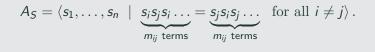
Rewrite Systems in 3-free Artin groups

Rose Morris-Wright March 25, 2022

University of California, Los Angeles Joint Work with Rubén Blasco-García and María Cumplido Let $S = \{s_1, \ldots, s_n\}$ be a finite set. For each pair of of elements in this set s_i and s_j choose an $m_{i,j} \in \{2, 3, \ldots, \infty\}$.

Definition

The Artin group, A_S is the group with presentation



If $m_{i,j} = \infty$, then there is no group relation between s_i and s_j .

Example

$$A_S = \langle a, b, c | ab = ba, bcb = cbc, cacac = acaca \rangle$$

Examples include:

- Braid groups
- Free groups
- Free abelian groups and other right-angled Artin groups
- Free products and direct products of other Artin groups

In a group generated by a set S, a *word* is a finite sequence of letters in $S \cup S^{-1}$.

Two word are considered equivalent if they represent the same group element.

A *solution to the word problem* is a finite time algorithm for determining if a given word is equivalent to the identity.

In a group generated by a set S, a *word* is a finite sequence of letters in $S \cup S^{-1}$.

Two word are considered equivalent if they represent the same group element.

A *solution to the word problem* is a finite time algorithm for determining if a given word is equivalent to the identity.

Open Problem

In general, it is unknown whether or not Artin groups have solvable word problem.

- FC-type Artin groups, including braid groups, spherical-type Artin groups and right-angled Artin groups (Artin 1947, Garside 1969, Deligne 1972, Brieskorn-Saito 1972, Birman-Ko-Lee 1998, Altobelli 1998, Altobelli-Charney 2000)
- 2. 2-dimensional Artin groups (VanWyck 1994)
- Sufficiently large Artin groups (Appel-Schupp 1983, Peifer 1996, Holt-Rees 2012, Holt-Rees 2013)
- Euclidean Artin groups (Digne 2006, Digne 2012, McCammond-Sulway 2017)

Theorem (Blasco-García, Cumplido, MW)

Let A_S be an Artin group where $m_{i,j} \neq 3$ for all i, j. This is called a 3-free Artin group. There is a finite-time algorithm that solves the word problem for 3-free Artin groups.

A dihedral Artin group is an Artin group with 2 generators.

$$A_S = \langle s, t \mid \underline{sts...} = \underline{tst...} \rangle.$$

m terms *m* terms

In a dihedral Artin group there a words, called critical words, such that there a multiple possible geodesic words representing this group element. These words have p + n = m where p is the length of longest alternation of the form stst... and n is the length of the longest alternation of the form $s^{-1}t^{-1}s^{-1}...$

Example

(m=5)

- ststs
- (ststs)st²s³
- $(sts)st^2s^3t^{-4}(t^{-1}s^{-1})$

There is an involution $\boldsymbol{\tau}$ which can be applied to critical words.

Example

(m=5)

- $ststs \stackrel{\tau}{\mapsto} tstst$
- $(ststs)st^2s^3 \stackrel{\tau}{\mapsto} ts^2t^3(tstst)$
- $(sts)st^2s^3t^{-4}(t^{-1}s^{-1}) \stackrel{\tau}{\mapsto} (t^{-1}s^{-1})ts^2t^3s^{-4}(tst)$

(m=5) case: Let $\Delta = ststs$. Repeatedly conjugate by Δ

$$(ststs)st^2s^3 \rightarrow (ststs)st^2s^3\Delta^{-1}\Delta \rightarrow (ststs)\Delta^{-1}ts^2t^3\Delta \rightarrow ts^2t^3(tstst)$$

The map τ satisfies the following properties for any critical word w in a dihedral Artin groups A_S (Brien 2012, Holt & Rees 2012)

1.
$$\tau(w)$$
 is also critical, $\tau(w) =_G w$.

2. If $I[w] \in \{s, s^{-1}\}$, then $I[\tau(w)] \in \{t, t^{-1}\}$.

Holt and Rees (2012) show that you can solve the word problem for large type Artin groups $(m_{i,j} \ge 3 \text{ for all } i, j)$. Their algorithm involves repeated application of τ moves in a rightword sequence. Holt and Rees (2012) show that you can solve the word problem for large type Artin groups $(m_{i,j} \ge 3 \text{ for all } i, j)$. Their algorithm involves repeated application of τ moves in a rightword sequence.

Example (RRS in large type for $m_{a,b} = m_{b,c} = m_{c,d} = 5$)

```
(ababa)(cbcb)(dcdc)(d^{-1})

\downarrow

(babab)(cbcb)(dcdc)(d^{-1})

(baba)(bcbcb)(dcdc)(d^{-1})

\downarrow

(baba)(cbcbc)(dcdc)(d^{-1})

(baba)(cbcb)(cdcdc)(d^{-1})

\downarrow

(baba)(cbcb)(dcdcd)(d^{-1})
```

Theorem

Theorem (Holt-Rees 2012)

Let A_5 be a large type Artin group. Then the word problem can be solved by repeated applications of RRS.

Theorem

Theorem (Holt-Rees 2012)

Let A_S be a large type Artin group. Then the word problem can be solved by repeated applications of RRS.

Proof strategy:

1. Show that if w does not admit an RRS, $t \in S$ and

wt $\stackrel{RRS}{\leadsto}$ w'

then w' does not admit an RRS

Theorem

Theorem (Holt-Rees 2012)

Let A_S be a large type Artin group. Then the word problem can be solved by repeated applications of RRS.

Proof strategy:

1. Show that if w does not admit an RRS, $t \in S$ and

 $wt \stackrel{RRS}{\rightsquigarrow} w'$

then w' does not admit an RRS

- 2. Define a recursive function ϕ such that $\phi(ws) = \phi(\phi(w)s)$ and $\phi(wt) = w'$.
- 3. Show that length of $\phi(w)$ is equal the length of $\phi(u)$ if w and u are equivalent words in the group.

If $m_{s,t} \ge 3$ we define *pseudo-2-generated*(*P2G*) word in s, t, to be a word w such that $f[w], I[w] \in \{s, s^{-1}, t, t^{-1}\}$ and where all the letters in w not in $\{s, s^{-1}, t, t^{-1}\}$ can be pushed via commutations with individual letters either to the left or to the right.

Example ($m_{x,s} = m_{y,s} = m_{y,t} = m_{z,t} = 2$ **)**

Then *sxytysyzt* is equivalent to $xy^3(stst)z$.

We call the remaining 2-generated word in the middle \hat{w} and the letters which cannot be pushed to the rleft but can be pushed to right form β_w .

We call the remaining 2-generated word in the middle \hat{w} and the letters which cannot be pushed to the rleft but can be pushed to right form β_w .

We say that a word is *P2G critical* if it is a P2G word such that \hat{w} is a critical word. We extend the definition of τ to P2G words by applying τ to \hat{w} .

Example ($m_{s,t} = 4$, $m_{x,s} = m_{y,s} = m_{y,t} = m_{z,t} = 2$) $\tau(sxytysyzt) = xy^3\tau(stst)z = xy^3(tsts)z$

Return to Rightward Reducing Sequences

In 3-free Artin groups, we can now define an RRS

Data:

- word $w = -w_1 w_2 \dots w_{k+1} g^{-1}$
- w_1 and $u_{i+1} = I[\tau(\hat{u}_i)]\beta_i w_{i+1}$ P2G critical for i < k.
- All letters in w_{k+1} commute with g and $I[\tau(u_k)] = g$

$$\begin{array}{c} -w_1 w_2 \dots w_{k+1} g^{-1} \\ \downarrow \\ -\tau(w_1) w_2 \dots w_{k+1} g^{-1} \\ -\cdots / [\tau(\hat{u}_1)] \beta_1 w_2 \dots w_{k+1} g^{-1} \\ \downarrow \\ -\cdots / [\tau(u_k)] w_{k+1} g^{-1} \\ -\cdots w_{k+1} g g^{-1} \\ -\cdots w_{k+1} g g^{-1} \\ \end{array}$$

Example

(RRS) in 3-free Artin group. $m_{a,b} = m_{b,c} = 5$ $m_{a,c} = m_{a,x} = m_{a,y} = m_{b,y} = m_{z,c} = 2$ $(axbaybca)(bcb)(z^3a)(c^{-1})$ $(xy(babab)c)(bcb)(z^3a)(c^{-1})$ $xybaba(bcbcb)(z^3a)(c^{-1})$ $xybaba(cbcbc)(z^3a)(c^{-1})$ $xybabacbcb(cz^3a)(c^{-1})$ $xybabacbcb(z^3ac)(c^{-1})$ Let A_S be a 3-free Artin group

Theorem (Blasco-García, Cumplido, MW)

Let w be a word that does not admit an RRS and let t be a letter. Then either wt is already geodesic or, there is an RRS that can be applied to wt that will result in a geodesic word.

Let A_S be a 3-free Artin group

Theorem (Blasco-García, Cumplido, MW)

Let w be a word that does not admit an RRS and let t be a letter. Then either wt is already geodesic or, there is an RRS that can be applied to wt that will result in a geodesic word.

Theorem (Blasco-García, Cumplido, MW)

The set of geodesic words in A_S is exactly those words that do not admit an RRS

Conclusion

Let A_S be a 3-free Artin group. There there exists an algorithm which solves the word problem, without increasing the length of the word at any step.

If $m_{s,t} \ge 4$, it becomes much easier to "trap" letters and make it impossible to have P2G critical words.

Example

Consider *stxst* with $m_{s,t} = 4$. In order for this to be P2G word, x must commute with both s and t.

If $m_{s,t} = 3$ then *stxs* can be P2G critical even if *x* does not commute with *t*.

Thank you!