Thurston Theory: A tale of two theorems

Becca Winarski
MSRI, College of the Holy Cross

joint with Jim Belk, Justin Lanier and Dan Margalit

Motto

Branched covers $S^2 \to S^2$ = higher degree braids

Motto

Branched covers $S^2 \rightarrow S^2$ = higher degree braids

A central goal in complex dynamics is to determine which branched covers are equivalent to rational maps

Thurston's Theorem

*f branched cover $(S^2, P) \to (S^2, P)$ $|P| < \infty$ is either:

1. Rational

2. Topologically obstructed

^{*} Outside of a class of well-understood examples called Lattés maps

Motto

Branched covers $S^2 \rightarrow S^2$ = higher degree braids

A central goal in complex dynamics is to determine which branched covers are equivalent to rational maps

Belk-Lanier-Margalit-W: Algorithm for polynomials

Main Result

f post-critically finite branched cover $\mathbb{C} \to \mathbb{C}$

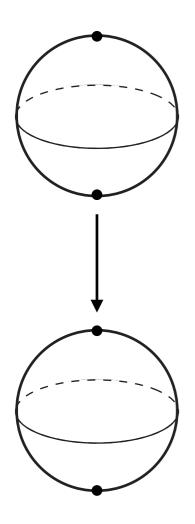
Algorithm (Belk-Lanier-Margalit-W)

1. If polynomial

determines the polynomial

2. Otherwise, finds an obstruction

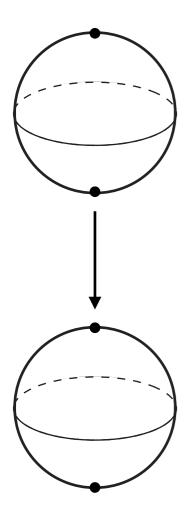
canonical obstruction



$$f(z) = z^d$$

$$0 \circlearrowleft$$

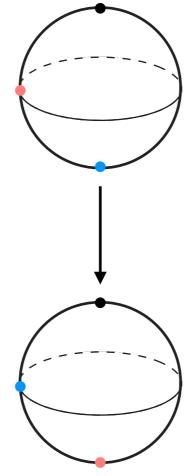
$$\infty$$
 \circlearrowleft



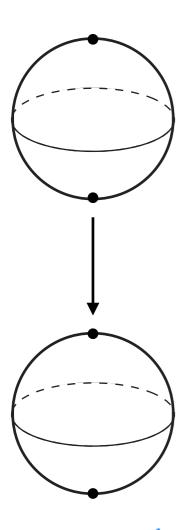
$$f(z) = z^d$$

$$0 \circlearrowleft$$

$$\infty \circlearrowleft$$



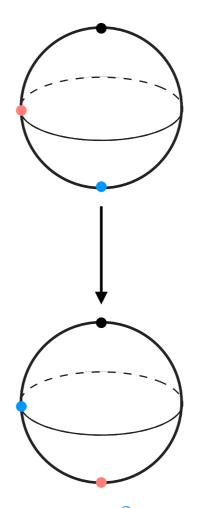
$$f(z) = z^2 - 1$$
$$0 \mapsto -1 \mapsto 0$$
$$\infty \circlearrowleft$$



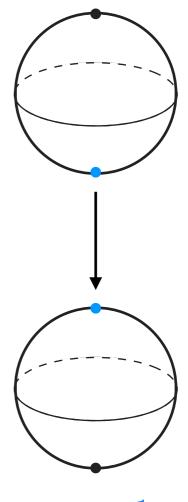
$$f(z) = z^d$$

$$0 \circlearrowleft$$

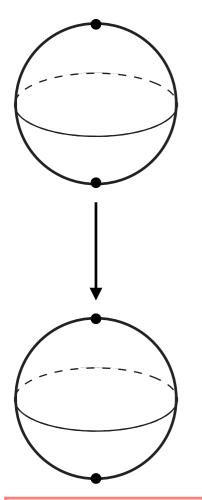
$$\infty \circlearrowleft$$



$$f(z) = z^2 - 1$$
$$0 \mapsto -1 \mapsto 0$$
$$\infty \circlearrowleft$$



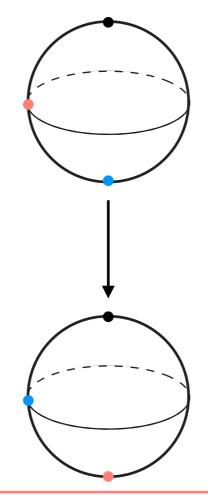
$$f(z) = \frac{1}{z^2}$$
$$0 \mapsto \infty$$
$$\infty \mapsto 0$$



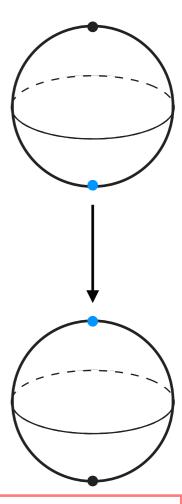
$$f(z) = z^d$$

$$0 \circlearrowleft$$

$$\infty \circlearrowleft$$



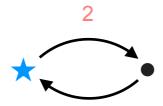
$$f(z) = z^2 - 1$$
$$0 \mapsto -1 \mapsto 0$$
$$\infty \circlearrowleft$$



$$f(z) = \frac{1}{z^2}$$
$$0 \mapsto \infty$$
$$\infty \mapsto 0$$

Portraits





$$f(z) = z^d$$

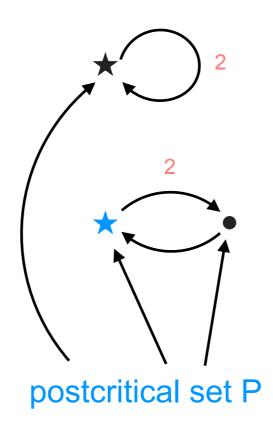
$$0 \circlearrowleft$$

$$\infty \circlearrowleft$$

$$f(z) = z^2 - 1$$
$$0 \mapsto -1 \mapsto 0$$
$$\infty \circlearrowleft$$

$$f(z) = \frac{1}{z^2}$$
$$0 \mapsto \infty$$
$$\infty \mapsto 0$$

Portraits



$$f(z) = z^d$$

$$0 \circlearrowleft$$

$$\infty \circlearrowleft$$

$$f(z) = z^2 - 1$$
$$0 \mapsto -1 \mapsto 0$$
$$\infty \circlearrowleft$$

$$f(z) = \frac{1}{z^2}$$
$$0 \mapsto \infty$$
$$\infty \mapsto 0$$

$$f: (S^2, P_f) \to (S^2, P_f)$$
$$g: (S^2, P_g) \to (S^2, P_g)$$
$$|P_f| = |P_g|$$

branched covers

$$f: (S^2, P_f) \to (S^2, P_f)$$
$$g: (S^2, P_g) \to (S^2, P_g)$$
$$|P_f| = |P_g|$$

branched covers

Equivalence = conjugation + isotopy

$$f: (S^2, P_f) \to (S^2, P_f)$$
$$g: (S^2, P_g) \to (S^2, P_g)$$
$$|P_f| = |P_g|$$

branched covers

$$(S^{2}, P_{f}) \xrightarrow{h_{2}} (S^{2}, P_{g})$$

$$\downarrow f \qquad \qquad \downarrow g \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$f: (S^2, P_f) \to (S^2, P_f)$$
$$g: (S^2, P_g) \to (S^2, P_g)$$
$$|P_f| = |P_g|$$

branched covers

$$h_1 \simeq h_2$$
 rel. P_f

$$(S^{2}, P_{f}) \xrightarrow{h_{2}} (S^{2}, P_{g})$$

$$\downarrow f \qquad \qquad \downarrow g \qquad \qquad \downarrow \qquad \qquad \downarrow$$

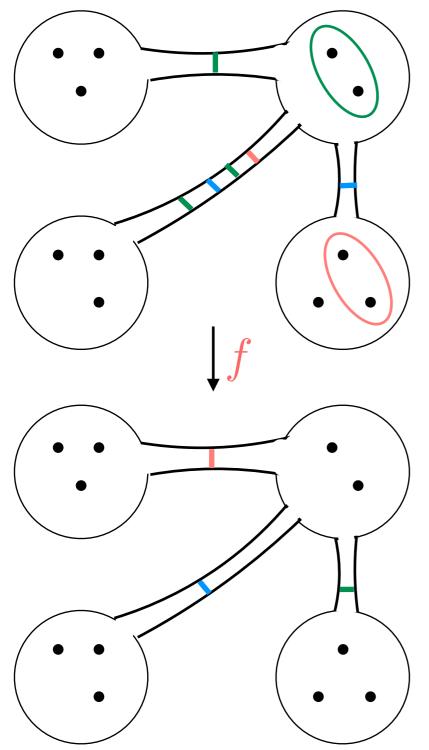
Thurston's Theorem

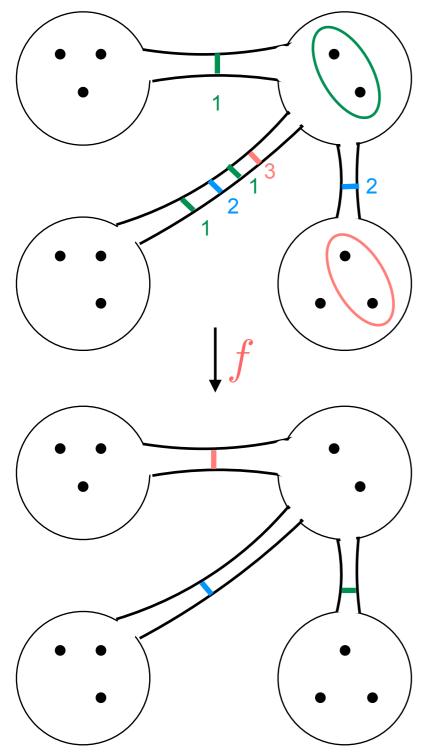
*f branched cover $(S^2, P) \to (S^2, P)$ $|P| < \infty$ is either:

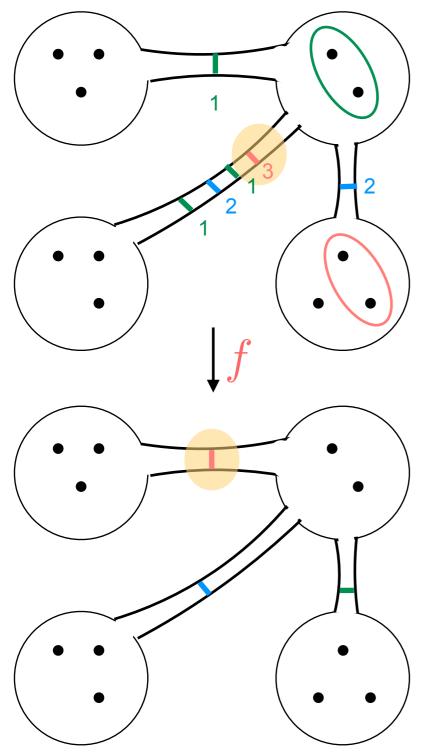
1. Rational

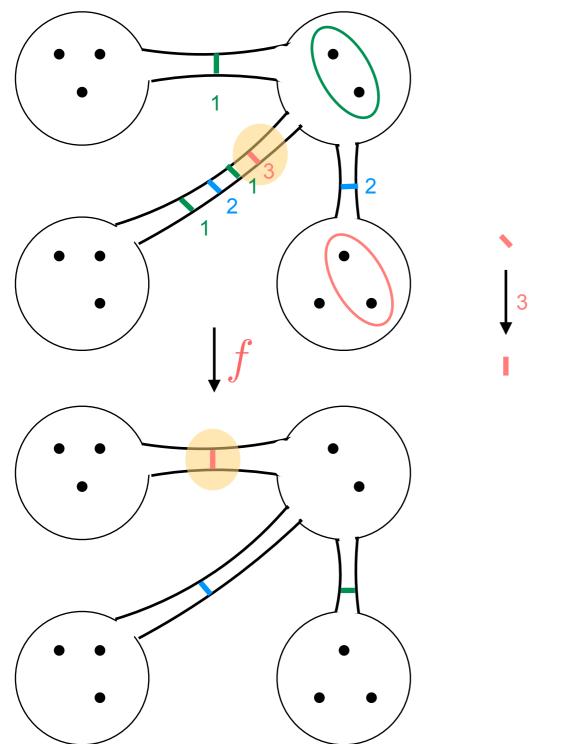
2. Topologically obstructed

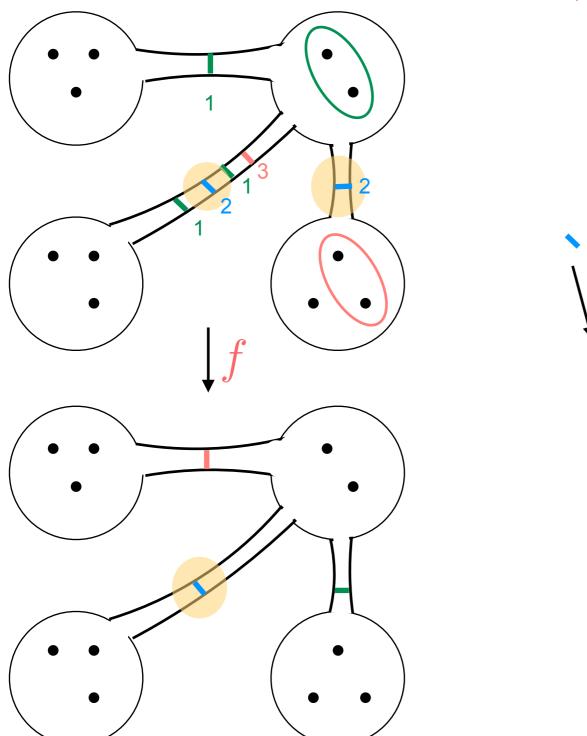
^{*} Outside of a class of well-understood examples called Lattés maps

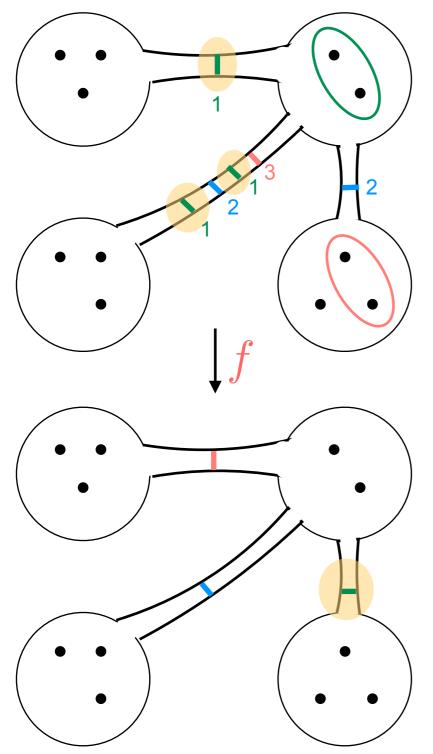


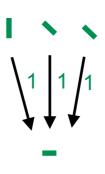


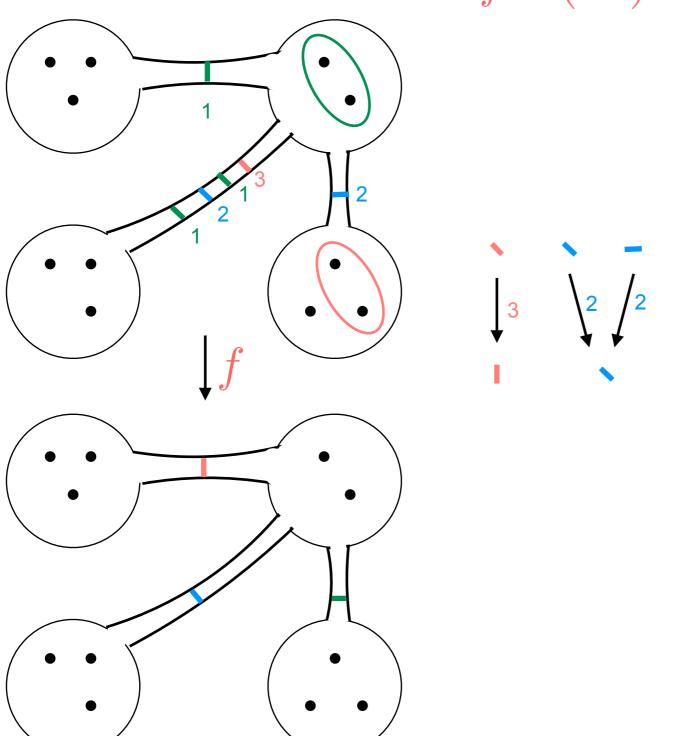


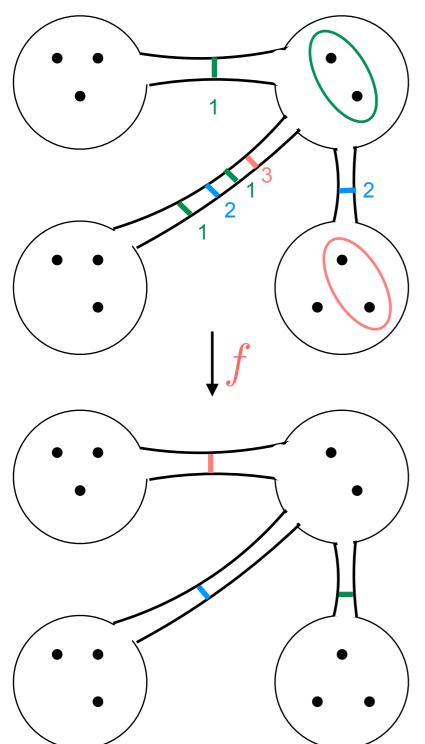


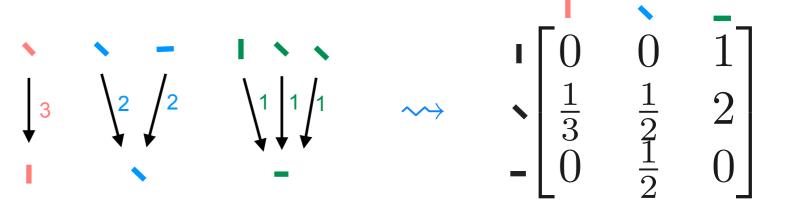




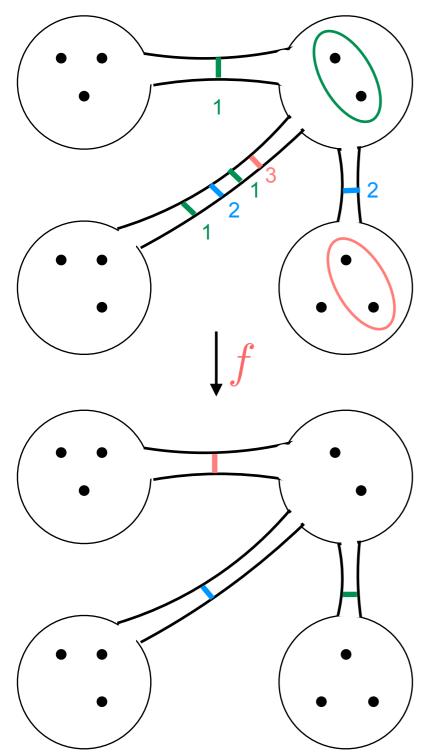








Stable multicurves: $M \subset f^{-1}(M)$



Obstruction if eigenvalue ≥ 1

Characterization Theorem(s)

 $f:(S,P)\to (S,P)$ homeomorphism is homotopic to one:

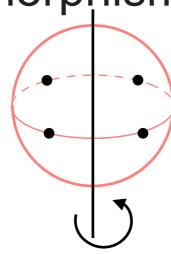
1. Periodic

2. Reducible

 $f:(S,P)\to (S,P)$ homeomorphism is homotopic to one:

1. Periodic

$$f^k \sim \mathrm{id}$$



2. Reducible

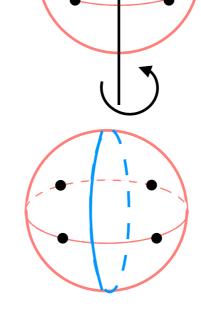
 $f:(S,P)\to (S,P)$ homeomorphism is homotopic to one:

1. Periodic

$$f^k \sim \mathrm{id}$$

2. Reducible

f fixes some multicurve



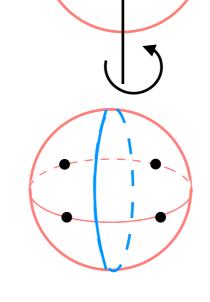
 $f:(S,P)\to (S,P)$ homeomorphism is homotopic to one:

1. Periodic

$$f^k \sim \mathrm{id}$$

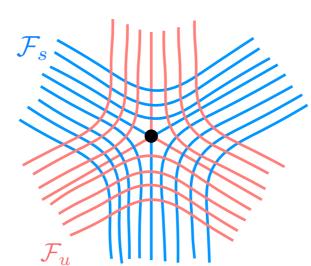
2. Reducible

f fixes some multicurve



$$f(\mathcal{F}_s) = \lambda \mathcal{F}_s$$

$$f(\mathcal{F}_u) = \frac{1}{\lambda} \mathcal{F}_u$$



übertheorem

Theorem (Thurston)+epsilon

* f branched cover $(S^2, P) \rightarrow (S^2, P)$ is one of:

1. Holomorphic

2. Fixes multicurve

^{*} Also true for self-covers of tori, but those aren't braids

übertheorem

Theorem (Thurston)+epsilon

* f branched cover $(S^2, P) \rightarrow (S^2, P)$ is one of:

d=1

1. Holomorphic

periodic

2. Fixes multicurve

^{*} Also true for self-covers of tori, but those aren't braids

übertheorem

Theorem (Thurston)+epsilon

* f branched cover $(S^2, P) \rightarrow (S^2, P)$ is one of:

d=1

1. Holomorphic

periodic

2. Fixes multicurve

reducible

^{*} Also true for self-covers of tori, but those aren't braids

Theorem (Thurston)+epsilon

* f branched cover $(S^2, P) \rightarrow (S^2, P)$ is one of:

d=1

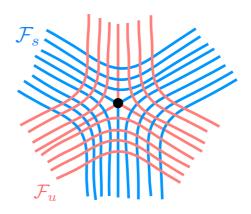
1. Holomorphic

periodic

2. Fixes multicurve

reducible

3. Pseudo-Anosov



^{*} Also true for self-covers of tori, but those aren't braids

Theorem (Thurston)+epsilon

* f branched cover $(S^2, P) \rightarrow (S^2, P)$ is one of:

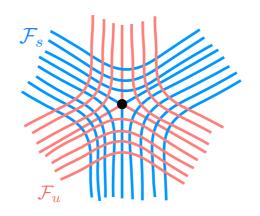
1. Holomorphic

2. Fixes multicurve

3. Pseudo-Anosov

d=1
periodic

reducible



d>1

rational

^{*} Also true for self-covers of tori, but those aren't braids

Theorem (Thurston)+epsilon

* f branched cover $(S^2, P) \rightarrow (S^2, P)$ is one of:

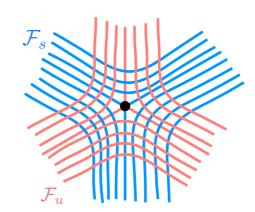
1. Holomorphic

2. Fixes multicurve

3. Pseudo-Anosov

d=1
periodic

reducible



d>1 rational

obstructed

^{*} Also true for self-covers of tori, but those aren't braids

Theorem (Thurston)+epsilon

* f branched cover $(S^2, P) \rightarrow (S^2, P)$ is one of:

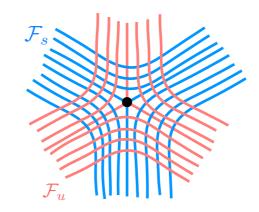
1. Holomorphic

2. Fixes multicurve

3. Pseudo-Anosov

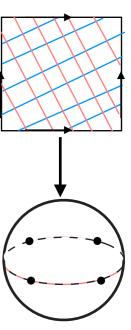
d=1 periodic

reducible



d>1 rational

obstructed



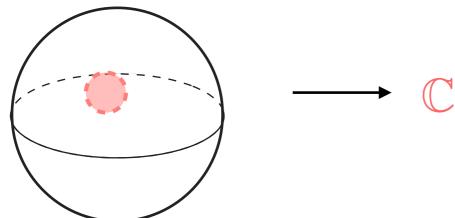
^{*} Also true for self-covers of tori, but those aren't braids

Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

 $\operatorname{Teich}(S^2, P) = \{\text{complex structures } (S^2, P)\}/\operatorname{Diff}_0(S^2, P)$

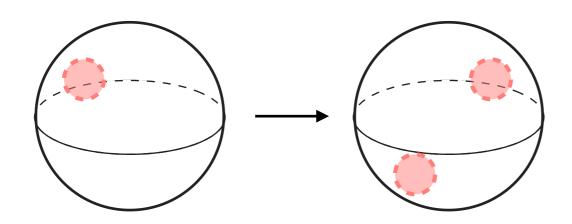
Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

 $\operatorname{Teich}(S^2, P) = \{\text{complex structures } (S^2, P)\}/\operatorname{Diff}_0(S^2, P)$



Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

Teich(S^2, P) = {complex structures (S^2, P) }/Diff₀(S^2, P) $\sigma_f : \text{Teich}(S^2, P) \to \text{Teich}(S^2, P)$



Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

```
Teich(S^2, P) = {complex structures (S^2, P)}/Diff<sub>0</sub>(S^2, P)
\sigma_f : \text{Teich}(S^2, P) \to \text{Teich}(S^2, P)
\sigma_f \text{ weak contraction: } d(\sigma(X), \sigma(Y)) \le d(X, Y)
```

Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

```
Teich(S^2, P) = {complex structures (S^2, P)}/Diff_0(S^2, P)

\sigma_f : Teich(S^2, P) \rightarrow Teich(S^2, P)

\sigma_f weak contraction: d(\sigma(X), \sigma(Y)) \leq d(X, Y)

\sigma_f^2 contraction unless special (parabolic orbifold with 4 branch points)
```

Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

```
\begin{aligned} & \operatorname{Teich}(S^2,P) = \{ \operatorname{complex structures} \ (S^2,P) \} / \operatorname{Diff}_0(S^2,P) \\ & \sigma_f : \operatorname{Teich}(S^2,P) \to \operatorname{Teich}(S^2,P) \\ & \sigma_f \text{ weak contraction: } d(\sigma(X),\sigma(Y)) \leq d(X,Y) \\ & \sigma_f^2 \text{ contraction unless special (parabolic orbifold with 4 branch points)} \end{aligned}
```

Teichmüller maps → "Teichmüller maps" ≤ stretch factor

Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

```
\begin{aligned} & \operatorname{Teich}(S^2,P) = \{ \operatorname{complex structures} \ (S^2,P) \} / \operatorname{Diff}_0(S^2,P) \\ & \sigma_f : \operatorname{Teich}(S^2,P) \to \operatorname{Teich}(S^2,P) \\ & \sigma_f \text{ weak contraction: } d(\sigma(X),\sigma(Y)) \leq d(X,Y) \\ & \sigma_f^2 \text{ contraction unless special (parabolic orbifold with 4 branch points)} \end{aligned}
```

Teichmüller maps → "Teichmüller maps" ≤ stretch factor

$$\inf(d(X, \sigma_f(X)))$$

Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

```
\begin{aligned} & \operatorname{Teich}(S^2,P) = \{ \operatorname{complex structures} \ (S^2,P) \} / \operatorname{Diff}_0(S^2,P) \\ & \sigma_f : \operatorname{Teich}(S^2,P) \to \operatorname{Teich}(S^2,P) \\ & \sigma_f \text{ weak contraction: } d(\sigma(X),\sigma(Y)) \leq d(X,Y) \\ & \sigma_f^2 \text{ contraction unless special (parabolic orbifold with 4 branch points)} \end{aligned}
```

Teichmüller maps → "Teichmüller maps" ≤ stretch factor

$$\inf(d(X,\sigma_f(X)))$$

= 0 realized → holomorphic

Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

```
\begin{aligned} & \mathbf{Teich}(S^2,P) = \{ \text{complex structures } (S^2,P) \} / \mathrm{Diff}_0(S^2,P) \\ & \sigma_f : \mathrm{Teich}(S^2,P) \to \mathrm{Teich}(S^2,P) \\ & \sigma_f \text{ weak contraction: } d(\sigma(X),\sigma(Y)) \leq d(X,Y) \\ & \sigma_f^2 \text{ contraction unless special } \text{(parabolic orbifold with 4 branch points)} \end{aligned}
```

Teichmüller maps → "Teichmüller maps ≤ stretch factor

```
\inf(d(X, \sigma_f(X)))
= 0 realized \leadsto holomorphic not realized \leadsto invariant multi-curve
```

Bers' Proof of Nielsen-Thurston (see Farb-Margalit)

```
\begin{aligned} & \mathbf{Teich}(S^2,P) = \{ \text{complex structures } (S^2,P) \} / \mathrm{Diff}_0(S^2,P) \\ & \sigma_f : \mathrm{Teich}(S^2,P) \to \mathrm{Teich}(S^2,P) \\ & \sigma_f \text{ weak contraction: } d(\sigma(X),\sigma(Y)) \leq d(X,Y) \\ & \sigma_f^2 \text{ contraction unless special } \text{(parabolic orbifold with 4 branch points)} \end{aligned}
```

Teichmüller maps → "Teichmüller maps" ≤ stretch factor

```
\inf(d(X, \sigma_f(X)))
= 0 realized \leadsto holomorphic
not realized \leadsto invariant multi-curve
> 0 realized \leadsto pseudo-Anosov
```

Theorem (Thurston)+epsilon

* f branched cover $(S^2, P) \rightarrow (S^2, P)$ is one of:

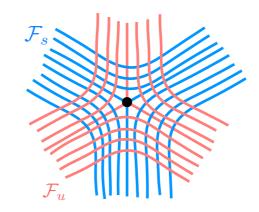
1. Holomorphic

2. Fixes multicurve

3. Pseudo-Anosov

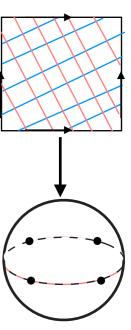
d=1 periodic

reducible



d>1 rational

obstructed



^{*} Also true for self-covers of tori, but those aren't braids

Topological polynomials

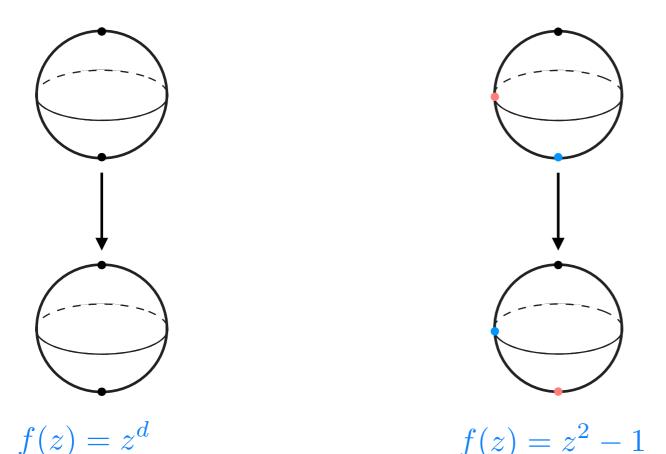
Topological polynomials

Topological polynomials: branched self-covers (\mathbb{C},P) post-critical set $P\subset\mathbb{C}$

Topological polynomials

Topological polynomials: branched self-covers (\mathbb{C},P) post-critical set $P\subset\mathbb{C}$

branched covers $f:(S^2,P\cup\infty)\to (S^2,P\cup\infty)$ such that $f^{-1}(\infty)=\{\infty\}$



Thurston's Theorem

Theorem (W. Thurston)

f post-critically finite topological polynomial, either

- 1. f is equivalent to a polynomial
- 2. f obstructed

Thurston's Theorem

Theorem (W. Thurston)

f post-critically finite topological polynomial, either

- 1. f is equivalent to a polynomial
- 2. f obstructed

Characterization problem:

Given a topological polynomial, determine whether or not it is equivalent to a polynomial. If so, which one?

Thurston's Theorem

Theorem (W. Thurston)

- f post-critically finite topological polynomial, either
- 1. f is equivalent to a polynomial = has a Hubbard tree
- 2. f obstructed

Characterization problem:

Given a topological polynomial, determine whether or not it is equivalent to a polynomial. If so, which one?

(Degree 1) braids

Maps (homeomorphisms)

← Alexander method

Curves/Arcs

(Degree 1) braids

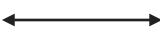
Maps (homeomorphisms)

Curves/Arcs

Higher degree/Dynamical

Postcriticially finite

Polynomial



Hubbard tree

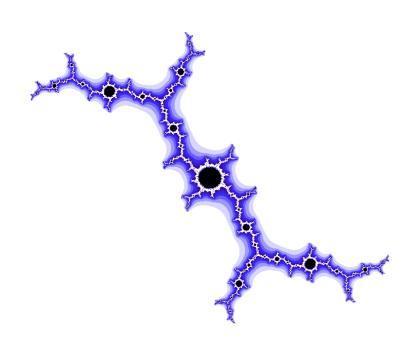
(Degree 1) braids

Ma

Hiç

Po

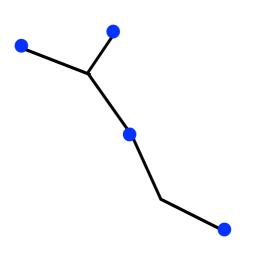
P

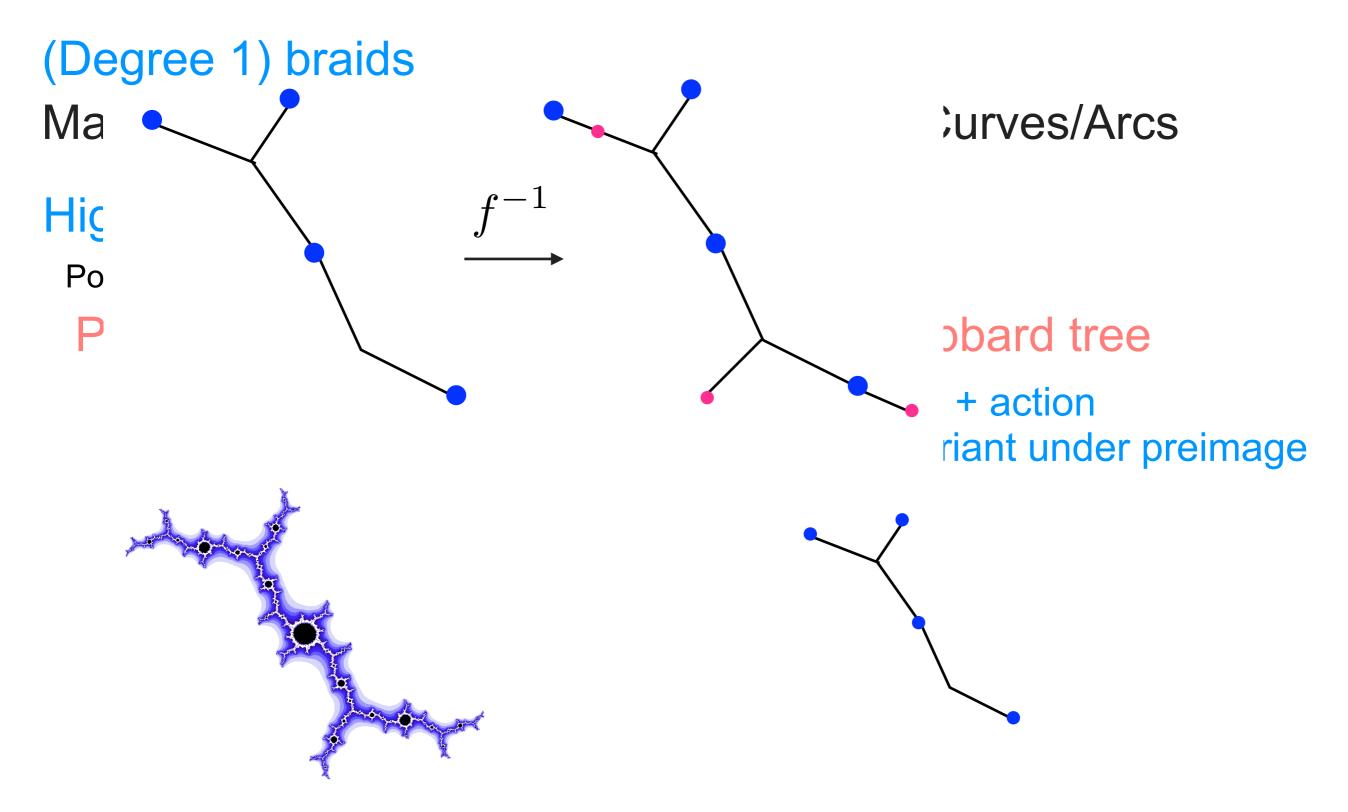


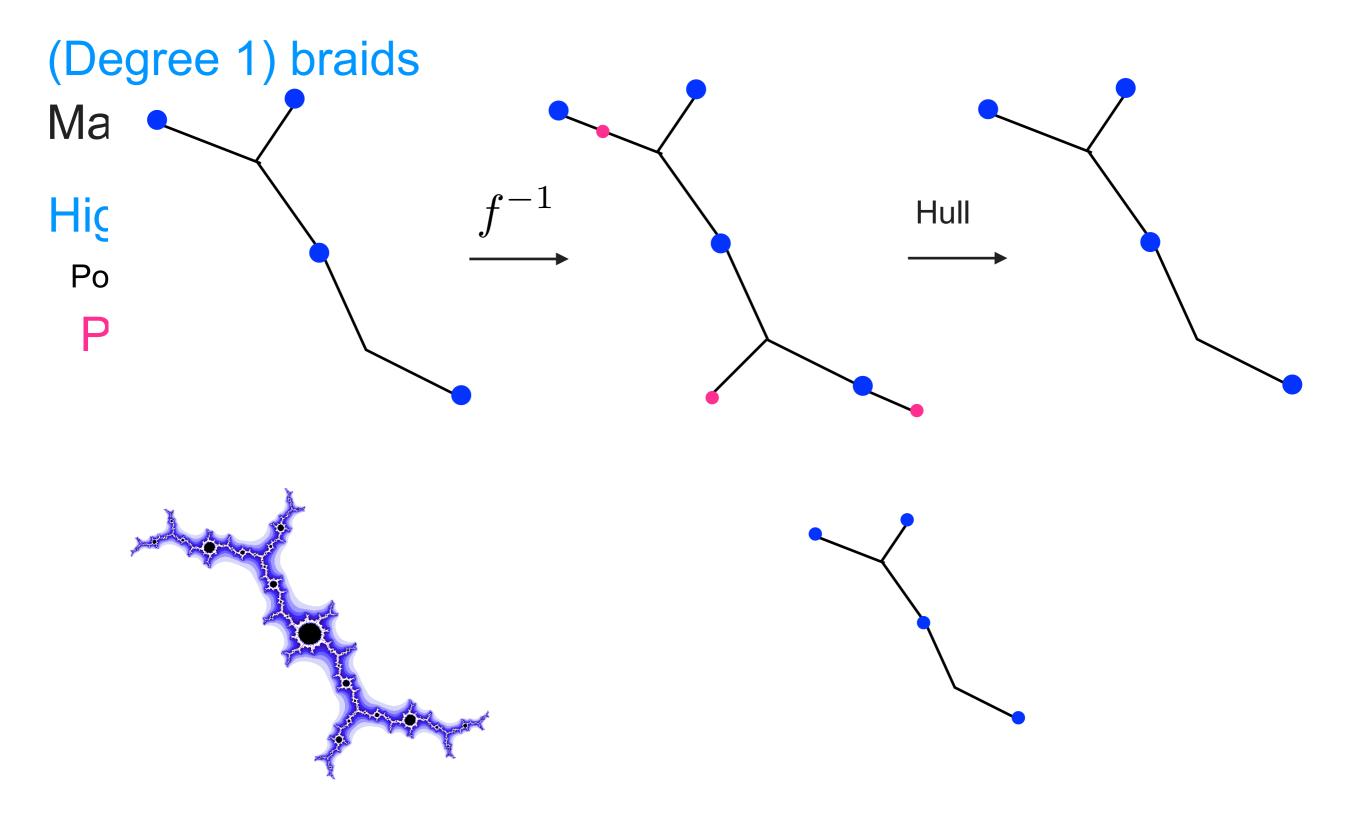
Curves/Arcs

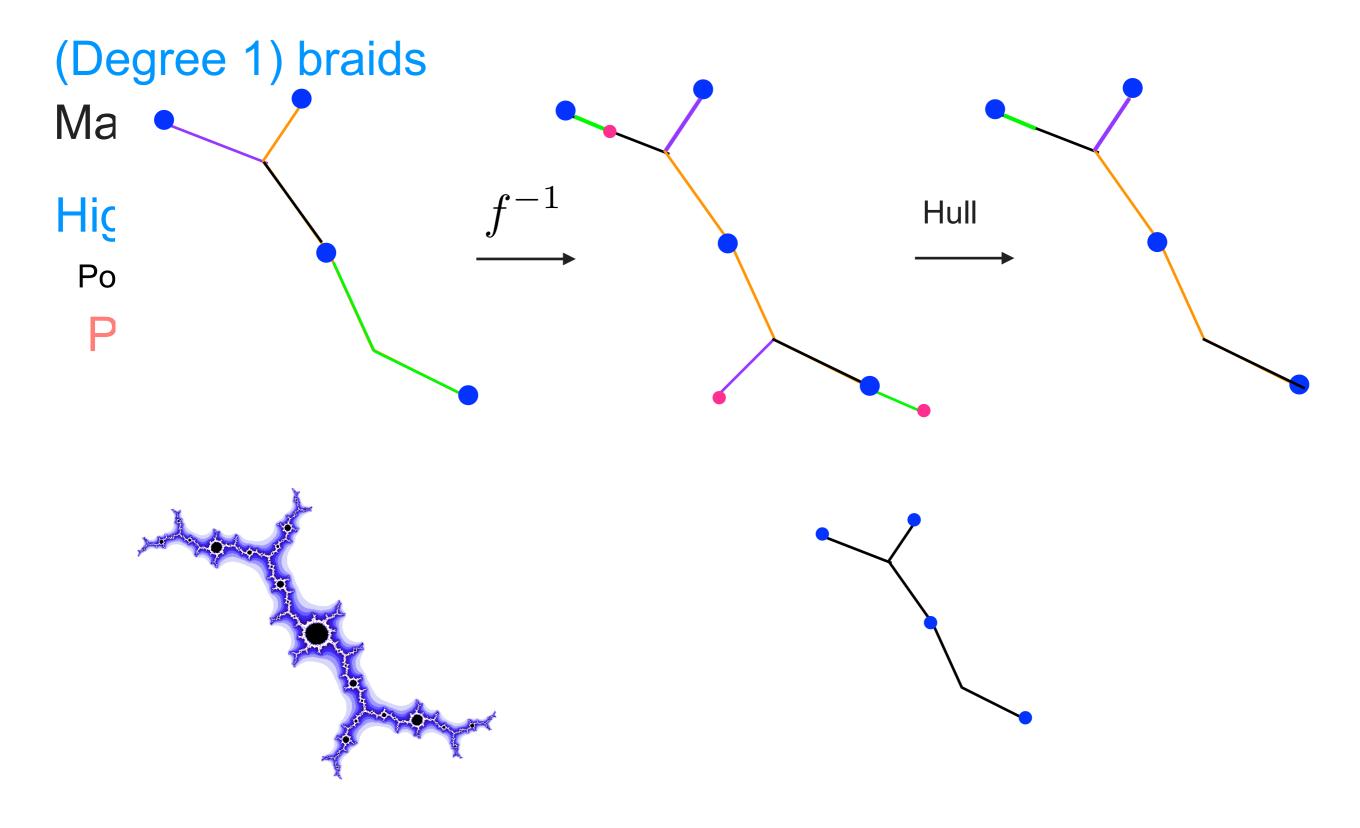
Hubbard tree

Tree + action Invariant under preimage









(Degree 1) braids

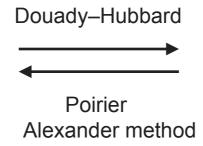
Maps (homeomorphisms)

Curves/Arcs

Higher degree/Dynamical

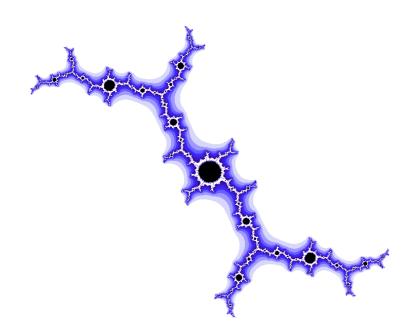
Postcriticially finite

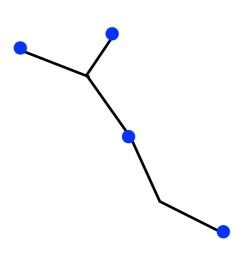
Polynomial



Hubbard tree

Tree + action
Invariant under preimage





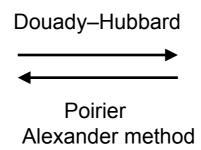
(Degree 1) braids

Maps (homeomorphisms)

Curves/Arcs

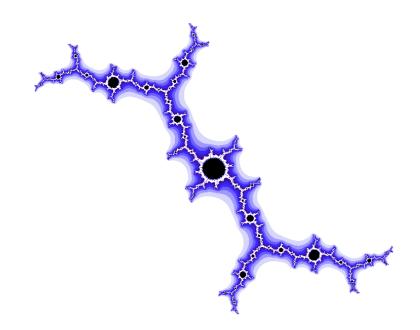
Higher degree/Dynamical

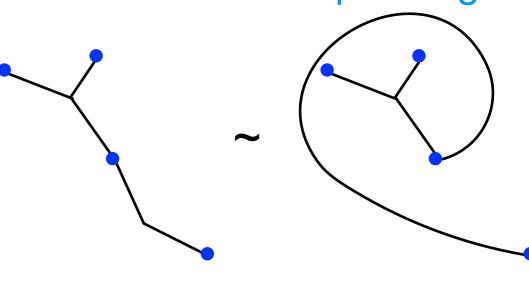
Postcriticially finite
Polynomial



Hubbard tree

Tree + action Invariant under preimage





Main Result

f post-critically finite branched cover $\mathbb{C} \to \mathbb{C}$

Algorithm (Belk-Lanier-Margalit-W)

- 1. Finds the Hubbard tree if equivalent to a polynomial
 - determines the polynomial
- 2. Otherwise, finds an obstruction

canonical obstruction

- 1. Build a simplicial complex
- 2. Define simplicial map λ_f
- 3. Iterating λ_f converges to a finite set or horocycle
- 4. Check a neighborhood ~ Hubbard tree or obstruction

Main Result

f post-critically finite branched cover $\mathbb{C} \to \mathbb{C}$

Algorithm (Belk-Lanier-Margalit-W)

- 1. Finds the Hubbard tree if equivalent to a polynomial
 - determines the polynomial
- 2. Otherwise, finds an obstruction

canonical obstruction

- 1. Build a simplicial complex
- 2. Define simplicial map λ_f
- f unobstructed $\Rightarrow \lambda_f$ converges to finite subcomplex
- 4.

The Simplicial Complex

Fixed set P

Fixed set P

 \mathcal{T}_P = simplicial complex

Fixed set P

 \mathcal{T}_P = simplicial complex

vertices: isotopy classes of trees

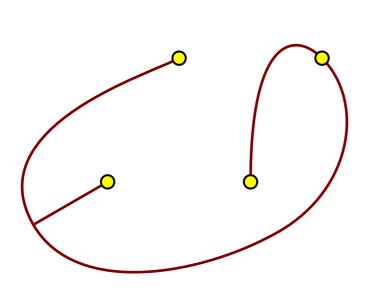
simplices: subforest collapses/expansions

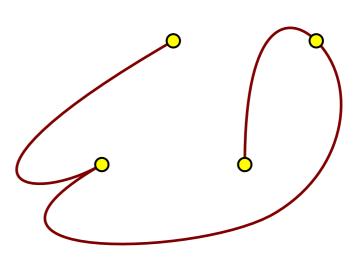
Fixed set P

 \mathcal{T}_P = simplicial complex

vertices: isotopy classes of trees

simplices: subforest collapses/expansions





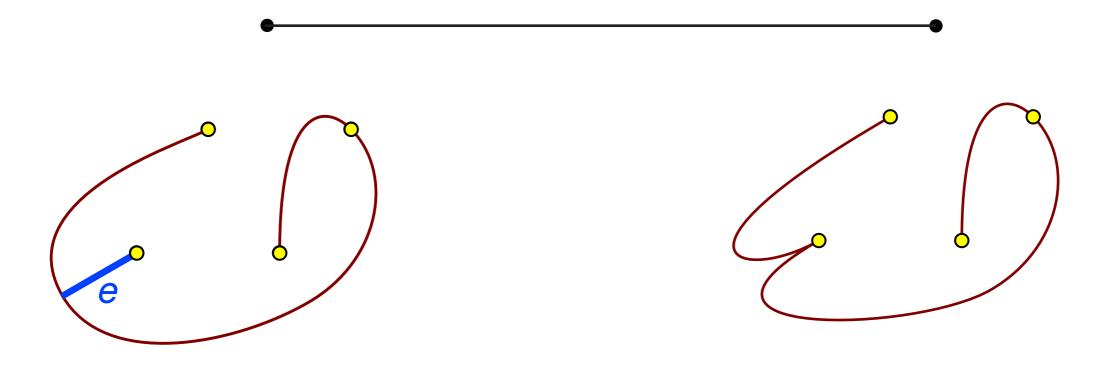
Tree Complex

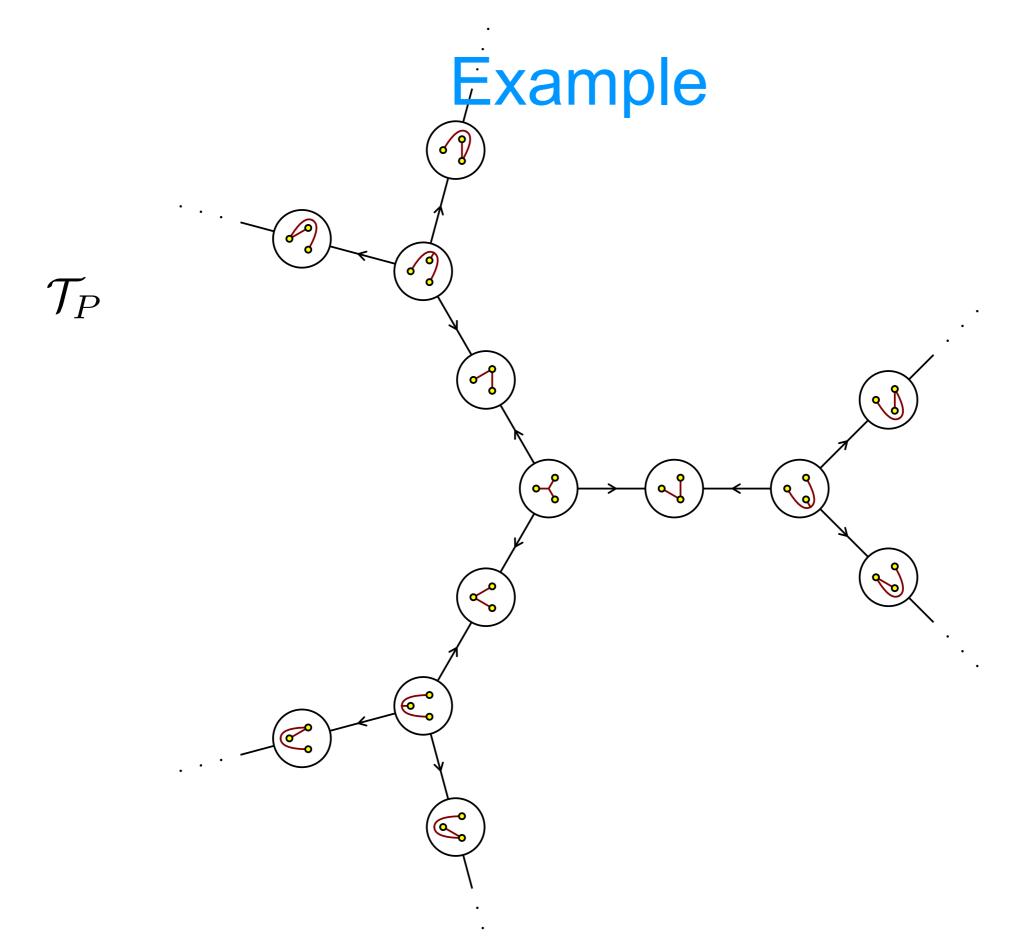
Fixed set P

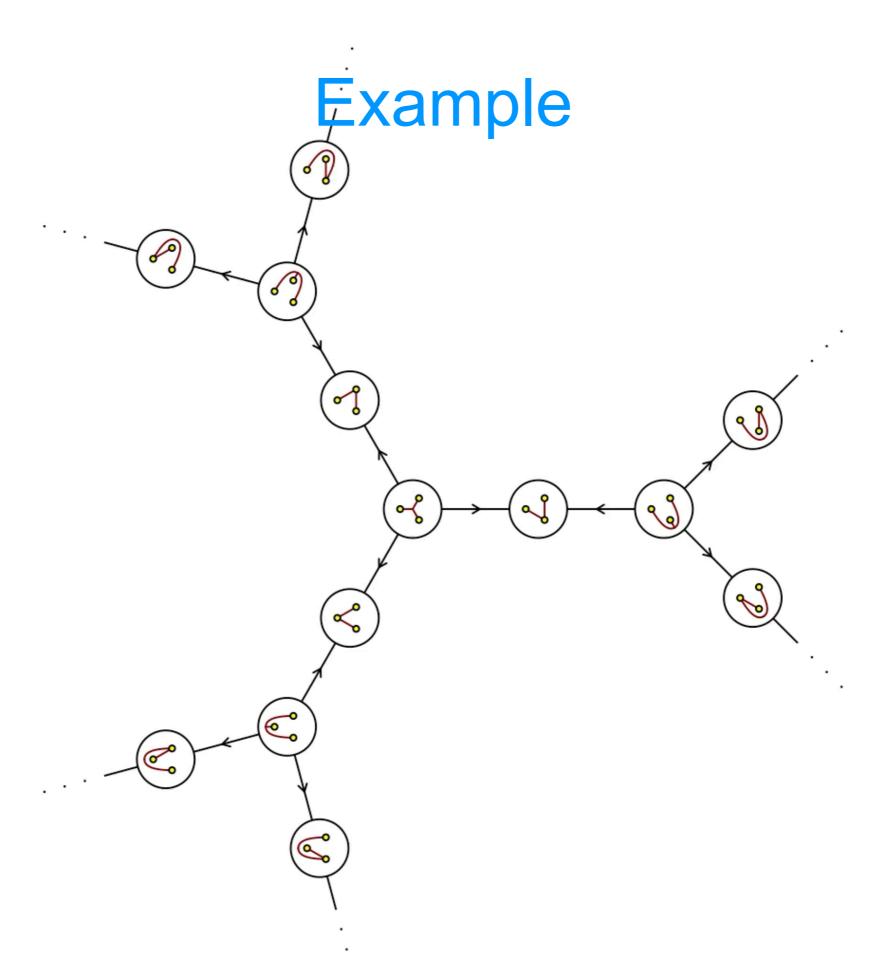
 \mathcal{T}_P = simplicial complex

vertices: isotopy classes of trees

simplices: subforest collapses/expansions







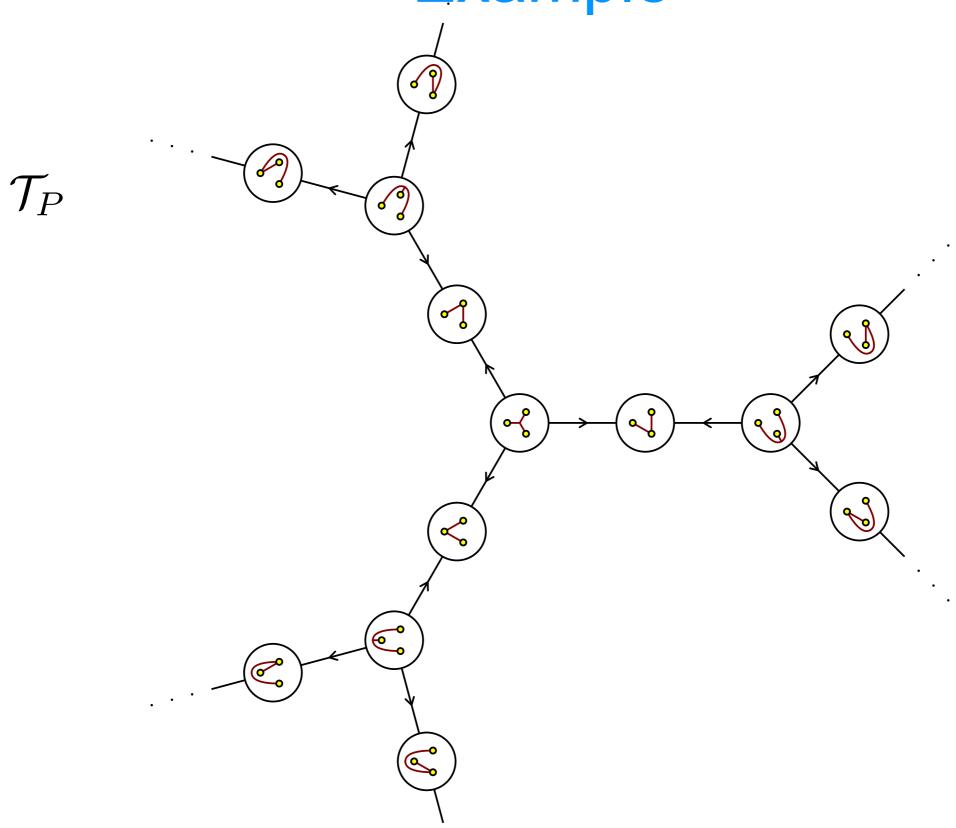
Tree Complex

Proposition: \mathcal{T}_P is connected (actually, simply connected)

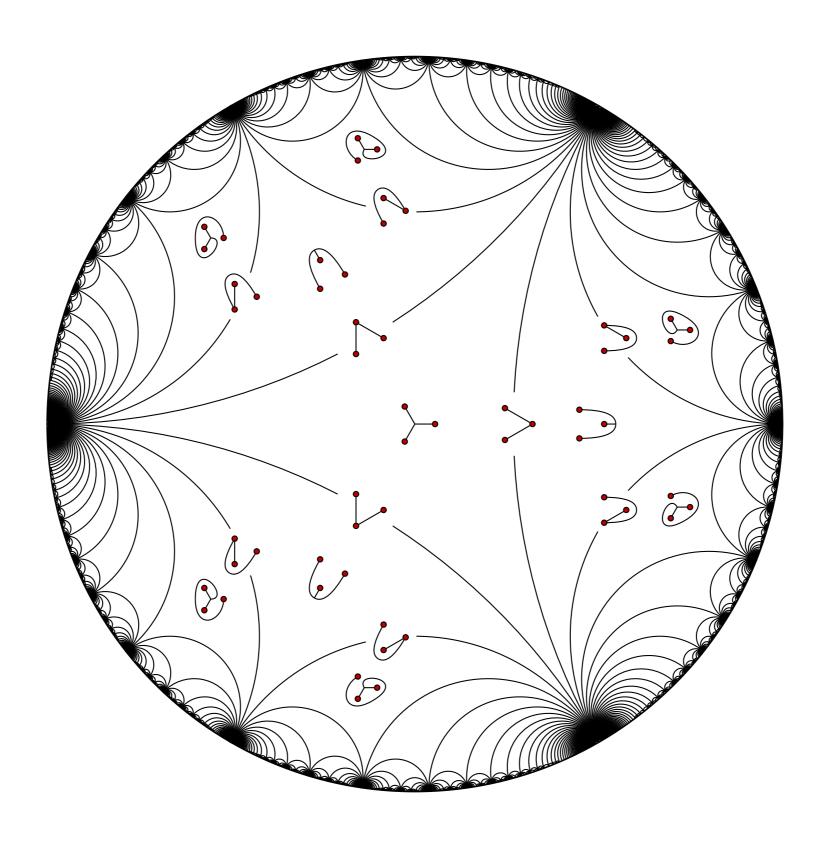
Proof: (Hubbard–Masur, Penner)

Dual to Teichmüller space.

Example



Example



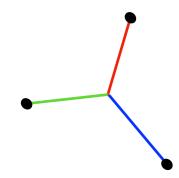
The Simplicial Map

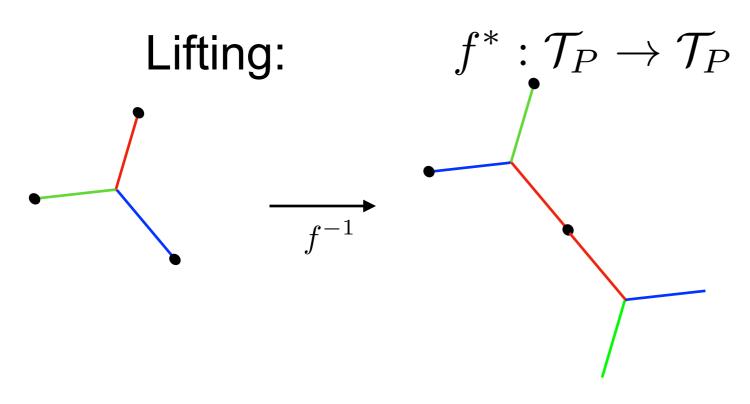
Image: Glendale City Trees

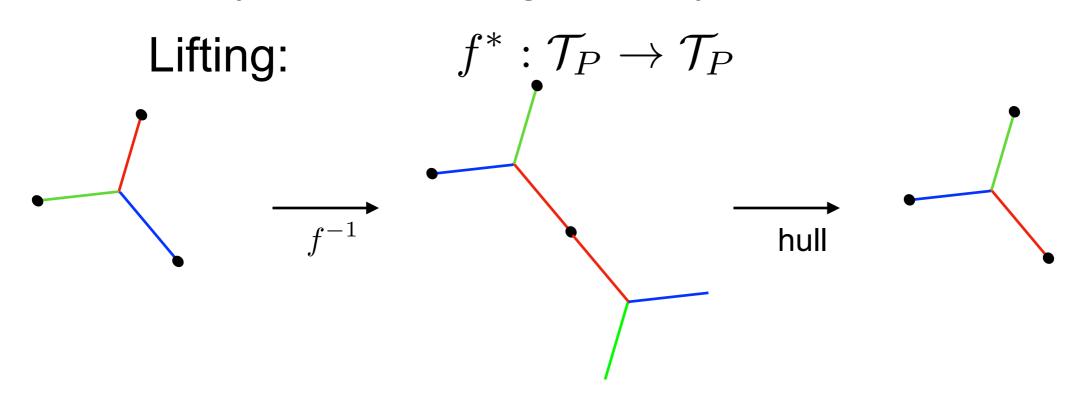
Postcritically finite topological polynomial f

Lifting: $f^*: \mathcal{T}_P \to \mathcal{T}_P$

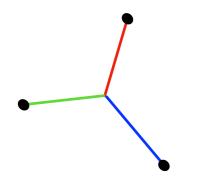
Lifting:
$$f^*: \mathcal{T}_P \to \mathcal{T}_P$$



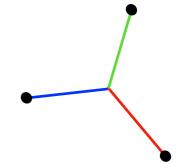




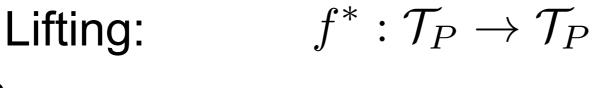
$$f^*:\mathcal{T}_P o\mathcal{T}_P$$

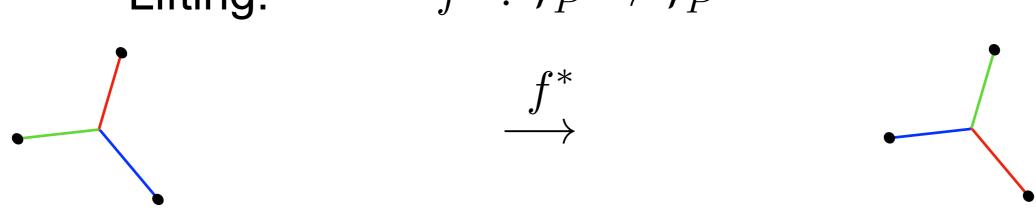


$$\xrightarrow{f^*}$$



Postcritically finite topological polynomial f

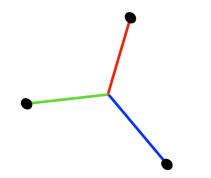




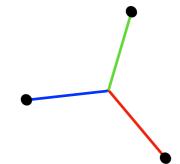
Known: there is a fixed point (Hubbard tree)

Postcritically finite topological polynomial f

Lifting:
$$f^*: \mathcal{T}_P \to \mathcal{T}_P$$

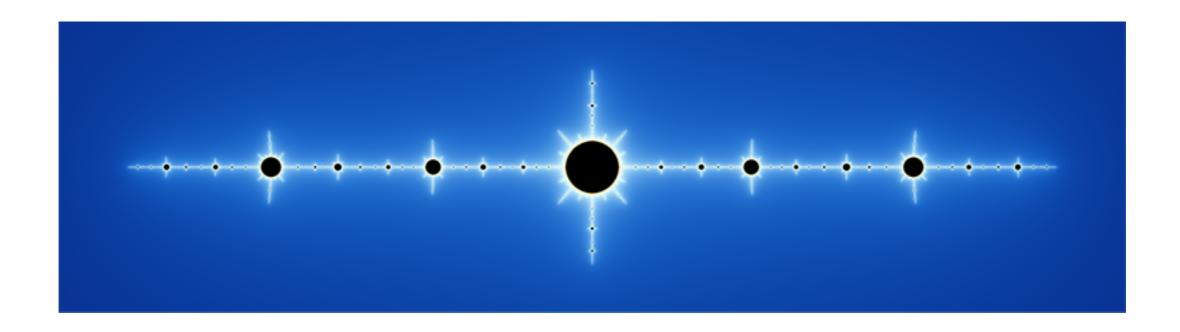


$$\xrightarrow{f^*}$$

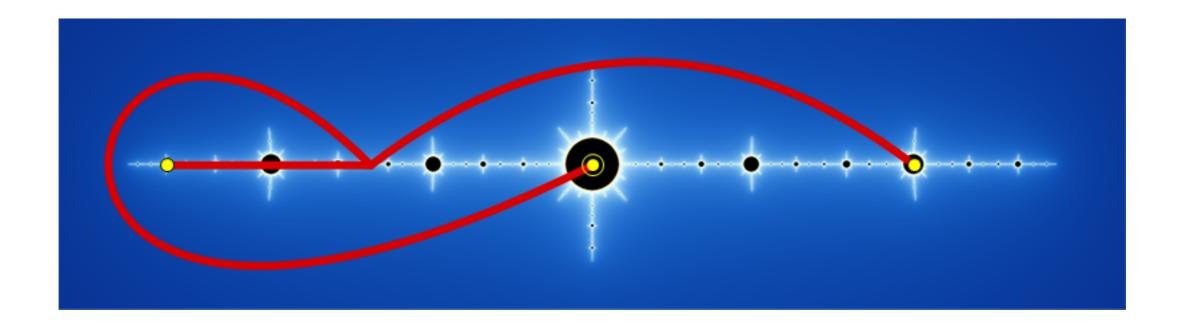


Known: there is a fixed point (Hubbard tree)

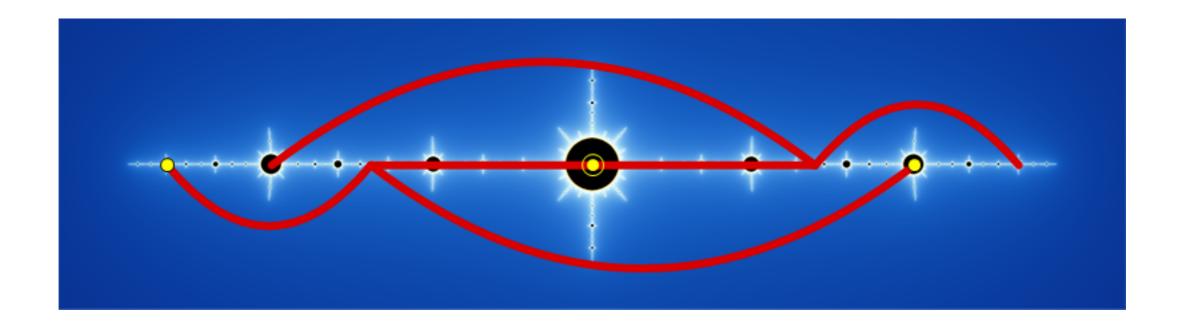
Strategy: Lift until you find it



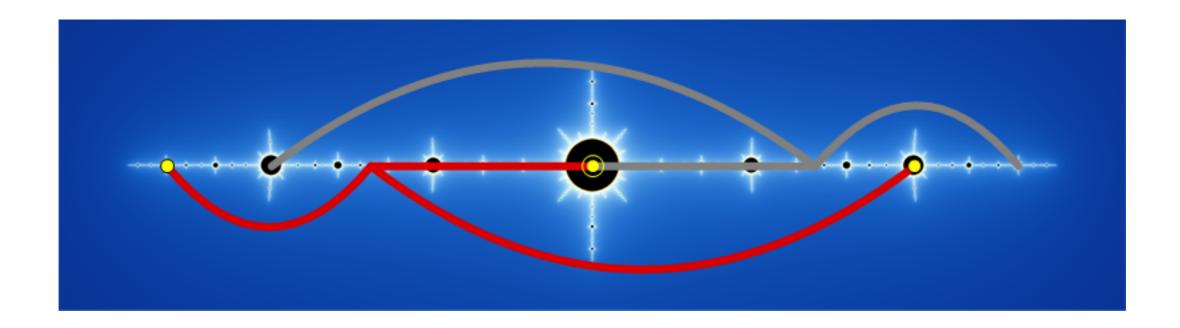
Choose a tree T



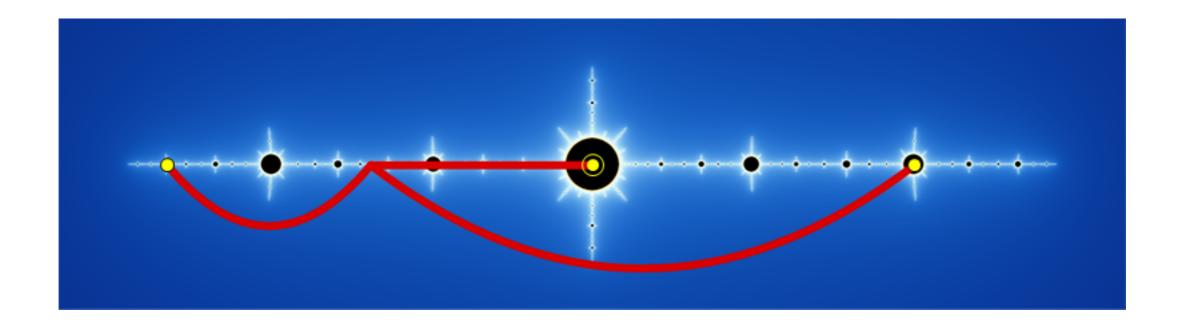
Take the preimage.



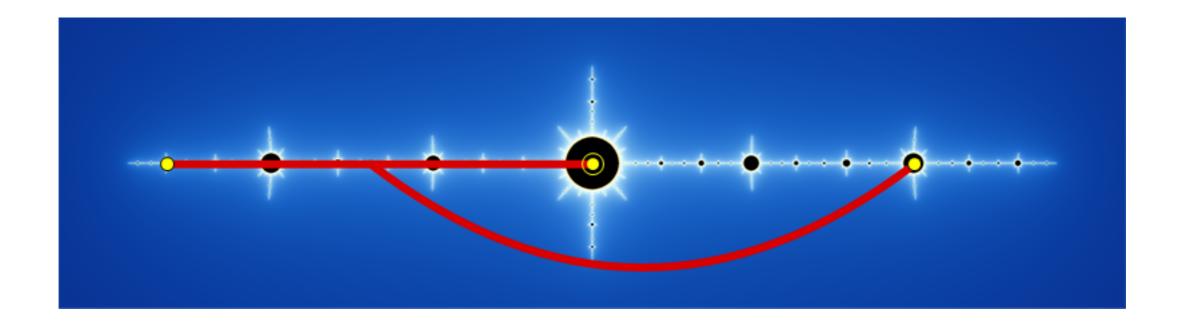
Take the preimage.



Take the hull.

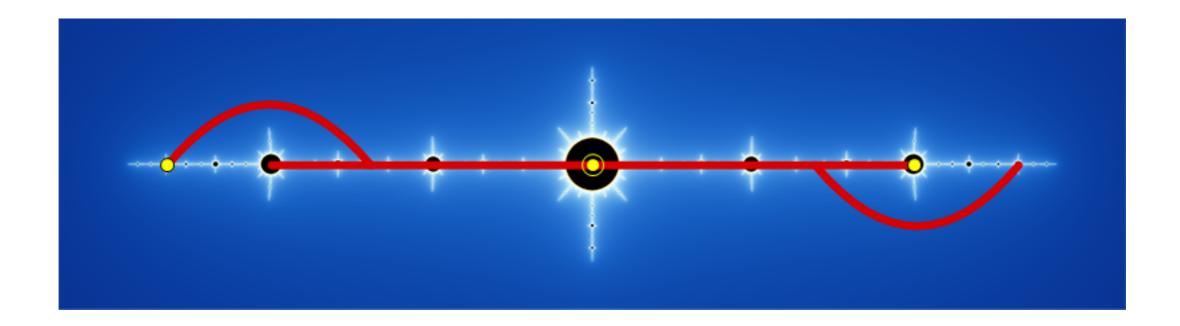


Simplify.

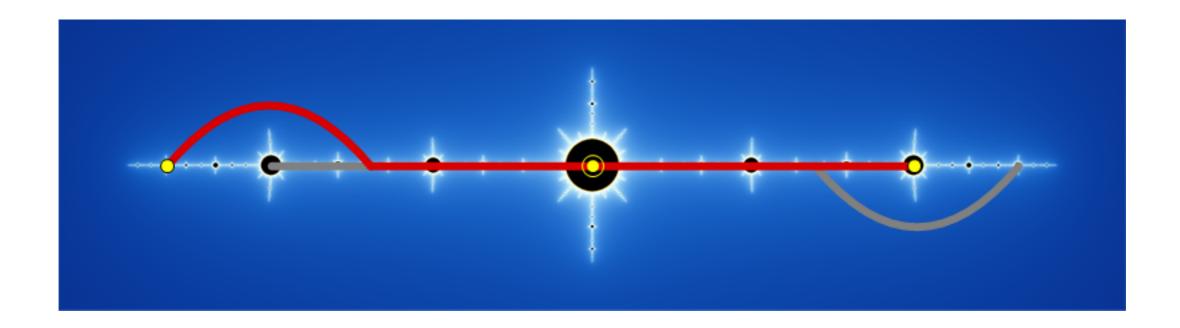


Not the same, repeat.

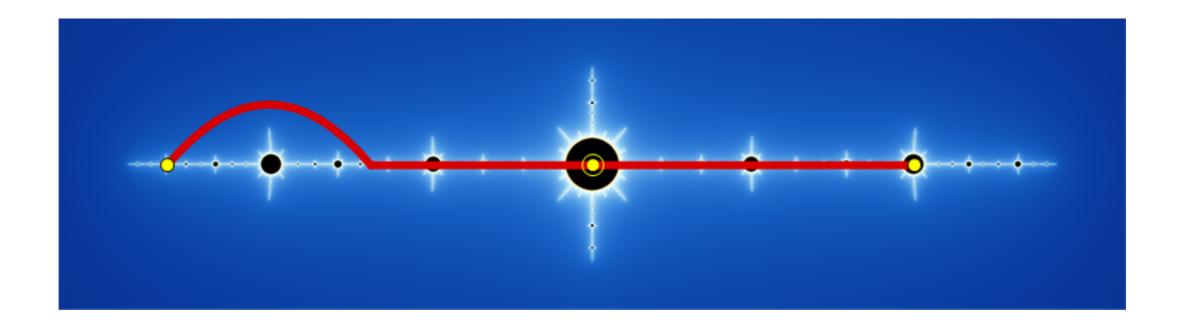
Take the preimage.



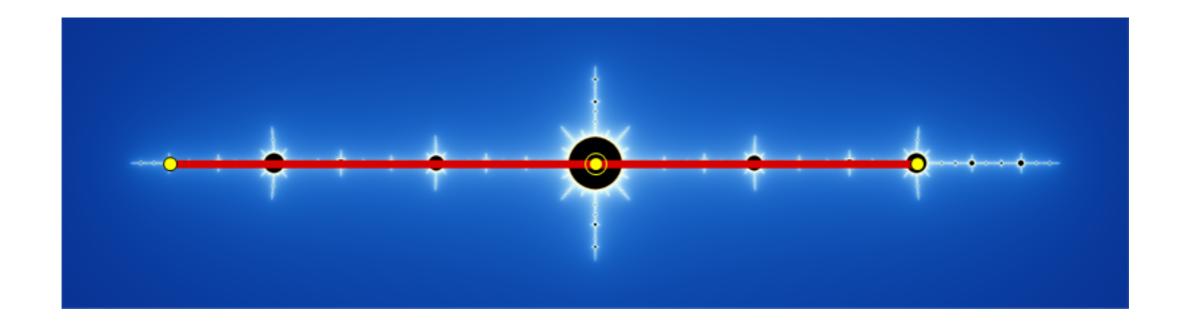
Take the preimage.



Take the hull.

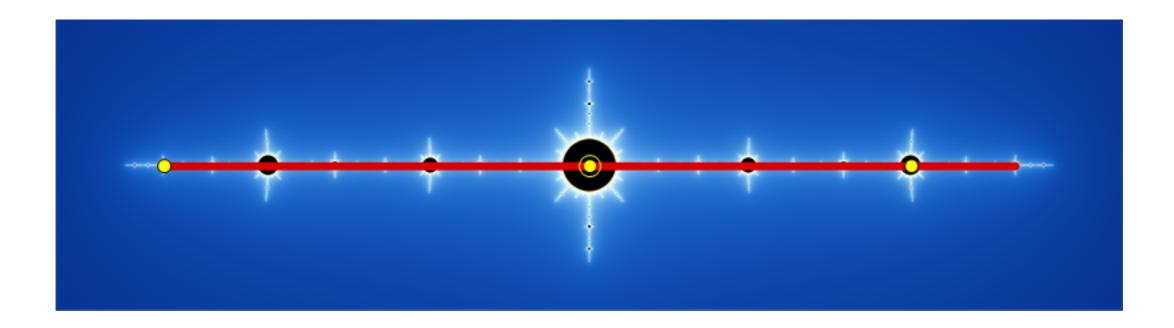


Simplify.

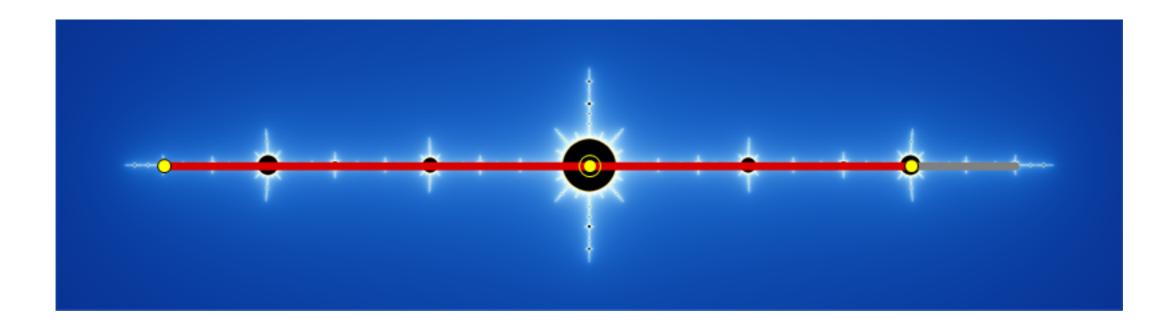


Not the same, repeat.

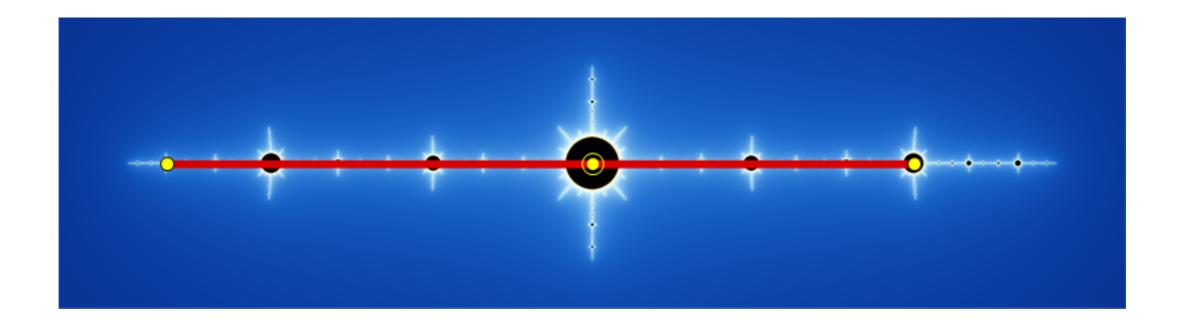
Take the preimage.



Take the preimage.

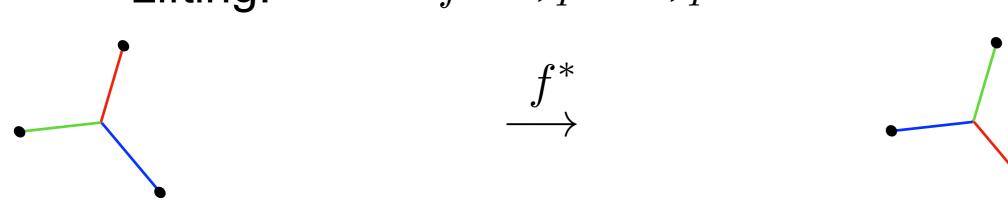


Take the hull.



It is the same! You found an invariant tree!

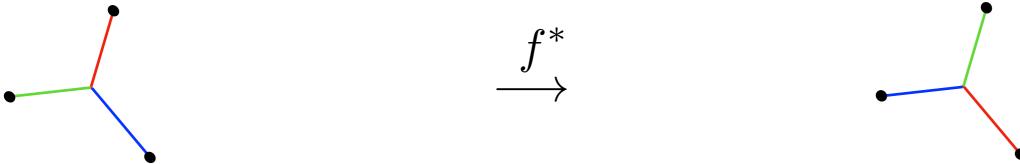
Postcritically finite topological polynomial f



Known: there is a fixed point (Hubbard tree)

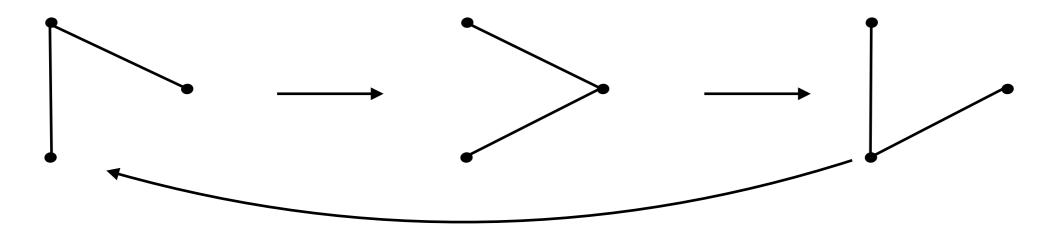
Hope: global attracting fixed point

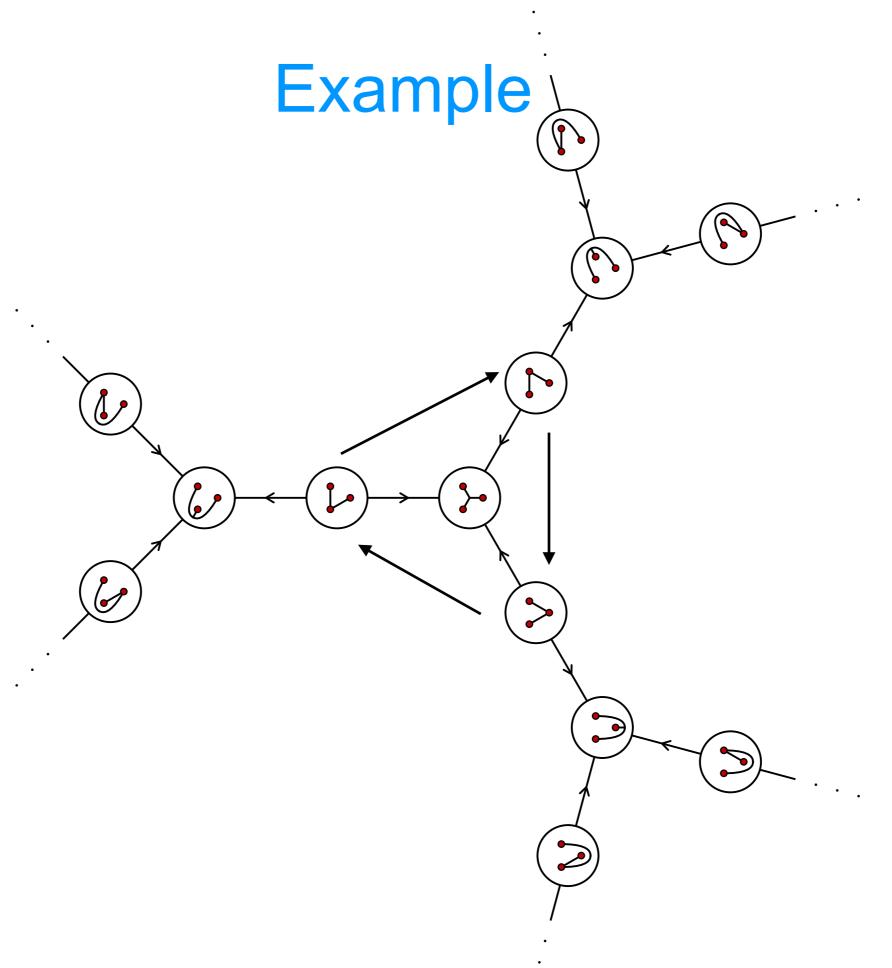
Postcritically finite topological polynomial f



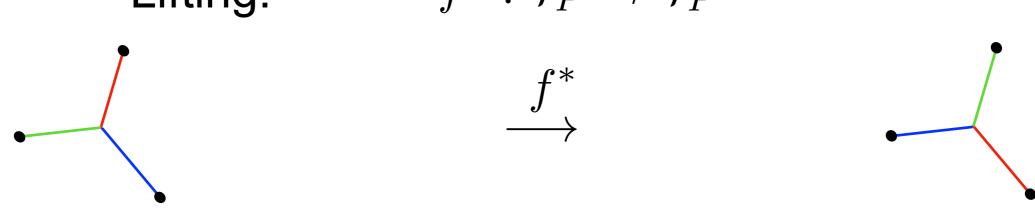
Known: there is a fixed point (Hubbard tree)

Hope: global attracting fixed point





Postcritically finite topological polynomial f

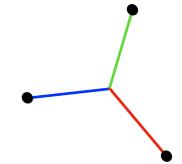


Known: there is a fixed point (Hubbard tree)

Hope: global attracting fixed point

Postcritically finite topological polynomial f

Lifting: $f^*: \mathcal{T}_P \to \mathcal{T}_P$



Known: there is a fixed point (Hubbard tree)

Hope: global attracting fixed point

New hope: Finite nucleus (global attracting subcomplex)

Our results

Theorem (Belk-Lanier-Margalit-W)

f unobstructed topological polynomial $\Rightarrow f^*$ finite nucleus

Contains the Hubbard tree

Our results

Theorem (Belk-Lanier-Margalit-W)

f unobstructed topological polynomial $\Rightarrow f^*$ finite nucleus

Contains the Hubbard tree

Our results

Theorem (Belk-Lanier-Margalit-W)

f unobstructed topological polynomial $\Rightarrow f^*$ finite nucleus

Contains the Hubbard tree

Is contained in a 2-nbhd of Hubbard tree

Our results

Theorem (Belk-Lanier-Margalit-W)

f unobstructed topological polynomial $\Rightarrow f^*$ finite nucleus

Contains the Hubbard tree

Is contained in a 2-nbhd of Hubbard tree

→ finite check to find the Hubbard tree

Our results

Theorem (Belk-Lanier-Margalit-W)

f unobstructed topological polynomial $\Rightarrow f^*$ finite nucleus

Contains the Hubbard tree

Is contained in a 2-nbhd of Hubbard tree

= polynomial

Summary

Branched covers $S^2 \rightarrow S^2$ = higher degree braids

Thurston's theorem for branched covers =

Nielsen-Thurston for mapping classes

Belk-Lanier-Margalit-W: Algorithm for polynomials

f post-critically finite topological polynomial equiv. to? polynomial?

f post-critically finite topological polynomial equiv. to? polynomial?

Levy cycle: multicurve $\{c_1,\ldots,c_n\}$ s.t.:

f post-critically finite topological polynomial equiv. to? polynomial?

Levy cycle: multicurve $\{c_1,\ldots,c_n\}$ s.t.:

1. $f(c_i) = c_{i-1} \pmod{n}$

f post-critically finite topological polynomial equiv. to? polynomial?

Levy cycle: multicurve $\{c_1,\ldots,c_n\}$ s.t. :

- 1. $f(c_i) = c_{i-1} \pmod{n}$
- 2. $\deg f|_{c_i} = 1$

f post-critically finite topological polynomial equiv. to? polynomial?

Levy cycle: multicurve $\{c_1,\ldots,c_n\}$ s.t. :

- 1. $f(c_i) = c_{i-1} \pmod{n}$
- 2. $\deg f|_{c_i} = 1$

Theorem (Thurston, Berstein, Levy, Shishikura, Tan, Hubbard) f equivalent to polynomial ⇔ f does not have a Levy cycle.

f post-critically finite topological polynomial openion polynomial?

Levy cycle: multicurve $\{c_1,\ldots,c_n\}$ s.t.:

- 1. $f(c_i) = c_{i-1} \pmod{n}$
- 2. $\deg f|_{c_i} = 1$

Theorem (Thurston, Berstein, Levy, Shishikura, Tan, Hubbard) f equivalent to polynomial ⇔ f does not have a Levy cycle.

Proof: f top. polynomial $\leadsto f_* : \operatorname{Teich}(\mathbb{C}, P) \to \operatorname{Teich}(\mathbb{C}, P)$ pullback

Canonical obstructions

Pilgrim: An obstructed topological polynomial has a *canonical* obstruction

Canonical obstructions

Pilgrim: An obstructed topological polynomial has a *canonical* obstruction

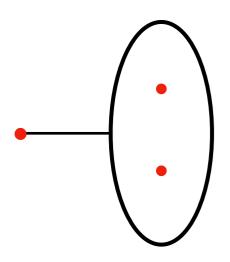
Curves → 0 under lifting

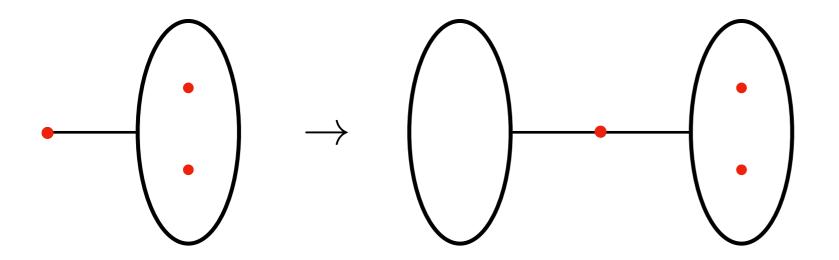
Canonical obstructions

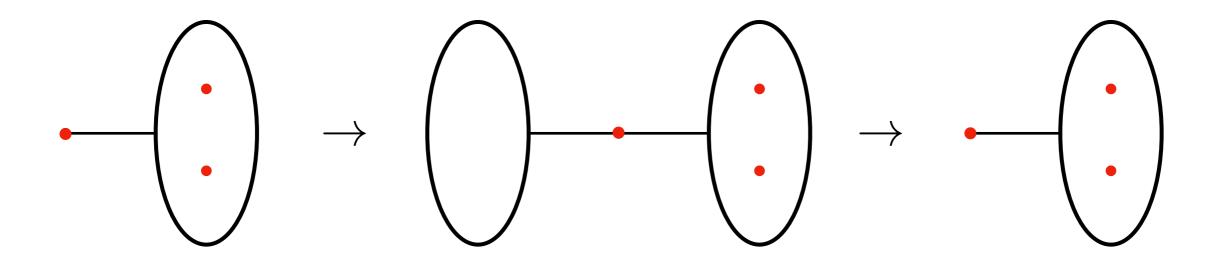
Pilgrim: An obstructed topological polynomial has a canonical obstruction

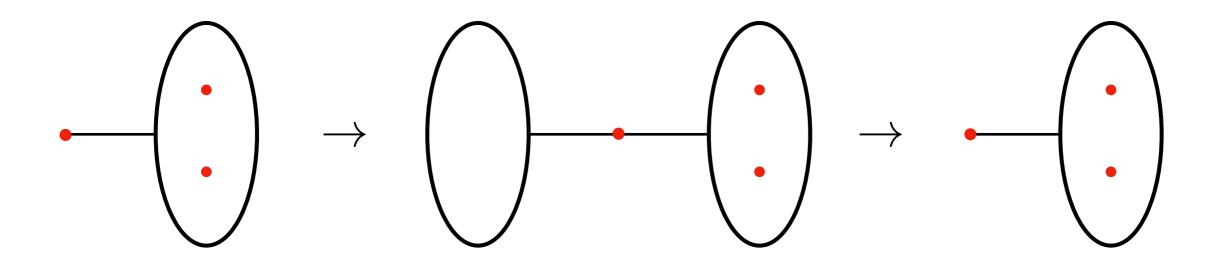
Curves → 0 under lifting

Selinger: Exterior of canonical obstruction is a polynomial

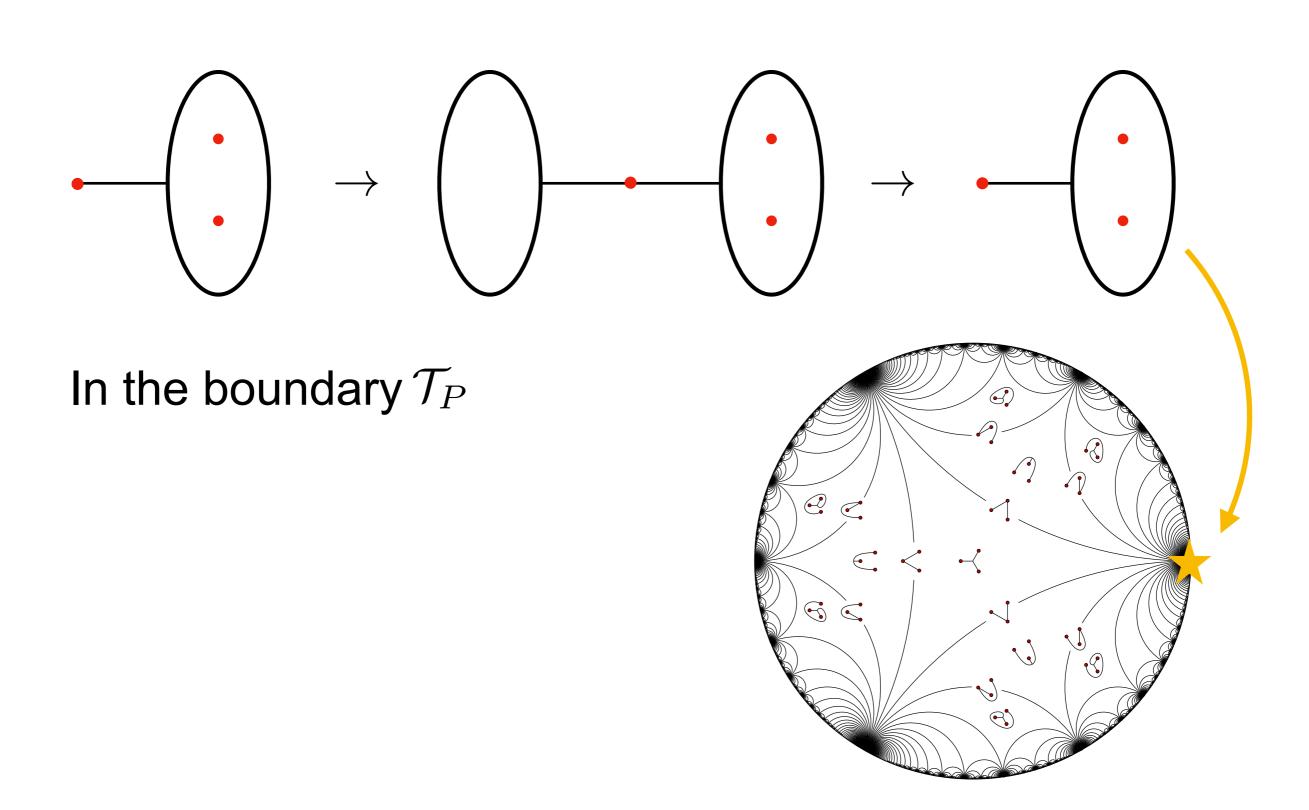


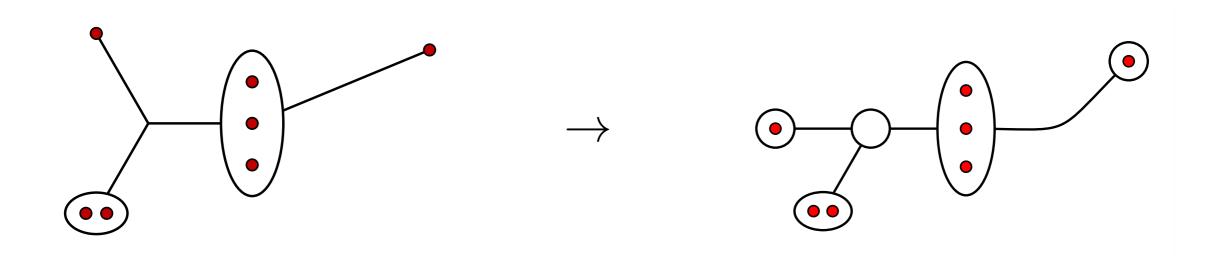






In the boundary \mathcal{T}_P





Proposition (Belk–Lanier–Margalit–W)

Every (obstructed) topological polynomial has a Hubbard bubble tree.

Proposition (Belk–Lanier–Margalit–W)

Every (obstructed) topological polynomial has a Hubbard bubble tree.

Boundary of \mathcal{T}_P

Proposition (Belk-Lanier-Margalit-W)

Every (obstructed) topological polynomial has a Hubbard bubble tree.

Theorem (Belk-Lanier-Margalit-W)

f obstructed topological polynomial \Rightarrow all trees land in 2-nbhd of the Hubbard bubble tree under f^*

Proposition (Belk-Lanier-Margalit-W)

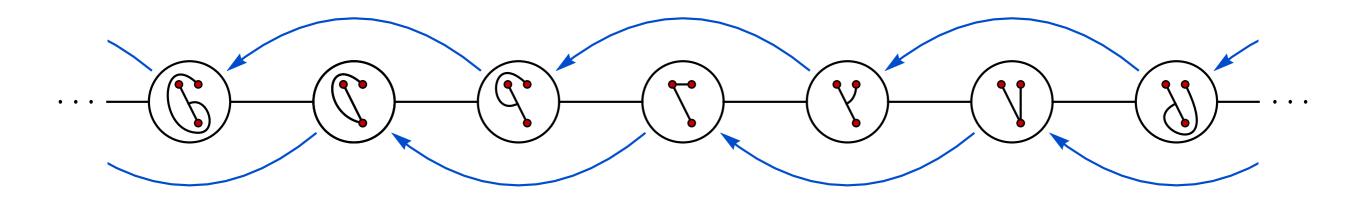
Every (obstructed) topological polynomial has a Hubbard bubble tree.

Theorem (Belk–Lanier–Margalit–W)

f obstructed topological polynomial \Rightarrow all trees land in 2-nbhd of the Hubbard bubble tree under f^*

Infinite set

Infinite nucleus



0. Start with any tree

- 0. Start with any tree
- 1. Apply f^*

- 0. Start with any tree
- 1. Apply f^*
- 2. Check a 2-neighborhood for Poirier's conditions and canonical obstruction.

- 0. Start with any tree
- 1. Apply f^*
- 2. Check a 2-neighborhood for Poirier's conditions and canonical obstruction.
- 3. If you don't find a Hubbard tree or canonical obstruction, return to 1.