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Main Result

J post-critically finite branched cover C — C
Algorithm (Belk—Lanier—Margalit—\\V)
1. If polynomial

N

2. Otherwise, finds an obstruction
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Equivalence

f (8% Pr) = (S°, Py)

branched covers
qg: (S2,Pg) — (SZ,Pg)

|Pf‘ — ‘Pg‘
Equivalence = conjugation (5%, Pr) ——— (5%, Py)
+ Isotopy f g
(SQva) g (‘92>Pg)
hl ~ hg &

rel. Py
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1. Rational
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* Qutside of a class of well-understood examples called Lattés maps
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Characterization Theorem(s)
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Nielsen—Thurston classification

f:(S,P)— (S, P) homeomorphism is homotopic to one:

1. Periodic o e
f¥~id

\»)

2. Reducible ‘h

f fixes some multicurve \v

Fs

3. pseudo-Anosov
f(-’fs) — )\‘FS

f(Fa) = 37
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Topological polynomials: branched self-covers (C, P)

post-critical set P C C
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branched covers f: (5%, PUoo) — (8%, PU o)
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Thurston's Theorem

Theorem (W. Thurston)
f post-critically finite topological polynomial, either

1. f is equivalent to a polynomial = has a Hubbard tree

2. f obstructed

Characterization problem:

Given a topological polynomial, determine whether or not it

IS equivalent to a polynomial. If so, which one”?




Strategy

(Degree 1) braids
Maps (homeomorphisms) < > Curves/Arcs

Alexander method




Strategy

(Degree 1) braids
Maps (homeomorphisms) -« > Curves/Arcs

Alexander method
Higher degree/Dynamical

Postcriticially finite

Polynomial < g Hubbard tree




Strategy

(Degree 1) braids

Ma « > Curves/Arcs
Alexander method
Hic

L

Po
P > Hubbard tree

Tree + action
Invariant under preimage




Strategy
(Degree 1) braids

Ma ,urves/Arcs
Hic 1
Po
P ybard tree
+ action

riant under preimage




Strategy

(Degree 1) braids
Ma

Hic 1 Hull

L

Po




Strategy

(Degree 1) braids
Ma

Hic 1 Hull

L

Po




Strategy

(Degree 1) braids
Maps (homeomorphisms) -« > Curves/Arcs

Alexander method

Higher degree/Dynamical

Postcriticially finite Douady—Hubbard
Polynomial < ’ Hubbard tree
Poirier
Alexander method Tree + action

Invariant under preimage




Strategy

(Degree 1) braids
Maps (homeomorphisms) < > Curves/Arcs

Alexander method

Higher degree/Dynamical
ostcriticially finit Douady—Hubbard
fPonnomian < ! [Hubbard tree]
Alexapr?cijrieerrmethod Tree + action

Invariant under preimage




Main Result

J post-critically finite branched cover C — C
Algorithm (Belk—Lanier—Margalit—\W)
1. Finds the Hubbard tree if equivalent to a polynomial

N

2. Otherwise, finds an obstruction

Strateqgy

1. Build a simplicial complex

2. Define simplicial map Ay
3. lterating A rconverges to a finite set or horocycle
4. Check a neighborhood ~~ Hubbard tree or obstruction




Main Result

J post-critically finite branched cover C — C

Algorithm (Belk—Lanier—Margalit—\\V)

1. Finds the Hubbard tree if equivalent to a polynomial
~+ determines the polynomial

2. Otherwise, finds an obstruction
canonical obstruction

Strategy

1. Build a simplicial complex

2. Define simplicial map A
3.
4.
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Tree Complex

Fixed set P
Tp = simplicial complex

vertices: isotopy classes of trees
simplices: subforest collapses/expansions










Tree Complex

Proposition: Tp is connected (actually, simply connected)

Proof: (Hubbard—Masur, Penner)

Dual to Teichmuller space.



Tp









Lifting map

Postcritically finite topological polynomial f
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Lifting map
Postcritically finite topological polynomial f
Lifting: f*:Tp —=Tp

[ s '
® — 0/\
Known: there is a fixed point (Hubbard tree)

Strategy: Lift until you find it
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Airplane example

Take the hull.

It is the same! You found an invariant tree!
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Lifting map
Postcritically finite topological polynomial f
Lifting: f*:Tp —=Tp

[ s '
® — 0/\
Known: there is a fixed point (Hubbard tree)

L one alobal atracting fixad poin

New hope: Finite nucleus (global attracting subcomplex)
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Our results

Theorem (Belk—Lanier—Margalit—\W)
f unobstructed topological polynomial = f™ finite nucleus

s contained in a 2-nbhd of Hubbard tree

N

= polynomial



Summary

Branched covers S — S%= higher degree braids

Thurston’s theorem for branched covers

Nielsen—Thurston for mapping classes

Belk—Lanier—Margalit—\\V: Algorithm for polynomials
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Obstructions

Iv. to”?
f post-critically finite topological polynomialqulfIX ° polynomial?

Levy cycle: multicurve {c1,...,¢n} s.t. :
1. f(ci) = ci—1 (mod n)
2.deg fle, =1

Theorem (Thurston, Berstein, Levy, Shishikura, Tan, Hubbard)
f equivalent to polynomial < fdoes not have a Levy cycle.

Proof: f top. polynomial ~> f« : Teich(C, P) — Teich(C, P)
pullback
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Canonical obstructions

Pilgrim: An obstructed topological polynomial has a canonical
obstruction

Curves — 0 under lifting

Selinger: Exterior of canonical obstruction is a polynomial
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bubble tree.
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Bubble trees

Proposition (Belk—Lanier—Margalit—\\V)
Every (obstructed) topological polynomial has a Hubbard
bubble tree.

Theorem (Belk—Lanier—Margalit—\\V)
J obstructed topological polynomial = all trees land in 2-
nbhd of the Hubbard bubble tree under [~

Infinite set
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Algorithm
0. Start with any tree
1. Apply /~
2. Check a 2-neighborhood for Poirier’s conditions
and canonical obstruction.
3. If you don’t find a Hubbard tree or canonical

obstruction, return to 1.



