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Motivation/Goals

1 What are some projects for undergraduates in contact/symplectic
topology?

2 Today discuss a student project on transverse knots.
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Braids = Transverse Knots

Braids have close connections to tranverse knots!

Today: Results from Senior Honors Thesis work of
Blossom Jeong, BMC 2020

Comparative Literature + Math Double Major
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Unknotting Number for Smooth Knots

Given a smooth knot K , the unknotting number u(K ) measures the
minimal number of times that a knot must cross through itself in order
to become an unknot

u(K ) = n Ô⇒ ∃ projection of K such that
changing n crossings turns projection into projection of unknot
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Contact World

Standard Contact Structure:

ξstd = kerα, α = dz − ydx

= ⟨⃗j , i⃗ + yk⃗⟩

Natural Curves:
Legendrian Curves: Λ(t) s.t. α ( d

dt Λ(t)) = 0

Transverse Curves: T (t) s.t. α ( d
dt T (t)) > 0
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Constructing Legendrian Curves

There are many smooth curves in 3-dimensional space that project to
this curve:

z = f(x)

y = 
df

dx
(x) 

_
z

x
y = 0

y = -1y = 2

But, there is a special curve where the missing 3rd coordinate is given
by the slope! This makes the curve Legendrian.

z = f(x)

y = 
df

dx
(x) 

_
z

x
y = 0

y = -1y = 2 y
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Constructing Legendrian Knots

Front Projection:

z

x

y = 0

y = -1
y = 1

y = 0

y = 0y = 0

Cusped curve in the plane (without vertical tangents) can be lifted to
3-space using slope as the third coordinate: dz − ydx = 0 Ô⇒ y = dz/dx .

Projection crossing resolved by slope:

=
y=1

y=-1x

z

x

z

y
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Constructing Transverse Curves

Transverse curves are more flexible:

T (t) = (x(t),y(t),z(t))

z′(t) − y(t)x ′(t) > 0 Ô⇒ z′(t) > y(t)x ′(t)

Get “slope” bounds on y(t):

When x ′(t) > 0, y(t) < dz
dx .

When x ′(t) < 0, y(t) > dz
dx .
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Transverse Forbidden Shapes

In the xz-diagram of a transverse curve:

There are no downward vertical tangencies:

There are no +-down-down crossings:
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Forbidding Downward Vertical Tangencies

● When x ′(t) > 0, y(t) < dz
dx .

● When x ′(t) < 0, y(t) > dz
dx .
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Forbidding +-Down-Down Crossings

● When x ′(t) > 0, y(t) < dz
dx .

● When x ′(t) < 0, y(t) > dz
dx .

Lisa Traynor (Bryn Mawr) Transverse Unknotting Number ICERM 11 / 41



Constructing Transverse Knots

Every smooth knot has a transverse representative.

Start with smooth projection.
Remove forbidden downward vertical tangencies:

Remove forbidden +-down-down crossings:
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Moving Transverse Knots

Transverse Reidemeister Moves: no +-down-down-crossings:
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Stabilization

Transverse Modification:

Stabilization Operation

Classical Transverse Invariant: Self-Linking Number

sl(T ) = writhe of xz-projection

Stabilization lowers sl by 2.
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Transverse Representatives

Every smooth knot has an infinite number
of different transverse representatives.

Organize all transverse representatives of a fixed knot type with a ray:
(Bennequin) sl(T ) ≤ 2g(KT ) − 1

Example: Ray of transverse unknots
-1

-3

-5

Unknot is transversely simple:
transverse representatives classified by sl #.

∃ non-transversely simple, e.g. (2,3)-cable of (2,3)-torus knot [Etnyre-Honda]
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Unknotting in the Contact World

Legendrian Unknotting: ??

exists never exists

Transverse Unknotting: Use the following crossing changes

Transverse Crossing Changes

Rigid Crossing: −-down-down crossing
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Transverse Wall Crossing

Transverse crossing changes gives us a path
in the space of immersed transverse curves.

If T ′ is obtained from T by a transverse crossing change, then
T ′ is a transverse knot, and
∣sl(T ′) − sl(T )∣ = 2.
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All are Unknottable?

Q: Can every transverse knot be “unknotted”
by allowable crossing changes?

All rigid crossings!

After transverse isotopy, can we perform
transverse crossing changes to convert to a transverse unknot?
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Unknottable Transverse Representatives

A start to answering this:

Claim: Every smooth knot type has a transverse representative that
can be converted to a transverse unknot by passing through self
intersections.

Start with any transverse representative.
Get another transverse representative after removing rigid
crossings:

Standard topological argument shows that crossing changes can
be performed to get to an unknot.
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Smooth Unknot vs. Transverse Unknots

Smooth World: there is a unique unknot.

Contact World: there are an infinite number of transverse unknots.

Q: Can we always get to the “simplest” transverse unknot?

A: Yes!
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Moving between transverse unknots

Claim: We can move between any two transverse unknots by
transverse crossing changes.

All transverse unknots are related by stabilization.

Stabilization/destabilization can be done by allowable crossing
changes:
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Moving between transverse representatives of fixed
knot type

Theorem: If T ,T ′ are transversal representatives of the same knot
type K, then can move between T and T ′ by transversal crossing
changes in such a way that all transversal knots along the way are in
K.

After stabilization T and T ′ are transversely isotopic.
[Fuchs-Tabachnikov]

Stabilize via transverse crossing changes, transverse isotopy,
destabilize via transverse crossing changes.
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All Transverse Knots can be Unknotted

Corollary: For all knot types K, any transverse representative T of K
can be converted to a (and thus any) transverse unknot by transverse
crossing changes.

Earlier saw that there exists a representation T ′ of K with a
projection that can be unknotted.

By previous result, we can move from T to T ′ via transverse
crossing changes.
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Transverse Unknotting number

Definition: A transverse knot T has transverse unknotting number
n if there exists a front diagram of T such that transversely changing n
crossings in the diagram turns T into the transverse unknot U with
sl(U) = −1, and there is no diagram of T such that fewer crossing
changes would have produced the transverse unknot with self-linking
number -1.

Notation: U⋔−1(T ):

-1

-3

-5

World of immersed transverse knots: the transverse unknotting number
is the minimum number of times the knot must pass through itself

in order to become the transverse unknot with self-linking number -1.
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Lower Bound for Transversal Unknotting Number

Get upper bounds to U⋔−1(T ) by constructions.

Lower bound:

Lemma: Suppose T is a transverse knot in the smooth knot type K.
Then

max{u(K), ∣sl(T ) + 1
2

∣} ≤ U⋔−1(T ),

where u(K) is the smooth unknotting number.
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Sample Calculation

Example: K = (2,−5)-torus knot: transversely simple with sl(K) = −7.

Max sl representative T :

sl(T ) = −7,u(K) = 2 Ô⇒ max{u(K), ∣sl(T ) + 1
2

∣} = 3 ≤ U⋔−1(T ).

For any transverse representative T ′ of K,

u⋔−1(T
′) = ∣sl(T ′) + 1

2
∣ .

Lisa Traynor (Bryn Mawr) Transverse Unknotting Number ICERM 26 / 41



Sample Calculation

Example: K = (2,−5)-torus knot: transversely simple with sl(K) = −7.

Max sl representative T :

sl(T ) = −7,u(K) = 2 Ô⇒ max{u(K), ∣sl(T ) + 1
2

∣} = 3 ≤ U⋔−1(T ).

For any transverse representative T ′ of K,

u⋔−1(T
′) = ∣sl(T ′) + 1

2
∣ .

Lisa Traynor (Bryn Mawr) Transverse Unknotting Number ICERM 26 / 41



Sample Calculation

Example: K = (2,−5)-torus knot: transversely simple with sl(K) = −7.

Max sl representative T :

sl(T ) = −7,u(K) = 2 Ô⇒ max{u(K), ∣sl(T ) + 1
2

∣} = 3 ≤ U⋔−1(T ).

For any transverse representative T ′ of K,

u⋔−1(T
′) = ∣sl(T ′) + 1

2
∣ .
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Further Questions

Have established an unknotting number for transverse knots.

Q: What are some other questions related to unknotting in the
transverse world?
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Ancestor-Descendant Relationship

Knot Fertility and Lineage, Cantarella, Henrich, Magness, O’Keefe,
Perez, Rawdon, and Zimmer, Journal of Knot Theory and Its
Ramifications (2017).

Defn: A smooth knot K1 is an ancestor of K2 if a diagram for K2 can
be obtained from a minimum crossing diagram of K1 by some number
of crossing changes.

A knot with crossing number n is fertile if it is an ancestor of every
knot with crossing number less than n.

Examples:
11a135 is an ancestor of the trefoil;

76 is fertile.
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Properties of Ancestor-Descendant Relationship

If don’t require minimum crossings in diagram of ancestor, all
knots are related by ancestor-descendant.

Every knot is an ancestor of the unknot.

The unknot is not an ancestor of any non-trivial knot.
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Knot Lineage

1 CHMOPRZ studied family trees of twist and torus knots to answer:
What are all possible descendants of a twist/torus knot?

“Insular Families”:
twist descendants are twist knots;
(2,p)-torus knot descendants are (2,q)-torus knots.

2 Hanaki [2020]: There are no alternating fertile knots with crossing
number > 7.

3 Ito [2021]: A knot whose minimum crossing number c(K) is even
and greater than 30 is not fertile.
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New Questions

Q: What is the contact world analogue of
this Ancestor-Descendant Relationship?
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Transverse Family Trees

Defn: A sequence of transverse knots (T1,T2, . . . ,Tn) is a transverse
family tree if each Ti+1 can be obtained from Ti by a single transverse
crossing change.

A transverse family tree is:
maximal if each Ti has maximal self-linking number in its knot
type.

increasing (decreasing) if the self-linking numbers of Ti are
strictly increasing (decreasing).
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Properties of Transverse Family Trees

Given any smooth knot types K1,K2, there exists a transverse family
tree (T1, . . . ,T2) where T1 is in the knot type of K1, T2 is in the knot
type of K2.

Moreover, we can assume that T1 and T2 have maximum self-linking
numbers (but not that all knots in the family tree have maximal
self-linking numbers).

Q: What are examples of maximal transverse family trees?
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Twist Family Trees
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Torus Knot Family Trees
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Project Evaluation:

Very accessible with knot theory background.

Nice way to rethink knot theory results.

Won MAA-EPaDel Student Math Paper Prize.
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Final Comments:

Transverse Knots and Braids Connections
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Transverse Knots from Braid Perspective

Standard Contact Structure: Symmetric Version

ξsym = kerα = ker(dz + r2dθ)

Any smooth closed braid B can be isotoped (through braids) to be a
transverse knot.
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Knots = Braids

Theorem: [Alexander, 1925] Any knot is isotopic to a closed braid.

Theorem: [Markov, 1935] Two closed braid representatives X−, X+ of
the same oriented knot type χ are related by a sequence of closed
braid representatives of χ:

X− = X1 → X2 → ⋅ ⋅ ⋅ → Xr = X+

such that, up to braid isotopy, Xi+1 is obtained from Xi by a single
stabilization or destabilization.
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Braids = Transverse Knots

Theorem: [Bennequin, 1983] Any transverse knot in (R3, ξsym) is
transversely isotopic to a closed braid.

If T = β̂, can easily calculate sl from braid presentation:

sl(β̂) = a(β) − n,

where n = braid index, a(β) = algebraic crossing number of β.

Theorem: [Orevkov and Shevchishin 2003] Given two transversal,
closed braid representatives TX−, TX+ of the same oriented knot type
χ are related by a sequence of transversal closed braid
representatives of χ

TX− = TX1 → TX2 → . . .TXr = TX+

such that, up to braid isotopy, TXi+1 is obtained from TXi by a single
positive stabilization or destabilization.
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Conclusion

There are lots of interesting topological problems that can be
“contactified” to make interesting projects for undergraduate students.

Examples:
Transversal Unknotting and lineage (today)
Legendrian versions of multicrossing knots
Constructions of “decomposable” Lagrangian fillings and
cobordisms

Thank you!
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