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Motivation/Goals

@ What are some projects for undergraduates in contact/symplectic
topology?
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Motivation/Goals

@ What are some projects for undergraduates in contact/symplectic
topology?

©@ Today discuss a student project on transverse knots.
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Braids = Transverse Knots

Braids have close connections to tranverse knots!

Today: Results from Senior Honors Thesis work of
Blossom Jeong, BMC 2020

Comparative Literature + Math Double Major
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Unknotting Number for Smooth Knots

Given a smooth knot K, the unknotting number u(K) measures the

minimal number of times that a knot must cross through itself in order
to become an unknot
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Unknotting Number for Smooth Knots

Given a smooth knot K, the unknotting number u(K) measures the

minimal number of times that a knot must cross through itself in order
to become an unknot

\)* Q@*@ ) O

u(K) =n = 3 projection of K such that
changing n crossings turns projection into projection of unknot
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Contact World

Standard Contact Structure:

V4
?ié%éy
< )'—;(
Estd = kera, a = dz - ydx

= (j, i+ yk)
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Contact World

Standard Contact Structure:

V4
%y
< )'—)»(
Estd = kera, a = dz - ydx
= (j, 1+ yk)

Natural Curves:
@ Legendrian Curves: A(t) s.t. a (FA()) =0
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Contact World

Standard Contact Structure:

V4
%y
< )'—)»(
Estd = kera, a = dz - ydx
= (j, 1+ yk)

Natural Curves:

@ Legendrian Curves: A(t) s.t. a(%/\(l‘))

e Transverse Curves: T(t) s.t. a(ZT(1))>0
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Constructing Legendrian Curves

There are many smooth curves in 3-dimensional space that project to

this curve:
z

—

z=1f(x)

N

Y
X
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Constructing Legendrian Curves

There are many smooth curves in 3-dimensional space that project to

this curve:
z

\ z=1f(x)

NS

> X

But, there is a special curve where the missing 3™ coordinate is given

by the slope! This makes the ¢

urve Legendrian.
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Constructing Legendrian Curves

There are many smooth curves in 3-dimensional space that project to
this curve:

ZA z =1f(x)
=%
y dx
%y='1 y
y=0
> X

But, there is a special curve where the missing 3™ coordinate is given
by the slope! This makes the curve Legendrian.
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Constructing Legendrian Knots

Front Projection:

Cusped curve in the plane (without vertical tangents) can be lifted to
3-space using slope as the third coordinate: dz - ydx =0 — y = dz/dx.
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Constructing Legendrian Knots

Front Projection:

Cusped curve in the plane (without vertical tangents) can be lifted to
3-space using slope as the third coordinate: dz - ydx =0 — y = dz/dx.

Projection crossing resolved by slope:
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Constructing Transverse Curves

Transverse curves are more flexible:
T(t) = (x(1),y(t),z(1))
Z(1)-y()X' (1) >0 = Z'(1) > y()X'(1)
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Constructing Transverse Curves

Transverse curves are more flexible:

T(t) = (x(1), y (1), 2(1))

Z(t) - y(OX' (1) >0 — Z(t) > ()X (1)

Get “slope” bounds on y(t):

@ When X'(1) >0, y(t) < %.
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Constructing Transverse Curves

Transverse curves are more flexible:

T(t) = (x(1), y (1), 2(1))

Z(t) - y(OX' (1) >0 — Z(t) > ()X (1)

Get “slope” bounds on y(t):

@ When x'(t) >0, y(t) < &

ax*
@ When x(t) <0, y(t) > %£.
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Transverse Forbidden Shapes

In the xz-diagram of a transverse curve:

@ There are no downward vertical tangencies:
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Transverse Forbidden Shapes

In the xz-diagram of a transverse curve:

@ There are no downward vertical tangencies:

X

@ There are no +-down-down crossings:

\
N\
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Forbidding Downward Vertical Tangencies

e When x'(t) >0, y(t) < .
e When x'() <0, y(t) > .
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Forbidding Downward Vertical Tangencies

e When x'(t) >0, y(t) < .
e When x'() <0, y(t) > .

:
x=<0
t
x>0
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Forbidding +-Down-Down Crossings

. %
\ .

e When x'(t) >0, y(t) < %.

e When x'(1) <0, y(t) > .
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Constructing Transverse Knots

Every smooth knot has a transverse representative.
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Constructing Transverse Knots

Every smooth knot has a transverse representative.

@ Start with smooth projection.
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Constructing Transverse Knots

Every smooth knot has a transverse representative.

@ Start with smooth projection.
@ Remove forbidden downward vertical tangencies:

Do (=

/
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Constructing Transverse Knots

Every smooth knot has a transverse representative.

@ Start with smooth projection.
@ Remove forbidden downward vertical tangencies:

Do (-

@ Remove forbidden +-down-down crossings:

XSS
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Moving Transverse Knots

Transverse Reidemeister Moves: no +-down-down-crossings:
N\ N /
XX X

SN NS
N TN

FIGURE 24. Transverse Reidemeister IT moves.
\é k/
//\ /K\

FIGURE 25. Transverse Reidemeister ITI moves.
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Stabilization

Transverse Modification:

_*//@ _'C/\/_/\/

Stabilization Operation
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Stabilization

Transverse Modification:

-0 (= c,\c\/
Stabilization Operation

Classical Transverse Invariant: Self-Linking Number

sl(T) = writhe of xz-projection

Stabilization lowers s/ by 2.
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Transverse Representatives

Every smooth knot has an infinite number
of different transverse representatives.
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Transverse Representatives

Every smooth knot has an infinite number
of different transverse representatives.

Organize all transverse representatives of a fixed knot type with a ray:
(Bennequin) sI(T) <2g(Krt) -1
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Transverse Representatives

Every smooth knot has an infinite number
of different transverse representatives.

Organize all transverse representatives of a fixed knot type with a ray:
(Bennequin) sI(T) <2g(Krt) -1

Example: Ray of transverse unknots
1 e N

5 e

Y
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Transverse Representatives

Every smooth knot has an infinite number
of different transverse representatives.

Organize all transverse representatives of a fixed knot type with a ray:
(Bennequin) sI(T) <2g(Krt) -1

Example: Ray of transverse unknots
1 e m

5 e

Y

Unknot is transversely simple:
transverse representatives classified by sl #.
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Transverse Representatives

Every smooth knot has an infinite number
of different transverse representatives.

Organize all transverse representatives of a fixed knot type with a ray:
(Bennequin) sI(T) <2g(Krt) -1

Example: Ray of transverse unknots
1 e N

5 e

Y

Unknot is transversely simple:
transverse representatives classified by sl #.

3 non-transversely simple, e.g. (2, 3)-cable of (2, 3)-torus knot [Etnyre-Honda]
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Unknotting in the Contact World

Legendrian Unknotting: ?7?

X A

exists never exists
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Unknotting in the Contact World

Legendrian Unknotting: ?7?

X A

exists never exists

Transverse Unknotting: Use the following crossing changes

XX XX XX

Transverse Crossing Changes
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Unknotting in the Contact World

Legendrian Unknotting: ?7?

X A

exists never exists

Transverse Unknotting: Use the following crossing changes

XX XX XX

Transverse Crossing Changes

/
¥

Rigid Crossing: —-down-down crossing
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Transverse Wall Crossing

Transverse crossing changes gives us a path
in the space of immersed transverse curves.
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Transverse Wall Crossing

Transverse crossing changes gives us a path
in the space of immersed transverse curves.

If T’ is obtained from T by a transverse crossing change, then
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Transverse Wall Crossing

Transverse crossing changes gives us a path
in the space of immersed transverse curves.

If T’ is obtained from T by a transverse crossing change, then
@ T'is atransverse knot, and
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Transverse Wall Crossing

Transverse crossing changes gives us a path
in the space of immersed transverse curves.

If T’ is obtained from T by a transverse crossing change, then
@ T'is atransverse knot, and
@ |sI(T")-sI(T)|=2.
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All are Unknottable?

Q: Can every transverse knot be “unknotted”
by allowable crossing changes?
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All are Unknottable?

Q: Can every transverse knot be “unknotted”
by allowable crossing changes?

/
NO
/

All rigid crossings!
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All are Unknottable?

Q: Can every transverse knot be “unknotted”
by allowable crossing changes?

/
N@
/
All rigid crossings!

After transverse isotopy, can we perform
transverse crossing changes to convert to a transverse unknot?
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Unknottable Transverse Representatives

A start to answering this:

Claim: Every smooth knot type has a transverse representative that

can be converted to a transverse unknot by passing through self
intersections.
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Unknottable Transverse Representatives

A start to answering this:

Claim: Every smooth knot type has a transverse representative that

can be converted to a transverse unknot by passing through self
intersections.

@ Start with any transverse representative.
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Unknottable Transverse Representatives

A start to answering this:

Claim: Every smooth knot type has a transverse representative that

can be converted to a transverse unknot by passing through self
intersections.

@ Start with any transverse representative.

@ Get another transverse representative after removing rigid
crossings:
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Unknottable Transverse Representatives

A start to answering this:

Claim: Every smooth knot type has a transverse representative that

can be converted to a transverse unknot by passing through self
intersections.

@ Start with any transverse representative.

@ Get another transverse representative after removing rigid
crossings:

~0
@ Standard topological argument shows that crossing changes can
be performed to get to an unknot.
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Smooth Unknot vs. Transverse Unknots

Smooth World: there is a unique unknot.

Contact World: there are an infinite number of transverse unknots.
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Smooth Unknot vs. Transverse Unknots

Smooth World: there is a unique unknot.

Contact World: there are an infinite number of transverse unknots.

Q: Can we always get to the “simplest” transverse unknot?
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Smooth Unknot vs. Transverse Unknots

Smooth World: there is a unique unknot.

Contact World: there are an infinite number of transverse unknots.

Q: Can we always get to the “simplest” transverse unknot?

A: Yes!
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Moving between transverse unknots

Claim: We can move between any two transverse unknots by
transverse crossing changes.
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Moving between transverse unknots

Claim: We can move between any two transverse unknots by
transverse crossing changes.

@ All transverse unknots are related by stabilization.

Lisa Traynor (Bryn Mawr) Transverse Unknotting Number ICERM 21/41



Moving between transverse unknots

Claim: We can move between any two transverse unknots by
transverse crossing changes.

@ All transverse unknots are related by stabilization.

@ Stabilization/destabilization can be done by allowable crossing
changes:
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Moving between transverse representatives of fixed

knot type

Theorem: If T, T’ are transversal representatives of the same knot
type K, then can move between T and T’ by transversal crossing

changes in such a way that all transversal knots along the way are in
K.
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Moving between transverse representatives of fixed

knot type

Theorem: If T, T’ are transversal representatives of the same knot
type K, then can move between T and T’ by transversal crossing

changes in such a way that all transversal knots along the way are in
K.

@ After stabilization T and T’ are transversely isotopic.
[Fuchs-Tabachnikov]
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Moving between transverse representatives of fixed

knot type

Theorem: If T, T’ are transversal representatives of the same knot
type K, then can move between T and T’ by transversal crossing

changes in such a way that all transversal knots along the way are in
K.

@ After stabilization T and T’ are transversely isotopic.
[Fuchs-Tabachnikov]

@ Stabilize via transverse crossing changes, transverse isotopy,
destabilize via transverse crossing changes.
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All Transverse Knots can be Unknotted

Corollary: For all knot types K, any transverse representative T of K
can be converted to a (and thus any) transverse unknot by transverse
crossing changes.
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All Transverse Knots can be Unknotted

Corollary: For all knot types K, any transverse representative T of K
can be converted to a (and thus any) transverse unknot by transverse
crossing changes.

@ Earlier saw that there exists a representation T’ of K with a
projection that can be unknotted.
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All Transverse Knots can be Unknotted

Corollary: For all knot types K, any transverse representative T of K
can be converted to a (and thus any) transverse unknot by transverse
crossing changes.

@ Earlier saw that there exists a representation T’ of K with a
projection that can be unknotted.

@ By previous result, we can move from T to T’ via transverse
crossing changes.
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Transverse Unknotting number

Definition: A transverse knot T has transverse unknotting humber
n if there exists a front diagram of T such that transversely changing n
crossings in the diagram turns T into the transverse unknot U with
sl(U) = -1, and there is no diagram of T such that fewer crossing
changes would have produced the transverse unknot with self-linking
number -1.

Lisa Traynor (Bryn Mawr) Transverse Unknotting Number ICERM 24/41



Transverse Unknotting number

Definition: A transverse knot T has transverse unknotting humber
n if there exists a front diagram of T such that transversely changing n
crossings in the diagram turns T into the transverse unknot U with
sl(U) = -1, and there is no diagram of T such that fewer crossing
changes would have produced the transverse unknot with self-linking
number -1.

1 e (/\/)
5, OO0

5 e

Notation: U" (T): Y
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Transverse Unknotting number

Definition: A transverse knot T has transverse unknotting humber
n if there exists a front diagram of T such that transversely changing n
crossings in the diagram turns T into the transverse unknot U with
sl(U) = -1, and there is no diagram of T such that fewer crossing
changes would have produced the transverse unknot with self-linking
number -1.

1 e (/\/)
5, OO0

5 e

Notation: U" (T): Y

World of immersed transverse knots: the transverse unknotting number
is the minimum number of times the knot must pass through itself
in order to become the transverse unknot with self-linking number -1.
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Lower Bound for Transversal Unknotting Number

Get upper bounds to Uﬁ1(T) by constructions.
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Lower Bound for Transversal Unknotting Number

Get upper bounds to Uﬁ1(T) by constructions.

Lower bound:

Lemma: Suppose T is a transverse knot in the smooth knot type K.

Then
max{u(IC), @‘} < Uf1(T),

where u(K) is the smooth unknotting number.
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Sample Calculation

Example: K = (2,-5)-torus knot: transversely simple with s/(K) = -7.
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Sample Calculation

Example: K = (2,-5)-torus knot: transversely simple with s/(K) = -7.

Max sl representative T: Cklw
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Sample Calculation

Example: K = (2, -5)-torus knot: transversely simple with s/(K) = -7.

Max sl representative T: Cklw

si(T)=-7,u(K)=2 = max{u(lC), @

}:3g Ut (T).
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Sample Calculation

Example: K = (2, -5)-torus knot: transversely simple with s/(K) = -7.

2 1
Max sl representative T: Cklw

sI(T)+1
2

si(T)=-7,u(K)=2 = max{u(lC),

}:3g Ut (T).

For any transverse representative T’ of K,

sI(T") +1

h Ty _
U_1(T)— 2
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Further Questions

Have established an unknotting number for transverse knots.

Q: What are some other questions related to unknotting in the
transverse world?
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Ancestor-Descendant Relationship

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O’Keefe,
Perez, Rawdon, and Zimmer, Journal of Knot Theory and lts
Ramifications (2017).

Lisa Traynor (Bryn Mawr) Transverse Unknotting Number ICERM 28/41



Ancestor-Descendant Relationship

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O’Keefe,
Perez, Rawdon, and Zimmer, Journal of Knot Theory and lts
Ramifications (2017).

Defn: A smooth knot Kj is an ancestor of K if a diagram for K, can
be obtained from a minimum crossing diagram of K; by some number
of crossing changes.
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Ancestor-Descendant Relationship

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O’Keefe,
Perez, Rawdon, and Zimmer, Journal of Knot Theory and lts
Ramifications (2017).

Defn: A smooth knot Kj is an ancestor of K if a diagram for K, can
be obtained from a minimum crossing diagram of K; by some number
of crossing changes.

A knot with crossing number n is fertile if it is an ancestor of every
knot with crossing number less than n.
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Ancestor-Descendant Relationship

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O’Keefe,
Perez, Rawdon, and Zimmer, Journal of Knot Theory and lts
Ramifications (2017).

Defn: A smooth knot Kj is an ancestor of K if a diagram for K, can
be obtained from a minimum crossing diagram of K; by some number
of crossing changes.

A knot with crossing number n is fertile if it is an ancestor of every
knot with crossing number less than n.

Examples: 6/\\//_) /\/\)/ @

11,135 is an ancestor of the trefoil;
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Ancestor-Descendant Relationship

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O’Keefe,
Perez, Rawdon, and Zimmer, Journal of Knot Theory and lts
Ramifications (2017).

Defn: A smooth knot Kj is an ancestor of K if a diagram for K, can
be obtained from a minimum crossing diagram of K; by some number
of crossing changes.

A knot with crossing number n is fertile if it is an ancestor of every
knot with crossing number less than n.

11,135 is an ancestor of the trefoil; 76 is fertile.
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Properties of Ancestor-Descendant Relationship

@ If don’t require minimum crossings in diagram of ancestor, all
knots are related by ancestor-descendant.

& 3

K, K
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Properties of Ancestor-Descendant Relationship

@ If don’t require minimum crossings in diagram of ancestor, all
knots are related by ancestor-descendant.

& 3

K, K

@ Every knot is an ancestor of the unknot.
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Properties of Ancestor-Descendant Relationship

@ If don’t require minimum crossings in diagram of ancestor, all
knots are related by ancestor-descendant.

& 3

K, K

@ Every knot is an ancestor of the unknot.

@ The unknot is not an ancestor of any non-trivial knot.
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Knot Lineage

@ CHMOPRZ studied family trees of twist and torus knots to answer:
What are all possible descendants of a twist/torus knot?
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Knot Lineage

@ CHMOPRZ studied family trees of twist and torus knots to answer:
What are all possible descendants of a twist/torus knot?

“Insular Families”:

o twist descendants are twist knots;
e (2,p)-torus knot descendants are (2, q)-torus knots.
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Knot Lineage

@ CHMOPRZ studied family trees of twist and torus knots to answer:
What are all possible descendants of a twist/torus knot?

“Insular Families”:

o twist descendants are twist knots;
e (2,p)-torus knot descendants are (2, q)-torus knots.

© Hanaki [2020]: There are no alternating fertile knots with crossing
number > 7.
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Knot Lineage

@ CHMOPRZ studied family trees of twist and torus knots to answer:
What are all possible descendants of a twist/torus knot?

“Insular Families”:

o twist descendants are twist knots;
e (2,p)-torus knot descendants are (2, q)-torus knots.

© Hanaki [2020]: There are no alternating fertile knots with crossing
number > 7.

© lto [2021]: A knot whose minimum crossing number c(K) is even
and greater than 30 is not fertile.
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Q: What is the contact world analogue of
this Ancestor-Descendant Relationship?
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Transverse Family Trees

Defn: A sequence of transverse knots (Ty, T», ..., Tp) is a transverse
family tree if each T;,; can be obtained from T; by a single transverse
crossing change.
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Transverse Family Trees

Defn: A sequence of transverse knots (Ty, T», ..., Tp) is a transverse
family tree if each T;,; can be obtained from T; by a single transverse

crossing change.

A transverse family tree is:
@ maximal if each T; has maximal self-linking number in its knot

type.

Lisa Traynor (Bryn Mawr) Transverse Unknotting Number ICERM 32/41



Transverse Family Trees

Defn: A sequence of transverse knots (Ty, T», ..., Tp) is a transverse
family tree if each T;,; can be obtained from T; by a single transverse

crossing change.
A transverse family tree is:
@ maximal if each T; has maximal self-linking number in its knot
type.

@ increasing (decreasing) if the self-linking numbers of T; are
strictly increasing (decreasing).
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Properties of Transverse Family Trees

Given any smooth knot types Kj, Ko, there exists a transverse family

tree (Ty,..., To) where Ty is in the knot type of Ki, T» is in the knot
type of Ks.
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Properties of Transverse Family Trees

Given any smooth knot types Kj, Ko, there exists a transverse family

tree (Ty,..., To) where Ty is in the knot type of Ki, T» is in the knot
type of Ks.

Moreover, we can assume that 7y and T, have maximum self-linking
numbers (but not that all knots in the family tree have maximal
self-linking numbers).
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Properties of Transverse Family Trees

Given any smooth knot types Kj, Ko, there exists a transverse family

tree (Ty,..., To) where Ty is in the knot type of Ki, T» is in the knot
type of Ks.

Moreover, we can assume that 7y and T, have maximum self-linking
numbers (but not that all knots in the family tree have maximal
self-linking numbers).

Q: What are examples of maximal transverse family trees?
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Twist Family Trees

(a) A diagram of K, (B) A diagram of Ky

FIGURE 34. Twist knots.

Theorem 7.4 (Twist Knot Transverse Family Trees).
(1) For any odd m > 1, there exists a mazimal decreasing transverse family tree
(T Tin—s, . .., T1), where T} is a transverse representative of the twist knot K;.
(2) For any even m > 2, there erists a mazimal decreasing transverse family tree
(Tn, Tn—g. - - -, Ta), where T; is a transverse representative of the tunst knot K.
(3) There exists a transverse family tree (T, U, Trn_1, U, ..., T1), where T} is a transverse
representative of the twist knot Kj and U is a transverse unknot.
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Torus Knot Family Trees

Theorem 7.6 ((2, p)-Torus Knot Transverse Family Trees).

(1) For all odd p > 3, there exists a mazimal decreasing transverse family tree

(Top, Top-2,...,To3), where To; is a transverse representative of the torus knot Ko ;.
(2) For all odd n < —3, there erists a mazimal increasing transverse family tree
(Tyn, Tonia,. .., o 3), where To; is a transverse representative of torus knot Ky ;.

FIGURE 42. A transverse representative of a torus knot Kjp, where p is odd,
(a) when p is positive and (b) when p is negative. We will call each knot T
and T_ respectively.
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Project Evaluation:

@ Very accessible with knot theory background.
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Project Evaluation:

@ Very accessible with knot theory background.

@ Nice way to rethink knot theory results.

@ Won MAA-EPaDel Student Math Paper Prize.
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Final Comments:

Transverse Knots and Braids Connections
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Transverse Knots from Braid Perspective

Standard Contact Structure: Symmetric Version
Z
Yy

<

/

Esym = ker a = ker(dz + rdo)
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Transverse Knots from Braid Perspective

Standard Contact Structure: Symmetric Version
Z
Yy

<

/

Esym = ker a = ker(dz + rdo)

Any smooth closed braid B can be isotoped (through braids) to be a
transverse knot.
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Knots = Braids

Theorem: [Alexander, 1925] Any knot is isotopic to a closed braid.

Lisa Traynor (Bryn Mawr) Transverse Unknotting Number ICERM 39/41



Knots = Braids

Theorem: [Alexander, 1925] Any knot is isotopic to a closed braid.

Theorem: [Markov, 1935] Two closed braid representatives X_, X, of
the same oriented knot type x are related by a sequence of closed
braid representatives of y:

X=Xi->Xo—>--=> X=X,

such that, up to braid isotopy, Xj, is obtained from X; by a single
stabilization or destabilization.
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Braids = Transverse Knots

Theorem: [Bennequin, 1983] Any transverse knot in (R3, £gym) is
transversely isotopic to a closed braid.
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Braids = Transverse Knots

Theorem: [Bennequin, 1983] Any transverse knot in (R3, £gym) is
transversely isotopic to a closed braid.

If T =33, can easily calculate s/ from braid presentation:
sl(3) = a(B) - n,

where n = braid index, a(3) = algebraic crossing number of j.
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Braids = Transverse Knots

Theorem: [Bennequin, 1983] Any transverse knot in (R3, £gym) is
transversely isotopic to a closed braid.

If T =33, can easily calculate s/ from braid presentation:
sl(3) = a(B) - n,

where n = braid index, a(3) = algebraic crossing number of j.

Theorem: [Orevkov and Shevchishin 2003] Given two transversal,
closed braid representatives TX_, TX, of the same oriented knot type
x are related by a sequence of transversal closed braid
representatives of x

TX_=TX1 > TXo - ... TX, = TX,

such that, up to braid isotopy, TXj,1 is obtained from TX; by a single
positive stabilization or destabilization.
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Conclusion

There are lots of interesting topological problems that can be
“contactified” to make interesting projects for undergraduate students.
Examples:

@ Transversal Unknotting and lineage (today)

@ Legendrian versions of multicrossing knots

@ Constructions of “decomposable” Lagrangian fillings and
cobordisms
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Conclusion

There are lots of interesting topological problems that can be
“contactified” to make interesting projects for undergraduate students.
Examples:

@ Transversal Unknotting and lineage (today)

@ Legendrian versions of multicrossing knots

@ Constructions of “decomposable” Lagrangian fillings and
cobordisms

Thank you!
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