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Artin Groups

Let S = {s1, . . . , sn} be a finite set. For each pair of of elements in

this set si and sj choose an mi ,j ∈ {2, 3, . . .∞}.

Definition

The Artin group, AS is the group with presentation

AS = 〈s1, . . . , sn | si sjsi . . .︸ ︷︷ ︸
mij terms

= sjsi sj . . .︸ ︷︷ ︸
mij terms

for all i 6= j〉 .

If mi ,j =∞, then there is no group relation between si and sj .



Examples

Example

AS = 〈a, b, c |ab = ba, bcb = cbc, cacac = acaca〉

Examples include:

• Braid groups

• Free groups

• Free abelian groups and other right-angled Artin groups

• Free products and direct products of other Artin groups



The Word Problem

In a group generated by a set S , a word is a finite sequence of

letters in S ∪ S−1.

Two word are considered equivalent if they represent the same

group element.

A solution to the word problem is a finite time algorithm for

determining if a given word is equivalent to the identity.

Open Problem

In general, it is unknown whether or not Artin groups have

solvable word problem.
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Cases where the word problem has been solved

1. FC-type Artin groups, including braid groups, spherical-type

Artin groups and right-angled Artin groups (Artin 1947,

Garside 1969, Deligne 1972, Brieskorn-Saito 1972,

Birman-Ko-Lee 1998, Altobelli 1998, Altobelli-Charney 2000)

2. 2-dimensional Artin groups (VanWyck 1994)

3. Sufficiently large Artin groups (Appel-Schupp 1983, Peifer

1996, Holt-Rees 2012, Holt-Rees 2013)

4. Euclidean Artin groups (Digne 2006, Digne 2012,

McCammond-Sulway 2017)



Theorem (Blasco-Garćıa, Cumplido, MW)

Let AS be an Artin group where mi ,j 6= 3 for all

i , j . This is called a 3-free Artin group.

There is a finite-time algorithm that solves

the word problem for 3-free Artin groups.
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In dihedral Artin groups

A dihedral Artin group is an Artin group with 2 generators.

AS = 〈s, t | sts . . .︸ ︷︷ ︸
m terms

= tst . . .︸ ︷︷ ︸
m terms

〉 .



Critical words (Mairesse, Matheus 2006)

In a dihedral Artin group there a words, called critical words, such

that there a multiple possible geodesic words representing this

group element. These words have p + n = m where p is the length

of longest alternation of the form stst . . . and n is the length of

the longest alternation of the form s−1t−1s−1 . . .

Example

(m=5)

• ststs

• (ststs)st2s3

• (sts)st2s3t−4(t−1s−1)



τ moves

There is an involution τ which can be applied to critical words.

Example

(m=5)

• ststs
τ7→ tstst

• (ststs)st2s3 τ7→ ts2t3(tstst)

• (sts)st2s3t−4(t−1s−1)
τ7→ (t−1s−1)ts2t3s−4(tst)



How does this work?

(m=5) case: Let ∆ = ststs. Repeatedly conjugate by ∆

(ststs)st2s3 → (ststs)st2s3∆−1∆→ (ststs)∆−1ts2t3∆→ ts2t3(tstst)



Key Properties of τ

The map τ satisfies the following properties for any critical word w

in a dihedral Artin groups AS (Brien 2012, Holt & Rees 2012)

1. τ(w) is also critical, τ(w) =G w .

2. If l [w ] ∈ {s, s−1}, then l [τ(w)] ∈ {t, t−1}.



Rightward Reducing Sequence(RRS) of τ moves in large type

Holt and Rees (2012) show that you can solve the word problem

for large type Artin groups (mi ,j ≥ 3 for all i , j). Their algorithm

involves repeated application of τ moves in a rightword sequence.

Example ( RRS in large type for ma,b = mb,c = mc,d = 5)

(ababa)(cbcb)(dcdc)(d−1)
↓

(babab)(cbcb)(dcdc)(d−1)

(baba)(bcbcb)(dcdc)(d−1)
↓

(baba)(cbcbc)(dcdc)(d−1)

(baba)(cbcb)(cdcdc)(d−1)
↓

(baba)(cbcb)(dcdcd)(d−1)
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Theorem

Theorem (Holt-Rees 2012)

Let AS be a large type Artin group. Then the word problem can

be solved by repeated applications of RRS.

Proof strategy:

1. Show that if w does not admit an RRS, t ∈ S and

wt
RRS
 w ′

then w ′ does not admit an RRS

2. Define a recursive function φ such that φ(ws) = φ(φ(w)s)

and φ(wt) = w ′.

3. Show that length of φ(w) is equal the length of φ(u) if w and

u are equivalent words in the group.
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How does it work in the 3 free case?

If ms,t ≥ 3 we define pseudo-2-generated(P2G) word in s, t, to be

a word w such that f [w ], l [w ] ∈ {s, s−1, t, t−1} and where all the

letters in w not in {s, s−1, t, t−1} can be pushed via commutations

with individual letters either to the left or to the right.

Example (mx ,s = my ,s = my ,t = mz,t = 2)

Then sxytysyzt is equivalent to xy3(stst)z .



P2G Critical words

We call the remaining 2-generated word in the middle ŵ and the

letters which cannot be pushed to the rleft but can be pushed to

right form βw .

We say that a word is P2G critical if it is a P2G word such that ŵ

is a critical word. We extend the definition of τ to P2G words by

applying τ to ŵ .

Example (ms,t = 4, mx ,s = my ,s = my ,t = mz,t = 2)

τ(sxytysyzt) = xy3τ(stst)z = xy3(tsts)z
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Return to Rightward Reducing Sequences

In 3-free Artin groups, we can now define an RRS

Data:

• word w = —w1w2 . . .wk+1g
−1—

• w1 and ui+1 = l [τ(ûi )]βiwi+1 P2G critical for i < k .

• All letters in wk+1 commute with g and l [τ(uk)] = g

—w1w2 . . .wk+1g
−1—

↓
—τ(w1)w2 . . .wk+1g

−1—

——l [τ(û1)]β1w2 . . .wk+1g
−1—

↓
——l [τ(uk)]wk+1g

−1—

——wk+1gg
−1—



RRS example

Example

(RRS) in 3-free Artin group. ma,b = mb,c = 5

ma,c = ma,x = ma,y = mb,y = mz,c = 2

(axbaybca)(bcb)(z3a)(c−1)
↓

(xy(babab)c)(bcb)(z3a)(c−1)

xybaba(bcbcb)(z3a)(c−1)
↓

xybaba(cbcbc)(z3a)(c−1)

xybabacbcb(cz3a)(c−1)
↓

xybabacbcb(z3ac)(c−1)



Results

Let AS be a 3-free Artin group

Theorem (Blasco-Garćıa, Cumplido, MW)

Let w be a word that does not admit an RRS and let t be a

letter. Then either wt is already geodesic or, there is an RRS

that can be applied to wt that will result in a geodesic word.

Theorem (Blasco-Garćıa, Cumplido, MW)

The set of geodesic words in AS is exactly those words that do

not admit an RRS



Results

Let AS be a 3-free Artin group

Theorem (Blasco-Garćıa, Cumplido, MW)

Let w be a word that does not admit an RRS and let t be a

letter. Then either wt is already geodesic or, there is an RRS

that can be applied to wt that will result in a geodesic word.

Theorem (Blasco-Garćıa, Cumplido, MW)
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Conclusion

Let AS be a 3-free Artin group. There there

exists an algorithm which solves the word

problem, without increasing the length of the

word at any step.
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About the 3-free condition

If ms,t ≥ 4, it becomes much easier to “trap” letters and make it

impossible to have P2G critical words.

Example

Consider stxst with ms,t = 4. In order for this to be P2G word, x

must commute with both s and t.

If ms,t = 3 then stxs can be P2G critical even if x does not

commute with t.



Thank you!
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