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Executive Summary

We classity homomorphisms:

Bn S an
and

B — B,

New tools: totally symmetric sets, periodics



Connection to polynomials

Poly, = space of monic, square free polynomials

of degree n
1 (POlyn) = Bn

Our theorems constrain maps

Poly — Poly,



Connection to polynomials

Poly, = space of monic, square free polynomials

of degree n
1 (POlyn) = Bn

Resolution of the quartic is an algebraic map

Poly, — Poly,

We show every B4 — Bs is cyclic or factors
through the standard map, so no other maps



Braid groups



Theorems.
B, = MCG(D,,

Braid images:
Ester Dalvit
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The squared lantern relation

Math:
Brendle—M

Art:

Buriakova




Maps of braid groups:
what was known



Artin's question

In 1947 Artin classified all homomorphisms
By, — 2,

and asked about automorphisms of B,,.

Uses Bertrand's postulate!



Geometric automorphisms

Sample automorphisms of By

» Conjugation (i.e. inner automorphisms)

- Inversion: 0; O,L-_l V1
These are geometric: induced by Homeo(D,, )

These generate all geometric autos.



Automorphisms are geometric

Thm (Dyer—Grossman '81). All
automorphisms of B, are geometric.

Proof idea:
Aut(B,,) — Aut(B,,/Z) — Aut(F,,_1) — Homeo(D,,)



Some Generalizations

Bell-Margalit '06: Injective B,, = B, 11

Castel '08: Homomorphisms B,, = B, 12

Bell-Margalit '07: Automorphisms of PB,
Childers '17: Automorphisms of hyp. Torelli

McLeay '19: Automorphisms of deeper terms of
Johnson filtration



Main Theorem 1:
FExpanding the range



Expanding the range

Having a classification of maps B,, — B,,11
we would like to classity maps B,, — B,,
for’ an S L.

When m=2n, there are interesting maps...



Some homomorphisms

Some homomorphisms B, — Bs, :

Diagonal inclusion Bl || B

Flip diagonal inclusion

Many cablings
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...and more homomorphisms

Given p : B,, — By, we can:

Post-compose by 7 € Aut(Ba),)

Transvect by z € Z(Bay,): Charney Crisp

p*(0;) = p(0oi)z

These operations generate an equivalence relation.



...and more homomorphisms

Given p : B,, — By, we can:

Post-compose by 7 € Aut(Ba),)

Transvect by z € Cp,_(im p): Charney-Crisp

p*(0;) = p(0oi)z

These operations generate an equivalence relation.



Standard homomorphisms

Trivial o ; — 1
Inclusion o; — o;

Diagonal inclusion o; — ;0,4

Flip diagonal inclusion o; — Umf;ii

. . k
k-twist cabling o; — 092;092;-102;1102;05; 1



Standard homomorphisms

« Trivial o; — 1

» Inclusion o, — o;

T e e )

- Diagonal inclusion o; — 0,0,
- Flip diagonal inclusion o; 07;07;{@-
k

»  k-twist cabling o; — 09;092,_102;1102;05; 4



Main Theorem 1

Theorem (Chen—Kordek-M). Let n > 5.

Any p: B,, — Bs, is equivalent™ to exactly
one of the standard homomorphisms.

*Transvections + post-composition by autos



Main Theorem 1

Theorem (Chen—Kordek-M). Let n > 5.

Any p: B,, — Bs, is equivalent™ to exactly
one of the standard homomorphisms.

*Transvections + post-composition by autos

Consequence: classification of

B, — b, m<2n



Proot of Main Theorem 1:
Special maps



Periodic braids

o = B! generates Z(B,)



Special maps

Thm (Lin). A holomorphic Poly,, — Poly.
induces a map B, — B,, that is special:
periodics map to periodics.

Thm (Lin). If n(n —1) tm(m — 1) any
special B,, — B,, is cyclic.

We give a new proof.



Special maps

Sample case. Consider p: B; — By and say

plas) = ar
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Special maps

Sample case. Consider p: B; — By and say

plas) = az

Then p(af) is central. But ((af)) D BL
(cf. Lanier—M).

So Bf maps to Z(B7), and we conclude
that Br has abelian image, hence p is cyclic.



Main Theorem 2:
Shrinking the domain



Shrinking the domain

Having classified maps B,, — B,
we would like to classity maps I' = B,

for certain I' < B,,.



The commutator subgroup

Signed word length gives a map

JE e AL

T'his is the abelianization, so:

B/ = ker(L)

n



Connection to polynomials

Poly, = space of monic, square free polynomials
of degree n

T (POlyn) = Bn

SPoly, = subspace with discriminant 1

1 (SPOlyn) = B,;L



Lin's questions

[s every endomorphism B! — B! ...

1. injective?

2. an automorphism of B, 7

3. the restriction of an endomorphism of 5,7

4. the restriction of an automorphism of B,,”



What's harder about B, ?

Given B, — B,,, we obtain
B, — B, — S,

Can then apply Artin's theorem. We did
not have a classification of maps

B — S,



An equivalence relation

Two homomorphisms
0. "Gl Land g G A

are equivalent if there is a € Aut(H) with

P = OO0



Main Theorem 1

Theorem (Kordek—M). Let n> 7. Any
p:B — B,

18 etther trivial or equivalent to inclusion.

Answers the four questions of V. Lin



Related results

Lin '04. Any p: B, — B,,, m < n is trivial
Orevkov '17. Aut(B)) = Aut(B,)
McLeay '18. New proof of Orevkov's result

Orevkov '20. Extension to n=4,5,6



Also...

The 2nd result (almost) follows from 1st:
B,_» — B, — B,

The 1st result restricts the composition...

It is also the case the the proof of the

second result can be extended to prove the
first (forthcoming work with Caplinger)



Proot of Main Theorem 2:
Totally symmetric sets



Totally symmetric sets

(G = group
X ={x1,...,zr} C Gis a totally symmetric
set if

+ the z; commute pairwise, and

- any permutation of X is achieved by conjugation in G

Example. {01,03,...} C S, or B,
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Totally symmetric sets

X =451, L G 158 B H ot
- the z; commute pairwise, and

- any permutation of X is achieved by conjugation in G

Fundamental Lemma. Under a homomorphism,
X maps to a singleton or a T'SS of size k.



The TSS Blueprint

To classify maps p : G — H:
1. Find a large TSS X={z4,...,7;} in G
2. Classity all large T'SSs in H

3. If X maps to singleton, then ((z12, ")) C ker p
~ try to show the kernel is large

4. Otherwise, try to show p 1is standard



Totally symmetric sets
in B,



Classifying TSSs in B,

Canonical reduction system for a braid:

Birman—
@ S e R Lubotzky—
McCarthy

Fach complementary region is either

periodic (=rotation) or irreducible.



Classifying TSSs in B,

Canonical reduction system for a braid:

Birman—
@ S e R Lubotzky—
McCarthy

Fach complementary region is either

periodic (=rotation) or irreducible.

Fact. Commuting —> disjoint CRSs



Classifying TSSs in B,

Combining canonical reduction systems:

Caplan
@B




Classifying TSSs in B,

Canonical reduction system functor:

Totally symmetric set — Totally symmetric
labeled multicurve

Symmetry: any relabeling induced by Y,
can be realized by a homeo.



Examples and non-examples of
totally symmetric labeled multicurves

EDEE




From totally symmetric labeled
multicurves to braids

1 2 >

S SR



The TSS Blueprint

To classify maps p : B,, — B,,:
L { O, 03, ot Al SS i1 7B,
2. We classify all large T'SSs in B,

3. If X maps to singleton, B! = ({6105 ")) C ker p
~~ 80 p cyclic

4. Otherwise, p is equivalent to the identity



Other results on
totally symmetric sets



Other results about T'SS's

Chen—Mukherjea '20. Classification of maps
from B, to Mod(S,) for g < n-2.

cf. Birman—Hilden

Li—Partin '19. Classifications of large TSS's in
free groups, dihedral groups, solvable groups,
direct products, free products, etc.



Other results about T'SS's

Caplinger—Salter '22. TSS's in GL,,(Z). ¢pde
Caplinger '22. New understanding of Aut(S),,)

Uses the TSS: {(1 %)}



Other results about T'SS's

Conj. The smallest non-cyclic quotient of B, is S,
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Chudnovsky—Kordek—Li—Partin '19. A finite non-cyclic
quotient of B, has cardinality at least

gln/21=1(|n/2))!
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Other results about T'SS's

Conj. The smallest non-cyclic quotient of B, is S,

Chudnovsky—Kordek—Li—Partin '19. A finite non-cyclic
quotient of B, has cardinality at least

el AP
Verberne—Scherich '20. Improved bound:

32T n/2) ) + [n/2]°




Other results about T'SS's

Conj. The smallest non-cyclic quotient of B, is .5,

Chudnovsky—Kordek—Li—Partin '19. A finite non-
cyclic quotient of B, has cardinality at least

2= ([n/2])!
Verberne—Scherich '20. Improved bound:
3L 2N A2 ) 4 (2]
Caplinger—Kordek '20. Conjecture true for n=3J,6.

Kolay '21. The conjecture is true.



Kolay's proot

Theorem (Kolay '21). The smallest non-cyclic
quotient of B, is 5,

mn
Proof. Induction on n. The standard <2>
half-twists satisty the fundamental lemma.
Apply the orbit-stabilizer theorem to p(B)
acting by conjugation on p(o1). Count:

(Z) 2. (n—2)




Some directions



Some Directions

1. Expand the range further. We
conjecture that essentially all maps B,, — B,,
are reducible (iterated cablings).

2. Restrict the domain further. Are all
maps G — B,, geometric when G < B,, is
sufficiently rich?

3. Investigate TSS's further.
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