An Unknotting Number for Transverse Knots

Lisa Traynor

Bryn Mawr College

April 2022

What are some projects for undergraduates in contact/symplectic topology?

What are some projects for undergraduates in contact/symplectic topology?

Today discuss a student project on transverse knots.

Braids have close connections to tranverse knots!

Today: Results from Senior Honors Thesis work of Blossom Jeong, BMC 2020

Comparative Literature + Math Double Major

Unknotting Number for Smooth Knots

Given a smooth knot K, the **unknotting number** u(K) measures the minimal number of times that a knot must cross through itself in order to become an unknot

Unknotting Number for Smooth Knots

Given a smooth knot K, the **unknotting number** u(K) measures the minimal number of times that a knot must cross through itself in order to become an unknot

$$()-()-()-()$$

Unknotting Number for Smooth Knots

Given a smooth knot K, the **unknotting number** u(K) measures the minimal number of times that a knot must cross through itself in order to become an unknot

$$()-()-()-()$$

 $u(K) = n \implies \exists$ projection of *K* such that changing *n* crossings turns projection into projection of unknot

Standard Contact Structure:

$$\xi_{std} = \ker \alpha, \qquad \alpha = dz - ydx$$
$$= \langle \vec{j}, \vec{i} + y\vec{k} \rangle$$

Standard Contact Structure:

$$\xi_{std} = \ker \alpha, \qquad \alpha = dz - ydx$$
$$= \langle \vec{j}, \vec{i} + y\vec{k} \rangle$$

Natural Curves:

• Legendrian Curves: $\Lambda(t)$ s.t. $\alpha\left(\frac{d}{dt}\Lambda(t)\right) = 0$

Standard Contact Structure:

$$\xi_{std} = \ker \alpha, \qquad \alpha = dz - ydx$$
$$= \langle \vec{j}, \vec{i} + y\vec{k} \rangle$$

Natural Curves:

- Legendrian Curves: $\Lambda(t)$ s.t. $\alpha\left(\frac{d}{dt}\Lambda(t)\right) = 0$
- Transverse Curves: T(t) s.t. $\alpha\left(\frac{d}{dt}T(t)\right) > 0$

There are many smooth curves in 3-dimensional space that project to this curve:

There are many smooth curves in 3-dimensional space that project to this curve:

But, there is a **special** curve where the missing 3rd coordinate is given by the slope! This makes the curve **Legendrian**.

There are many smooth curves in 3-dimensional space that project to this curve:

But, there is a **special** curve where the missing 3rd coordinate is given by the slope! This makes the curve **Legendrian**.

Constructing Legendrian Knots

Front Projection:

Cusped curve in the plane (without vertical tangents) can be lifted to 3-space using slope as the third coordinate: $dz - ydx = 0 \implies y = dz/dx$.

Constructing Legendrian Knots

Front Projection:

Cusped curve in the plane (without vertical tangents) can be lifted to 3-space using slope as the third coordinate: $dz - ydx = 0 \implies y = dz/dx$.

Projection crossing resolved by slope:

Transverse curves are more flexible:

$$T(t) = (x(t), y(t), z(t))$$
$$z'(t) - y(t)x'(t) > 0 \implies z'(t) > y(t)x'(t)$$

Transverse curves are more flexible:

$$T(t) = (x(t), y(t), z(t))$$
$$z'(t) - y(t)x'(t) > 0 \implies z'(t) > y(t)x'(t)$$

Get "slope" bounds on y(t):

• When
$$x'(t) > 0$$
, $y(t) < \frac{dz}{dx}$.

Transverse curves are more flexible:

$$T(t) = (x(t), y(t), z(t))$$
$$z'(t) - y(t)x'(t) > 0 \implies z'(t) > y(t)x'(t)$$

Get "slope" bounds on y(t):

- When x'(t) > 0, $y(t) < \frac{dz}{dx}$.
- When x'(t) < 0, $y(t) > \frac{dz}{dx}$.

Transverse Forbidden Shapes

In the *xz*-diagram of a transverse curve:

• There are no downward vertical tangencies:

Transverse Forbidden Shapes

In the *xz*-diagram of a transverse curve:

• There are no downward vertical tangencies:

• There are no +-down-down crossings:

Forbidding Downward Vertical Tangencies

When x'(t) > 0, y(t) < dz/dx.
When x'(t) < 0, y(t) > dz/dx.

Forbidding Downward Vertical Tangencies

- When x'(t) > 0, $y(t) < \frac{dz}{dx}$.
- When x'(t) < 0, $y(t) > \frac{dz}{dx}$.

Forbidding +-Down-Down Crossings

- When x'(t) > 0, $y(t) < \frac{dz}{dx}$.
- When x'(t) < 0, $y(t) > \frac{dz}{dx}$.

Every smooth knot has a transverse representative.

Every smooth knot has a transverse representative.

• Start with smooth projection.

Every smooth knot has a transverse representative.

- Start with smooth projection.
- Remove forbidden downward vertical tangencies:

Every smooth knot has a transverse representative.

- Start with smooth projection.
- Remove forbidden downward vertical tangencies:

• Remove forbidden +-down-down crossings:

Moving Transverse Knots

Transverse Reidemeister Moves: no +-down-down-crossings:

FIGURE 24. Transverse Reidemeister II moves.

FIGURE 25. Transverse Reidemeister III moves.

Transverse Modification:

Stabilization Operation

Transverse Modification:

Stabilization Operation

Classical Transverse Invariant: Self-Linking Number

sl(T) = writhe of *xz*-projection

Stabilization lowers sl by 2.

Organize all transverse representatives of a fixed knot type with a ray: (Bennequin) $sl(T) \le 2g(K_T) - 1$

Organize all transverse representatives of a fixed knot type with a ray: (Bennequin) $sI(T) \le 2g(K_T) - 1$

Example: Ray of transverse unknots $^{++} OC$

Organize all transverse representatives of a fixed knot type with a ray: (Bennequin) $sl(T) \le 2g(K_T) - 1$

-5

Example: Ray of transverse unknots

Unknot is **transversely simple**: transverse representatives classified by sl #.

Organize all transverse representatives of a fixed knot type with a ray: (Bennequin) $sl(T) \le 2g(K_T) - 1$

Example: Ray of transverse unknots

Unknot is **transversely simple**: transverse representatives classified by sl #.

∃ non-transversely simple, e.g. (2,3)-cable of (2,3)-torus knot [Etnyre-Honda]

-5

Lisa Traynor (Bryn Mawr)

Transverse Unknotting Number

Unknotting in the Contact World

Legendrian Unknotting: ??

Unknotting in the Contact World

Legendrian Unknotting: ??

Transverse Unknotting: Use the following crossing changes

Transverse Crossing Changes

Unknotting in the Contact World

Legendrian Unknotting: ??

Transverse Unknotting: Use the following crossing changes

Transverse Crossing Changes

Rigid Crossing: --down-down crossing

Lisa Traynor (Bryn Mawr)

Transverse Unknotting Number

If T' is obtained from T by a transverse crossing change, then

If T' is obtained from T by a transverse crossing change, then

• T' is a transverse knot, and

If T' is obtained from T by a transverse crossing change, then

- T' is a transverse knot, and
- |sl(T') sl(T)| = 2.

Q: Can every transverse knot be "unknotted" by allowable crossing changes?

Q: Can every transverse knot be "unknotted" by allowable crossing changes?

All rigid crossings!

Q: Can every transverse knot be "unknotted" by allowable crossing changes?

All rigid crossings!

After transverse isotopy, can we perform transverse crossing changes to convert to a transverse unknot?

Claim: Every smooth knot type has a transverse representative that can be converted to a transverse unknot by passing through self intersections.

Claim: Every smooth knot type has a transverse representative that can be converted to a transverse unknot by passing through self intersections.

• Start with any transverse representative.

Claim: Every smooth knot type has a transverse representative that can be converted to a transverse unknot by passing through self intersections.

- Start with any transverse representative.
- Get another transverse representative after removing rigid crossings:

Claim: Every smooth knot type has a transverse representative that can be converted to a transverse unknot by passing through self intersections.

- Start with any transverse representative.
- Get another transverse representative after removing rigid crossings:

• Standard topological argument shows that crossing changes can be performed to get to an unknot.

Smooth World: there is a unique unknot.

Contact World: there are an infinite number of transverse unknots.

Smooth World: there is a unique unknot.

Contact World: there are an infinite number of transverse unknots.

Q: Can we always get to the "simplest" transverse unknot?

Smooth World: there is a unique unknot.

Contact World: there are an infinite number of transverse unknots.

Q: Can we always get to the "simplest" transverse unknot?

A: Yes!

Claim: We can move between any two transverse unknots by transverse crossing changes.

Claim: We can move between any two transverse unknots by transverse crossing changes.

• All transverse unknots are related by stabilization.

Claim: We can move between any two transverse unknots by transverse crossing changes.

- All transverse unknots are related by stabilization.
- Stabilization/destabilization can be done by allowable crossing changes:

Theorem: If T, T' are transversal representatives of the same knot type \mathcal{K} , then can move between T and T' by transversal crossing changes in such a way that all transversal knots along the way are in \mathcal{K} .

Theorem: If T, T' are transversal representatives of the same knot type \mathcal{K} , then can move between T and T' by transversal crossing changes in such a way that all transversal knots along the way are in \mathcal{K} .

• After stabilization *T* and *T'* are transversely isotopic. [Fuchs-Tabachnikov] **Theorem:** If T, T' are transversal representatives of the same knot type \mathcal{K} , then can move between T and T' by transversal crossing changes in such a way that all transversal knots along the way are in \mathcal{K} .

- After stabilization *T* and *T'* are transversely isotopic. [Fuchs-Tabachnikov]
- Stabilize via transverse crossing changes, transverse isotopy, destabilize via transverse crossing changes.

Corollary: For all knot types \mathcal{K} , any transverse representative \mathcal{T} of \mathcal{K} can be converted to a (and thus any) transverse unknot by transverse crossing changes.

Corollary: For all knot types \mathcal{K} , any transverse representative \mathcal{T} of \mathcal{K} can be converted to a (and thus any) transverse unknot by transverse crossing changes.

• Earlier saw that there exists a representation T' of \mathcal{K} with a projection that can be unknotted.

Corollary: For all knot types \mathcal{K} , any transverse representative \mathcal{T} of \mathcal{K} can be converted to a (and thus any) transverse unknot by transverse crossing changes.

- Earlier saw that there exists a representation T' of \mathcal{K} with a projection that can be unknotted.
- By previous result, we can move from *T* to *T'* via transverse crossing changes.

Transverse Unknotting number

Definition: A transverse knot *T* has **transverse unknotting number** *n* if there exists a front diagram of *T* such that transversely changing *n* crossings in the diagram turns *T* into the transverse unknot *U* with sI(U) = -1, and there is no diagram of *T* such that fewer crossing changes would have produced the transverse unknot with self-linking number -1.

Transverse Unknotting number

Definition: A transverse knot *T* has **transverse unknotting number** *n* if there exists a front diagram of *T* such that transversely changing *n* crossings in the diagram turns *T* into the transverse unknot *U* with sI(U) = -1, and there is no diagram of *T* such that fewer crossing changes would have produced the transverse unknot with self-linking number -1.

Notation:
$$U_{-1}^{h}(T)$$
:

Transverse Unknotting number

Definition: A transverse knot *T* has **transverse unknotting number** *n* if there exists a front diagram of *T* such that transversely changing *n* crossings in the diagram turns *T* into the transverse unknot *U* with sI(U) = -1, and there is no diagram of *T* such that fewer crossing changes would have produced the transverse unknot with self-linking number -1.

Notation:
$$U_{-1}^{h}(T)$$
:

World of immersed transverse knots: the transverse unknotting number is the minimum number of times the knot must pass through itself in order to become the transverse unknot with self-linking number -1.

Lower Bound for Transversal Unknotting Number

Get upper bounds to $U_{-1}^{h}(T)$ by constructions.

Get upper bounds to $U_{-1}^{h}(T)$ by constructions.

Lower bound:

Lemma: Suppose *T* is a transverse knot in the smooth knot type \mathcal{K} . Then

$$\max\left\{u(\mathcal{K}), \left|\frac{sl(T)+1}{2}\right|\right\} \leq U_{-1}^{h}(T),$$

where $u(\mathcal{K})$ is the smooth unknotting number.

Example: $\mathcal{K} = (2, -5)$ -torus knot: transversely simple with $\overline{sl}(\mathcal{K}) = -7$.

Example: $\mathcal{K} = (2, -5)$ -torus knot: transversely simple with $\overline{sl}(\mathcal{K}) = -7$.

Max s/ representative T:

Example: $\mathcal{K} = (2, -5)$ -torus knot: transversely simple with $\overline{sl}(\mathcal{K}) = -7$.

Max s/ representative T:

$$sl(T) = -7, u(\mathcal{K}) = 2 \implies \max\left\{u(\mathcal{K}), \left|\frac{sl(T)+1}{2}\right|\right\} = 3 \le U_{-1}^{h}(T).$$

Example: $\mathcal{K} = (2, -5)$ -torus knot: transversely simple with $\overline{sl}(\mathcal{K}) = -7$.

Max *sl* representative *T*:

$$sl(T) = -7, u(\mathcal{K}) = 2 \implies \max\left\{u(\mathcal{K}), \left|\frac{sl(T)+1}{2}\right|\right\} = 3 \le U_{-1}^{h}(T).$$

For any transverse representative T' of \mathcal{K} ,

$$u_{-1}^{\dagger}(T') = \left|\frac{sl(T')+1}{2}\right|$$

.

Have established an unknotting number for transverse knots.

Q: What are some other questions related to unknotting in the transverse world?

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O'Keefe, Perez, Rawdon, and Zimmer, Journal of Knot Theory and Its Ramifications (2017).

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O'Keefe, Perez, Rawdon, and Zimmer, Journal of Knot Theory and Its Ramifications (2017).

Defn: A smooth knot K_1 is an **ancestor** of K_2 if a diagram for K_2 can be obtained from a minimum crossing diagram of K_1 by some number of crossing changes.

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O'Keefe, Perez, Rawdon, and Zimmer, Journal of Knot Theory and Its Ramifications (2017).

Defn: A smooth knot K_1 is an **ancestor** of K_2 if a diagram for K_2 can be obtained from a minimum crossing diagram of K_1 by some number of crossing changes.

A knot with crossing number *n* is **fertile** if it is an ancestor of every knot with crossing number less than *n*.

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O'Keefe, Perez, Rawdon, and Zimmer, Journal of Knot Theory and Its Ramifications (2017).

Defn: A smooth knot K_1 is an **ancestor** of K_2 if a diagram for K_2 can be obtained from a minimum crossing diagram of K_1 by some number of crossing changes.

A knot with crossing number *n* is **fertile** if it is an ancestor of every knot with crossing number less than *n*.

Examples:

 $11_a 135$ is an ancestor of the trefoil;

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O'Keefe, Perez, Rawdon, and Zimmer, Journal of Knot Theory and Its Ramifications (2017).

Defn: A smooth knot K_1 is an **ancestor** of K_2 if a diagram for K_2 can be obtained from a minimum crossing diagram of K_1 by some number of crossing changes.

A knot with crossing number *n* is **fertile** if it is an ancestor of every knot with crossing number less than *n*.

 $11_a 135$ is an ancestor of the trefoil;

7₆ is fertile.

Properties of Ancestor-Descendant Relationship

• If don't require minimum crossings in diagram of ancestor, all knots are related by ancestor-descendant.

Properties of Ancestor-Descendant Relationship

• If don't require minimum crossings in diagram of ancestor, all knots are related by ancestor-descendant.

• Every knot is an ancestor of the unknot.

Properties of Ancestor-Descendant Relationship

• If don't require minimum crossings in diagram of ancestor, all knots are related by ancestor-descendant.

- Every knot is an ancestor of the unknot.
- The unknot is not an ancestor of any non-trivial knot.

"Insular Families":

- twist descendants are twist knots;
- (2, *p*)-torus knot descendants are (2, *q*)-torus knots.

"Insular Families":

- twist descendants are twist knots;
- (2, *p*)-torus knot descendants are (2, *q*)-torus knots.
- Hanaki [2020]: There are no alternating fertile knots with crossing number > 7.

"Insular Families":

- twist descendants are twist knots;
- (2, *p*)-torus knot descendants are (2, *q*)-torus knots.
- Hanaki [2020]: There are no alternating fertile knots with crossing number > 7.
- Ito [2021]: A knot whose minimum crossing number c(K) is even 3 and greater than 30 is not fertile.

Q: What is the contact world analogue of this Ancestor-Descendant Relationship?

Defn: A sequence of transverse knots $(T_1, T_2, ..., T_n)$ is a **transverse family tree** if each T_{i+1} can be obtained from T_i by a single transverse crossing change.

- **Defn:** A sequence of transverse knots $(T_1, T_2, ..., T_n)$ is a **transverse family tree** if each T_{i+1} can be obtained from T_i by a single transverse crossing change.
- A transverse family tree is:
 - maximal if each T_i has maximal self-linking number in its knot type.

- **Defn:** A sequence of transverse knots $(T_1, T_2, ..., T_n)$ is a **transverse family tree** if each T_{i+1} can be obtained from T_i by a single transverse crossing change.
- A transverse family tree is:
 - maximal if each T_i has maximal self-linking number in its knot type.
 - **increasing (decreasing)** if the self-linking numbers of *T_i* are strictly increasing (decreasing).

Given any smooth knot types K_1, K_2 , there exists a transverse family tree (T_1, \ldots, T_2) where T_1 is in the knot type of K_1 , T_2 is in the knot type of K_2 .

Given any smooth knot types K_1, K_2 , there exists a transverse family tree (T_1, \ldots, T_2) where T_1 is in the knot type of K_1 , T_2 is in the knot type of K_2 .

Moreover, we can assume that T_1 and T_2 have maximum self-linking numbers (but not that all knots in the family tree have maximal self-linking numbers).

Given any smooth knot types K_1, K_2 , there exists a transverse family tree (T_1, \ldots, T_2) where T_1 is in the knot type of K_1 , T_2 is in the knot type of K_2 .

Moreover, we can assume that T_1 and T_2 have maximum self-linking numbers (but not that all knots in the family tree have maximal self-linking numbers).

Q: What are examples of maximal transverse family trees?

Twist Family Trees

FIGURE 34. Twist knots.

Theorem 7.4 (Twist Knot Transverse Family Trees).

- For any odd m ≥ 1, there exists a maximal decreasing transverse family tree (T_m, T_{m-2},..., T₁), where T_j is a transverse representative of the twist knot K_j.
- (2) For any even $m \ge 2$, there exists a maximal decreasing transverse family tree $(T_m, T_{m-2}, \ldots, T_2)$, where T_i is a transverse representative of the twist knot K_i .
- (3) There exists a transverse family tree $(T_m, U, T_{m-1}, U, \ldots, T_1)$, where T_j is a transverse representative of the twist knot K_j and U is a transverse unknot.

Torus Knot Family Trees

Theorem 7.6 ((2, p)-Torus Knot Transverse Family Trees).

- For all odd p ≥ 3, there exists a maximal decreasing transverse family tree (T_{2,p}, T_{2,p-2},..., T_{2,3}), where T_{2,j} is a transverse representative of the torus knot K_{2,j}.
- (2) For all odd n ≤ -3, there exists a maximal increasing transverse family tree (T_{2,n}, T_{2,n+2},..., T_{2,-3}), where T_{2,i} is a transverse representative of torus knot K_{2,i}.

FIGURE 42. A transverse representative of a torus knot $K_{2,p}$ where p is odd, (a) when p is positive and (b) when p is negative. We will call each knot T_+ and T_- respectively.

Project Evaluation:

• Very accessible with knot theory background.

Project Evaluation:

• Very accessible with knot theory background.

• Nice way to rethink knot theory results.

Project Evaluation:

• Very accessible with knot theory background.

• Nice way to rethink knot theory results.

• Won MAA-EPaDel Student Math Paper Prize.

Final Comments:

Transverse Knots and Braids Connections

Transverse Knots from Braid Perspective

Standard Contact Structure: Symmetric Version

Transverse Knots from Braid Perspective

Standard Contact Structure: Symmetric Version

Any smooth closed braid *B* can be isotoped (through braids) to be a transverse knot.

Theorem: [Alexander, 1925] Any knot is isotopic to a closed braid.

Theorem: [Alexander, 1925] Any knot is isotopic to a closed braid.

Theorem: [Markov, 1935] Two closed braid representatives X_- , X_+ of the same oriented knot type χ are related by a sequence of closed braid representatives of χ :

$$X_{-} = X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{r} = X_{+}$$

such that, up to braid isotopy, X_{i+1} is obtained from X_i by a single stabilization or destabilization.

Theorem: [Bennequin, 1983] Any transverse knot in $(\mathbb{R}^3, \xi_{sym})$ is transversely isotopic to a closed braid.

Braids = Transverse Knots

Theorem: [Bennequin, 1983] Any transverse knot in $(\mathbb{R}^3, \xi_{sym})$ is transversely isotopic to a closed braid.

If $T = \hat{\beta}$, can easily calculate *sl* from braid presentation:

$$sl(\hat{\beta}) = a(\beta) - n,$$

where *n* = braid index, $a(\beta)$ = algebraic crossing number of β .

Braids = Transverse Knots

Theorem: [Bennequin, 1983] Any transverse knot in $(\mathbb{R}^3, \xi_{sym})$ is transversely isotopic to a closed braid.

If $T = \hat{\beta}$, can easily calculate *sl* from braid presentation:

$$sl(\hat{\beta}) = a(\beta) - n,$$

where *n* = braid index, $a(\beta)$ = algebraic crossing number of β .

Theorem: [Orevkov and Shevchishin 2003] Given two transversal, closed braid representatives TX_- , TX_+ of the same oriented knot type χ are related by a sequence of transversal closed braid representatives of χ

$$TX_{-} = TX_{1} \rightarrow TX_{2} \rightarrow \ldots TX_{r} = TX_{+}$$

such that, up to braid isotopy, TX_{i+1} is obtained from TX_i by a single **positive** stabilization or destabilization.

Lisa Traynor (Bryn Mawr)

There are lots of interesting topological problems that can be "contactified" to make interesting projects for undergraduate students.

Examples:

- Transversal Unknotting and lineage (today)
- Legendrian versions of multicrossing knots
- Constructions of "decomposable" Lagrangian fillings and cobordisms

There are lots of interesting topological problems that can be "contactified" to make interesting projects for undergraduate students.

Examples:

- Transversal Unknotting and lineage (today)
- Legendrian versions of multicrossing knots
- Constructions of "decomposable" Lagrangian fillings and cobordisms

Thank you!