}]^{\text{Sym}}$$

$$\{\text{dots on } F\} \longleftrightarrow P = \prod_F P_f \in \bigotimes_F \mathbb{Z}[(X_f)_1, \ldots, (X_f)_{\ell(f)}]^{\text{Sym}}$$

We think of $F = PF$ where F has no dots.
Dotted foams

MOY graph Γ. The R-module $\tilde{\mathcal{F}}_N(\Gamma; R)$ is a quotient of

$$\tilde{\mathcal{F}}_N(\Gamma; R) = \text{free } R\text{-module with basis dotted foams } F : \emptyset \to \Gamma$$

Dots lie on facets of the foam. Each facet f has a label $\ell(f) \in \{0, \ldots, N\}$. Each dot d on f has a weight $w(d) \in \{1, \ldots, \ell(f)\}$.

A dot of weight w \[\longleftrightarrow \] with elementary symmetric polynomial e_w in $\ell(f)$ formal variables associated to f

$$\{\text{dots on } f\} \longleftrightarrow P_f = \prod_{d \in f} e_{w(d)} \in \mathbb{Z}[(X_f)_1, \ldots, (X_f)_{\ell(f)}]^{\text{Sym}}$$

$$\{\text{dots on } F\} \longleftrightarrow P = \prod_f P_f \in \bigotimes_f \mathbb{Z}[(X_f)_1, \ldots, (X_f)_{\ell(f)}]^{\text{Sym}}$$

We think of $F = PF$ where F has no dots. Define $QF \in \tilde{\mathcal{F}}_N(\Gamma; R)$ for any

$$Q \in R[F] := \bigotimes_f R[(X_f)_1, \ldots, (X_f)_{\ell(f)}]^{\text{Sym}}$$
Dotted foams

\[F = \begin{array}{ccc}
0 & 1 & X \\
2 & Y, Z & YZ \\
1 & W &
\end{array} \]

\[R[F] = R[X, Y + Z, YZ, W] \]
Dotted foams

\[F = \begin{array}{c}
1 \\
2 \\
1
\end{array} \]

\[X, Y, Z \]

\[W \]

\[R[F] = R[X, Y + Z, YZ, W] \]

\[F = \begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
2 \\
1
\end{array} \]

\[X^3(Y + Z)(YZ) \]
Dotted foams

Given dotted foams $F, G: \emptyset \rightarrow \Gamma$, the union $F \cup \overline{G}$ is a closed dotted foam.
Dotted foams

Given dotted foams $F, G: \emptyset \to \Gamma$, the union $F \cup \overline{G}$ is a closed dotted foam. The Robert–Wagner evaluation of a closed dotted foam

$$\langle F \cup \overline{G} \rangle \in \mathbb{Z}[X_1, \ldots, X_N]^\text{Sym}$$

is a homogeneous symmetric polynomial.
Dotted foams

Given dotted foams $F, G : \emptyset \rightarrow \Gamma$, the union $F \cup \overline{G}$ is a closed dotted foam. The Robert–Wagner evaluation of a closed dotted foam

$$\langle F \cup \overline{G} \rangle \in \mathbb{Z}[X_1, \ldots, X_N]^\text{Sym}$$

is a homogeneous symmetric polynomial. Let $\langle F \cup \overline{G} \rangle_R$ be the image under $\mathbb{Z}[X_1, \ldots, X_N] \rightarrow R$ given by $X_i \mapsto 0$.

Given dotted foams $F, G : \emptyset \to \Gamma$, the union $F \cup \overline{G}$ is a closed dotted foam. The Robert–Wagner evaluation of a closed dotted foam

$$\langle F \cup \overline{G} \rangle \in \mathbb{Z}[X_1, \ldots, X_N]^{\text{Sym}}$$

is a homogeneous symmetric polynomial. Let $\langle F \cup \overline{G} \rangle_R$ be the image under $\mathbb{Z}[X_1, \ldots, X_N] \to R$ given by $X_i \mapsto 0$. Let

$$\mathcal{F}_N(\Gamma; R) = \frac{\tilde{\mathcal{F}}_N(\Gamma; R)}{\ker \langle -, - \rangle_R} \quad \langle F, G \rangle_R := \langle F \cup \overline{G} \rangle_R$$
Dotted foams

Given dotted foams $F, G : \emptyset \to \Gamma$, the union $F \cup \overline{G}$ is a closed dotted foam. The Robert–Wagner evaluation of a closed dotted foam

$$\langle F \cup \overline{G} \rangle \in \mathbb{Z}[X_1, \ldots, X_N]^{\text{Sym}}$$

is a homogeneous symmetric polynomial. Let $\langle F \cup \overline{G} \rangle_R$ be the image under $\mathbb{Z}[X_1, \ldots, X_N] \to R$ given by $X_i \mapsto 0$. Let

$$\mathcal{F}_N(\Gamma; R) = \frac{\widetilde{\mathcal{F}}_N(\Gamma; R)}{\ker \langle -,- \rangle_R} \quad \langle F, G \rangle_R := \langle F \cup \overline{G} \rangle_R$$

So $\sum_i a_i F_i = 0$ in $\mathcal{F}_N(\Gamma; R)$ if and only if $\sum_i a_i \langle F_i \cup \overline{G} \rangle_R = 0$ for every G.
Dotted foams

Given dotted foams $F, G : \emptyset \to \Gamma$, the union $F \cup \overline{G}$ is a closed dotted foam. The Robert–Wagner evaluation of a closed dotted foam

$$\langle F \cup \overline{G} \rangle \in \mathbb{Z}[X_1, \ldots, X_N]^\text{Sym}$$

is a homogeneous symmetric polynomial. Let $\langle F \cup \overline{G} \rangle_R$ be the image under $\mathbb{Z}[X_1, \ldots, X_N] \to R$ given by $X_i \mapsto 0$. Let

$$F_N(\Gamma; R) = \frac{\tilde{F}_N(\Gamma; R)}{\ker \langle -,- \rangle_R} \quad \langle F, G \rangle_R := \langle F \cup \overline{G} \rangle_R$$

So $\sum_i a_i F_i = 0$ in $F_N(\Gamma; R)$ if and only if $\sum_i a_i \langle F_i \cup \overline{G} \rangle_R = 0$ for every G.

If q lies on an edge e of Γ labeled 1, then $X_q : \tilde{F}_N(\Gamma; R) \to \tilde{F}_N(\Gamma; R)$ adds a dot of weight 1 to the facet adjacent to e.
Dotted foams

Given dotted foams $F, G : \emptyset \to \Gamma$, the union $F \cup \overline{G}$ is a closed dotted foam. The Robert–Wagner evaluation of a closed dotted foam

$$\langle F \cup \overline{G} \rangle \in \mathbb{Z}[X_1, \ldots, X_N]^{\text{Sym}}$$

is a homogeneous symmetric polynomial. Let $\langle F \cup \overline{G} \rangle_R$ be the image under $\mathbb{Z}[X_1, \ldots, X_N] \to R$ given by $X_i \mapsto 0$. Let

$$\mathcal{F}_N(\Gamma; R) = \frac{\tilde{\mathcal{F}}_N(\Gamma; R)}{\ker \langle -,- \rangle_R} \quad \langle F, G \rangle_R := \langle F \cup \overline{G} \rangle_R$$

So $\sum_i a_i F_i = 0$ in $\mathcal{F}_N(\Gamma; R)$ if and only if $\sum_i a_i \langle F_i \cup \overline{G} \rangle_R = 0$ for every G.

If q lies on an edge e of Γ labeled 1, then $X_q : \tilde{\mathcal{F}}_N(\Gamma; R) \to \tilde{\mathcal{F}}_N(\Gamma; R)$ adds a dot of weight 1 to the facet adjacent to e. This operator descends to $\mathcal{F}_N(\Gamma; R)$ because $\langle X_q F, G \rangle_R = \langle F, X_q G \rangle_R$.

Joshua Wang
$\mathfrak{sl}(N)$ homology with mod N coefficients
November 7, 2021
10 / 18
Construction of ∇

Define $\nabla : R[X_1, \ldots, X_k] \to R[X_1, \ldots, X_k]$ by $\nabla = \sum_{i=1}^{k} \frac{\partial}{\partial X_i}$.
Construction of ∇

Define $\nabla : \mathbb{R}[X_1, \ldots, X_k] \rightarrow \mathbb{R}[X_1, \ldots, X_k]$ by $\nabla = \sum_{i=1}^{k} \frac{\partial}{\partial X_i}$.

Define $\tilde{\nabla} : \tilde{\mathcal{F}}_N(\Gamma; R) \rightarrow \tilde{\mathcal{F}}_N(\Gamma; R)$ by $\nabla(PF) = \nabla(P)F$.
Construction of ∇

Define $\nabla : \mathbb{R}[X_1, \ldots, X_k] \to \mathbb{R}[X_1, \ldots, X_k]$ by $\nabla = \sum_{i=1}^{k} \frac{\partial}{\partial X_i}$.

Define $\nabla : \mathbb{F}_N(\Gamma; R) \to \mathbb{F}_N(\Gamma; R)$ by $\nabla(PF) = \nabla(P)F$.

\[\nabla \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \nabla \begin{bmatrix} X^3(Y + Z)(YZ) \end{bmatrix} \]
Construction of ∇

Define $\nabla : R[X_1, \ldots, X_k] \to R[X_1, \ldots, X_k]$ by $\nabla = \sum_{i=1}^{k} \frac{\partial}{\partial X_i}$.

Define $\nabla : \widetilde{\mathcal{F}}_N(\Gamma; R) \to \widetilde{\mathcal{F}}_N(\Gamma; R)$ by $\nabla(PF) = \nabla(P)F$.

$$\nabla = \nabla \left(X^3(Y + Z)(YZ) \right)$$

$$= 3X^2(Y + Z)(YZ) + 2X^3(YZ) + X^3(Y + Z)^2$$
Construction of ∇

Define $\nabla : R[X_1, \ldots, X_k] \to R[X_1, \ldots, X_k]$ by $\nabla = \sum_{i=1}^{k} \frac{\partial}{\partial X_i}$.

Define $\nabla : \tilde{F}_N(\Gamma; R) \to \tilde{F}_N(\Gamma; R)$ by $\nabla(PF) = \nabla(P)F$.

$$\nabla = \nabla \left(X^3(Y + Z)(YZ) \right) = 3X^2(Y + Z)(YZ) + 2X^3(YZ) + X^3(Y + Z)^2$$
Construction of \(\nabla \)

Leibniz rule \(\nabla (PQ) = (\nabla P)Q + P(\nabla Q) \) for polynomials implies:
Leibniz rule $\nabla(PQ) = (\nabla P)Q + P(\nabla Q)$ for polynomials implies:

- If F is a dotted foam and $Q \in R[F]$, then $\nabla(QF) = (\nabla Q)F + Q(\nabla F)$.

Leibniz rule $\nabla(PQ) = (\nabla P)Q + P(\nabla Q)$ for polynomials implies:

- If F is a dotted foam and $Q \in R[F]$, then $\nabla(QF) = (\nabla Q)F + Q(\nabla F)$.
- If $F : \Gamma \to \Gamma'$ and $G : \Gamma' \to \Gamma''$, then $\nabla(F \cup G) = \nabla(F) \cup G + F \cup \nabla(G)$.
Construction of ∇

Leibniz rule $\nabla(PQ) = (\nabla P)Q + P(\nabla Q)$ for polynomials implies:

- If F is a dotted foam and $Q \in R[F]$, then $\nabla(QF) = (\nabla Q)F + Q(\nabla F)$.
- If $F : \Gamma \to \Gamma'$ and $G : \Gamma' \to \Gamma''$, then $\nabla(F \cup G) = \nabla(F) \cup G + F \cup \nabla(G)$

Proposition (W. 2021)

*Let F be a closed dotted foam. Then $\langle \nabla F \rangle = \nabla\langle F \rangle$.***
Construction of ∇

Leibniz rule $\nabla(PQ) = (\nabla P)Q + P(\nabla Q)$ for polynomials implies:

- If F is a dotted foam and $Q \in R[F]$, then $\nabla(QF) = (\nabla Q)F + Q(\nabla F)$.
- If $F : \Gamma \to \Gamma'$ and $G : \Gamma' \to \Gamma''$, then $\nabla(F \cup G) = \nabla(F) \cup G + F \cup \nabla(G)$

Proposition (W. 2021)

Let F be a closed dotted foam. Then $\langle \nabla F \rangle = \nabla \langle F \rangle$.

A coloring c associates to each facet f a subset of $\{X_1, \ldots, X_N\}$ of size $\ell(f)$

$$
\langle F \rangle = \sum_c (-1)^{s(F,c)} \frac{P(F, c)}{Q(F, c)} \\
\quad P(F, c) = \text{evaluate } P = \prod_f P_f \text{ according to } c \\
\quad Q(F, c) = \text{product of } (X_i - X_j) \text{ and inverses}
$$
Construction of \(\nabla \)

Leibniz rule \(\nabla(PQ) = (\nabla P)Q + P(\nabla Q) \) for polynomials implies:

- If \(F \) is a dotted foam and \(Q \in R[F] \), then \(\nabla(QF) = (\nabla Q)F + Q(\nabla F) \).
- If \(F : \Gamma \to \Gamma' \) and \(G : \Gamma' \to \Gamma'' \), then \(\nabla(F \cup G) = \nabla(F) \cup G + F \cup \nabla(G) \)

Proposition (W. 2021)

Let \(F \) be a closed dotted foam. Then \(\langle \nabla F \rangle = \nabla \langle F \rangle \).

A coloring \(c \) associates to each facet \(f \) a subset of \(\{X_1, \ldots, X_N\} \) of size \(\ell(f) \)

\[
\langle F \rangle = \sum_c (-1)^{s(F,c)} \frac{P(F, c)}{Q(F, c)}
\]

\(P(F, c) = \text{evaluate } P = \prod_f P_f \) according to \(c \)

\(Q(F, c) = \text{product of } (X_i - X_j) \) and inverses

Proof.

\[
\nabla \left(\sum_c (-1)^{s(F,c)} \frac{P(F, c)}{Q(F, c)} \right) = \sum_c (-1)^{s(F,c)} \frac{\nabla P(F, c)}{Q(F, c)}
\]
Corollary

If \(\text{char}(R) \mid N \), then \(\langle \nabla F \rangle_R = 0 \) for all closed dotted foams \(F \).
Construction of ∇

Corollary

If $\text{char}(R) \mid N$, then $\langle \nabla F \rangle_R = 0$ for all closed dotted foams F.

$\langle \nabla F \rangle_R$ is the image of the homogeneous polynomial $\langle \nabla F \rangle$ under

$$
\mathbb{Z}[X_1, \ldots, X_N]^\text{Sym} \to R \quad X_i \mapsto 0.
$$
Corollary

If \(\text{char}(R) \mid N \), then \(\langle \nabla F \rangle_R = 0 \) for all closed dotted foams \(F \).

\(\langle \nabla F \rangle_R \) is the image of the homogeneous polynomial \(\langle \nabla F \rangle \) under

\[
\mathbb{Z}[X_1, \ldots, X_N]^\text{Sym} \rightarrow R \quad X_i \mapsto 0.
\]

Only nontrivial case to check: \(\deg \langle \nabla F \rangle = 0 \).
Construction of ∇

Corollary

If $\text{char}(R) \mid N$, *then* $\langle \nabla F \rangle_R = 0$ *for all closed dotted foams* F.

$\langle \nabla F \rangle_R$ *is the image of the homogeneous polynomial* $\langle \nabla F \rangle$ *under*

$$
\mathbb{Z}[X_1, \ldots, X_N]^\text{Sym} \to R \quad X_i \mapsto 0.
$$

Only nontrivial case to check: $\text{deg} \langle \nabla F \rangle = 0$.

$$
\langle F \rangle = m(X_1 + \cdots + X_N) \implies \langle \nabla F \rangle = \nabla \langle F \rangle = mN.
$$
Corollary

If char(\(R\)) \(\mid\) \(N\), then \(\langle \nabla F \rangle_R = 0\) for all closed dotted foams \(F\).

\(\langle \nabla F \rangle_R\) is the image of the homogeneous polynomial \(\langle \nabla F \rangle\) under

\[\mathbb{Z}[X_1, \ldots, X_N]^{\text{Sym}} \to R \quad X_i \mapsto 0.\]

Only nontrivial case to check: deg\(\langle \nabla F \rangle = 0\).

\[\langle F \rangle = m(X_1 + \cdots + X_N) \implies \langle \nabla F \rangle = \nabla \langle F \rangle = mN.\]

Corollary

If char(\(R\)) \(\mid\) \(N\), then \(\nabla\) descends to a map \(\tilde{\mathcal{F}}_N(\Gamma; R) \to \mathcal{F}_N(\Gamma; R)\).
Corollary

If \(\text{char}(R) \mid N \), then \(\langle \nabla F \rangle_R = 0 \) for all closed dotted foams \(F \).

\(\langle \nabla F \rangle_R \) is the image of the homogeneous polynomial \(\langle \nabla F \rangle \) under

\[
\mathbb{Z}[X_1, \ldots, X_N]^\text{Sym} \rightarrow R \quad X_i \mapsto 0.
\]

Only nontrivial case to check: \(\deg \langle \nabla F \rangle = 0 \).

\[
\langle F \rangle = m(X_1 + \cdots + X_N) \implies \langle \nabla F \rangle = \nabla \langle F \rangle = mN.
\]

Corollary

If \(\text{char}(R) \mid N \), then \(\nabla \) descends to a map \(\mathcal{F}_N(\Gamma; R) \rightarrow \mathcal{F}_N(\Gamma; R) \).

If \(\sum_i a_i \langle F_i, G \rangle_R = 0 \) for all \(G \), then \(\sum_i a_i \langle \nabla F_i, G \rangle_R = 0 \) for all \(G \):
Construction of ∇

Corollary

If $\text{char}(R) \mid N$, then $\langle \nabla F \rangle_R = 0$ for all closed dotted foams F.

$\langle \nabla F \rangle_R$ is the image of the homogeneous polynomial $\langle \nabla F \rangle$ under

$$Z[X_1, \ldots, X_N]^\text{Sym} \rightarrow R \quad X_i \mapsto 0.$$

Only nontrivial case to check: $\deg \langle \nabla F \rangle = 0$.

$$\langle F \rangle = m(X_1 + \cdots + X_N) \implies \langle \nabla F \rangle = \nabla \langle F \rangle = mN.$$

Corollary

If $\text{char}(R) \mid N$, then ∇ descends to a map $F_N(\Gamma; R) \rightarrow F_N(\Gamma; R)$.

If $\sum_i a_i \langle F_i, G \rangle_R = 0$ for all G, then $\sum_i a_i \langle \nabla F_i, G \rangle_R = 0$ for all G:

$$0 = \sum_i a_i \langle \nabla (F_i \cup \overline{G}) \rangle_R = \sum_i a_i \langle \nabla F_i, G \rangle_R + \sum_i a_i \langle F_i, \nabla G \rangle_R.$$
Proof of basepoint-independence

Let q, r be basepoints on edges of \square labeled 1. Set $X = X_q$ and $Y = X_r$.

$\nabla = 1_F N \cdot 1_R$; $\nabla = 1_F N \cdot 1_R$

For each do/tshed foam F, we want to show that $X = X_q$ and $Y = X_r$.

The proof is just a computation using the Leibniz rule, the identity $X = 0$, and Wilson's theorem in elementary number theory.
Proof of basepoint-independence

Let q, r be basepoints on edges of Γ labeled 1. Set $X = X_q$ and $Y = X_r$.

For each foam $\mathcal{F}_N(\Gamma; R)$, we want to show that $X^{N-1} \nabla^{N-1} p Y^{N-1} \nabla^{N-1} p X^{N-1} \mathcal{F}_N(\Gamma; R)$ is prime if N is prime and composite if N is composite.

The proof is just a computation using the Leibniz rule, the identity $X^{N-1} = 0$, and Wilson's theorem in elementary number theory.
Proof of basepoint-independence

Let q, r be basepoints on edges of Γ labeled 1. Set $X = X_q$ and $Y = X_r$.

For each dotted foam F, we want to show that

$$X^{N-1} \nabla^{N-1}(Y^{N-1} \nabla^{N-1}(X^{N-1}F)) = \begin{cases} X^{N-1}F & N \text{ is prime} \\ 0 & N \text{ is composite} \end{cases}$$
Proof of basepoint-independence

Let q, r be basepoints on edges of Γ labeled 1. Set $X = X_q$ and $Y = X_r$.

\[
\begin{array}{c}
\chi^{N-1}\nabla^{N-1}
\end{array}
\begin{array}{c}
\chi^{N-1}\nabla^{N-1}
\end{array}
\]

\[
X^{N-1}\mathcal{F}_N(\Gamma; R) \leftrightarrow Y^{N-1}\mathcal{F}_N(\Gamma; R)
\]

For each dotted foam F, we want to show that

\[
\chi^{N-1}\nabla^{N-1}(Y^{N-1}\nabla^{N-1}(X^{N-1}F)) = \begin{cases}
\chi^{N-1}F & N \text{ is prime} \\
0 & N \text{ is composite}
\end{cases}
\]

The proof is just a computation using the Leibniz rule, the identity $\chi^N = 0$, and Wilson’s theorem in elementary number theory.
Proof for $N = 2$.

\[
X \nabla (Y \nabla (XF)) = X \nabla (Y(F + X \nabla F)) \\
= X(F + X \nabla F + Y(\nabla F + \nabla F + X \nabla^2 F)) \\
(X^2 = 0) = X(F + 2Y \nabla F) \\
\equiv XF \mod 2
\]
Proof of basepoint-independence

Proof for $N = 2$.

\[
X \nabla (Y \nabla (XF)) = X \nabla (Y(F + X \nabla F)) \\
= X(F + X \nabla F + Y(\nabla F + \nabla F + X \nabla^2 F)) \\
(X^2 = 0) \quad = X(F + 2Y \nabla F) \\
\equiv XF \mod 2
\]

Proof of $N = 3$.

\[
X^2 \nabla^2 (Y^2 \nabla^2 (X^2 F)) = X^2 \nabla^2 (Y^2 \nabla (2XF + X^2 \nabla F)) \\
= X^2 \nabla^2 (2Y^2 F + 4XY^2 \nabla F + X^2 Y^2 \nabla^2 F) \\
(X^3 = 0) \quad = X^2 \nabla (4YF + (6X^2 + 8XY) \nabla F + (6XY^2) \nabla^2 F) \\
(X^3 = 0) \quad = X^2 (4F + 24Y \nabla F + 12Y^2 \nabla^2 F) \\
\equiv X^2 F \mod 3
\]
Proof of basepoint-independence

Proof for $N = 4$.

\[
X^3 \nabla^3 (Y^3 \nabla^3 (X^3 F)) = X^3 \nabla^3 (Y^3 (6F + 18X \nabla F + 9X^2 \nabla^2 F + X^3 \nabla^3 F)) \\
= X^3 (36F + 432Y \nabla F + 540Y^2 \nabla^2 F + 120Y^3 \nabla^3 F) \\
\equiv 0 \mod 4
\]
Proof of basepoint-independence

Proof for $N = 4$.

\[
X^3 \nabla^3 (Y^3 \nabla^3 (X^3 F)) = X^3 \nabla^3 (Y^3 (6F + 18X \nabla F + 9X^2 \nabla^2 F + X^3 \nabla^3 F))
\]
\[
= X^3 (36F + 432Y \nabla F + 540Y^2 \nabla^2 F + 120Y^3 \nabla^3 F)
\]
\[
\equiv 0 \pmod{4}
\]

In general, the coefficient of $X^{N-1}F$ is

\[
(N - 1)! (N - 1)! \pmod{N} = \begin{cases}
1 & N \text{ is prime} \\
0 & N \text{ is composite}
\end{cases}
\]
Proof of basepoint-independence

Proof for $N = 4$.

\[
X^3 \nabla^3 (Y^3 \nabla^3 (X^3 F)) = X^3 \nabla^3 (Y^3 (6F + 18X \nabla F + 9X^2 \nabla^2 F + X^3 \nabla^3 F)) \\
= X^3 (36F + 432Y \nabla F + 540Y^2 \nabla^2 F + 120Y^3 \nabla^3 F) \\
\equiv 0 \mod 4
\]

In general, the coefficient of $X^{N-1}F$ is

\[
(N - 1)!(N - 1)! \mod N = \begin{cases}
1 & N \text{ is prime} \\
0 & N \text{ is composite}
\end{cases}
\]

The coefficient of $X^{N-1}Y^\ell \nabla^\ell F$ for $1 \leq \ell \leq N - 1$ is

\[
\frac{(N - 1)!(N - 1)!}{\ell!} \binom{N - 1}{\ell} \sum_{i=0}^{\ell} \binom{N - 1}{i} \binom{\ell}{i} \mod N = 0
\]
Split link detection (work in progress)

Split link detection for $\mathfrak{sl}(P)$ link homology in characteristic P, where P is prime, generalizing Lipshitz–Sarkar’s split link detection result for Khovanov homology in characteristic 2.
Split link detection (work in progress)

Split link detection for $\mathfrak{sl}(P)$ link homology in characteristic P, where P is prime, generalizing Lipshitz–Sarkar’s split link detection result for Khovanov homology in characteristic 2.

Theorem (Lipshitz-Sarkar 2019)

Let q, r be basepoints on an oriented link L, and view $\overline{\text{Kh}}(L, q; \mathbb{Z}/2)$ as a module over $\mathbb{Z}/2[X]/X^2$ using X_r.

Theorem (W. in progress)

Let q, r be basepoints on an oriented link L, and view $\overline{\text{KR}}_P(L, q; \mathbb{Z}/P)$ as a module over $\mathbb{Z}/P[X]/X^2$ using X_r.

Joshua Wang
Split link detection (work in progress)

Split link detection for $\mathfrak{sl}(P)$ link homology in characteristic P, where P is prime, generalizing Lipshitz–Sarkar’s split link detection result for Khovanov homology in characteristic 2.

Theorem (Lipshitz-Sarkar 2019)

Let q, r be basepoints on an oriented link L, and view $\overline{\text{Kh}}(L, q; \mathbb{Z}/2)$ as a module over $(\mathbb{Z}/2)[X]/X^2$ using X_r. Then $\overline{\text{Kh}}(L, q; \mathbb{Z}/2)$ is a free module over $(\mathbb{Z}/2)[X]/X^2$ if and only if there is a 2-sphere in the complement of L that separates q and r.
Split link detection for $\mathfrak{sl}(P)$ link homology in characteristic P, where P is prime, generalizing Lipshitz–Sarkar’s split link detection result for Khovanov homology in characteristic 2.

Theorem (Lipshitz-Sarkar 2019)

Let q, r be basepoints on an oriented link L, and view $\overline{\text{Kh}}(L, q; \mathbb{Z}/2)$ as a module over $(\mathbb{Z}/2)[X]/X^2$ using X_r. Then $\overline{\text{Kh}}(L, q; \mathbb{Z}/2)$ is a free module over $(\mathbb{Z}/2)[X]/X^2$ if and only if there is a 2-sphere in the complement of L that separates q and r.

Theorem (W. in progress)

Let q, r be basepoints on an oriented link L, and view $\overline{\text{KR}}_P(L, q; \mathbb{Z}/P)$ as a module over $(\mathbb{Z}/P)[X]/X^P$ using X_r. Then $\overline{\text{KR}}_P(L, q; \mathbb{Z}/P)$ is a free module over $(\mathbb{Z}/P)[X]/X^P$ if and only if there is a 2-sphere in the complement of L that separates q and r.
Thanks for listening!