Representation stability and the braid groups

Jenny Wilson (Michigan)

ICERM 17 Feb 2022

The (pure) braid group and its generalizations

Definition (braid groups)

The braid group B_n is the group of equivalence classes of braid diagrams under concatenation.

$$\psi: B_n \longrightarrow S_n$$

Definition (pure braid groups)The pure braid group $P_n := \ker(\psi)$ is the subgroup of pure braids.

Configuration spaces

Definition (Ordered configuration space)

- M topological space
- $F_n(M)$ (ordered) configuration space of M on n points

 $F_n(M) := \{ (m_1, m_2, \dots, m_n) \in M^n \mid m_i \neq m_j \text{ for all } i \neq j \} \subseteq M^n$

Definition (Unordered configuration space)

 $C_n(M)$ – unordered configuration space of M on n points

$$C_n(M) \cong \begin{cases} n - \text{element} \\ \text{subsets of } M \end{cases}$$

(1) The (pure) braid group as π_1 of configuration space

Generalization: $C_n(M)$ and $F_n(M)$, for M an open connected smooth manifold, dim ≥ 2

(2) The pure braid group as π_1 of a hyperplane complement

 $F_n(\mathbb{C}) \cong$ complex hyperplane complement

$$\mathbb{C}^n \setminus \left\{ \begin{array}{c} \text{hyperplanes} \\ x_i = x_j, \\ 1 \leqslant i < j \leqslant n \end{array} \right\}$$

 $C_n(\mathbb{C}) \cong$ complex hyperplane complement $/S_n$

A₃ real hyperplane arrangement

Graphic by John Stembridge

Generalization: Other families of complements of hyperplane arrangements in \mathbb{C}^n , e.g., corresponding to families of finite reflection groups

(3) The (pure) braid group as a (pure) motion group

$$F_n(\mathbb{C}) \cong \begin{cases} \text{embeddings} \\ \{1, 2, 3, \dots, n\} \hookrightarrow \mathbb{C} \end{cases}$$

 $C_n(\mathbb{C})\cong F_n(\mathbb{C})/S_n$

Generalization: (pure) motion groups

P-connected smooth manifold

Equivalence classes of paths in a space of smooth embeddings $\bigsqcup_n P \hookrightarrow \mathbb{R}^N$

Motion groups

string motion – (equivalence class of) paths f_t of diffeos of \mathbb{R}^3 ,

- $f_0 = id_{\mathbb{R}^3}$
- f₁ stabilizes C_n

String motion:

Graphic by Baez-Crans-Wise

The (pure) mapping class group

Definition ((pure) mapping class group)

 M_n – connected smooth manifold with *n* marked points (or punctures)

 $Mod^n(M_n)$ – mapping class group of M_n

 $Mod^n(M_n) :=$ (orientation-preserving) diffeos of M fixing ∂M & stabilizing the set of marked points, up to smooth isotopy fixing ∂M & the marked points

 $PMod^{n}(M_{n}) - pure$ mapping class group of M_{n}

 $PMod(M_n) :=$ (orientation-preserving) diffeos of *M* fixing ∂M & fixing the marked points, up to smooth isotopy fixing ∂M & the marked points

(4) (pure) braid group as a (pure) mapping class group

 D_n^2 – closed 2-disk with *n* punctures

 $B_n \cong \operatorname{Mod}^n(D_n^2)$

 $P_n \cong P \operatorname{Mod}^n(D_n^2)$

Generalization: Mod^{*n*}(M_n) and $PMod^n(M_n)$, for M_n a smooth manifold with $\partial M \neq \emptyset$ and *n* distinguished punctures

Homological stability for B_n

Definition (Homological stability)

 $0 \stackrel{\phi_0}{\hookrightarrow} G_1 \stackrel{\phi_1}{\hookrightarrow} G_2 \stackrel{\phi_2}{\hookrightarrow} \dots \quad - \text{ family of groups or spaces}$

The family $\{G_n, \phi_n\}_n$ is *homologically stable* if, for each fixed degree $k \ge 0$,

 $(\phi_n)_*: H_k(G_n) \longrightarrow H_k(G_{n+1})$ is an iso $\forall n \gg k$.

Theorem (Arnold 70s)

The braid groups $\{B_n, \phi_n\}$ are homologically stable.

Homologically stable families

The following families are homologically stable:

- Symmetric groups *S_n* (Nakoaka 1960s)
- Configuration spaces $C_n(M)$, M an open connected manifold of dim ≥ 2 (McDuff 1970s)
- Certain orbit spaces of complex hyperplane complements (Brieskorn 1970s, ...)
- General linear groups $GL_n(R)$ for certain R (Quillen, Maazen, van der Kallen, Charney ...)
- Mapping class groups of genus-*n* surfaces (Harer 1980s)
- Automorphisms of the free group $Aut(F_n)$ (Hatcher–Vogtmann 1990s)
- Mapping class group $Mod^n(M)$, for *M* connected, dim ≥ 2 , *n* punctures (Hatcher–Wahl 2010s)
- String motion groups Σ_n (Hatcher–Wahl 2010s)

• ... many more ...

Homological stablility for P_n ?

Question: Is $\{P_n, \phi_n\}_n$ homologically stable?

Answer: No!

Representation stability for P_n

Church–Farb: Fix *k*. The decomposition of $H_k(P_n; \mathbb{Q})$ into irreducible S_n –reps stabilizes for $n \ge 4k$.

Question: What underlying structure is driving these patterns?

A theorem of Church–Ellenberg–Farb

Answer: They are finitely generated Fl[#]–modules.

Theorem (Church–Ellenberg–Farb 2010s)

Family $\{G_n\}_n$. Suppose for each fixed k, $\{H_k(G_n)\}_n$ is a finitely generated $Fl\sharp$ -module in degree $\leq d_k$. Then ...

finite generation

 $\mathbb{Z}[S_{n+1}] \cdot (\phi_n)_*(H_k(G_n)) = H_k(G_{n+1}) \quad \text{for } n \ge d_k.$

polynomial Betti numbers

$$\dim_{\mathbb{Q}} H_k(G_n; \mathbb{Q}) = a$$
 polynomial in n of degree $\leq d_k$

Eg, dim_Q
$$H_1(P_n; \mathbb{Q})$$

= $\binom{n}{2} = \frac{1}{2}(n)(n-1)$

A theorem of Church–Ellenberg–Farb

Theorem (ctd.)

• multiplicity stability

The decomposition of $H_k(G_n; \mathbb{Q})$ into irreducible S_n -reps stabilizes for $n \ge 2d_k$.

character polynomials

The character $\chi_{H_k(G_n;\mathbb{Q})}$ is a polynomial in the "cycle-counting" functions, independent of n.

• free module structure

 $H_k(G_n)$ is an induced module of a certain form, induced from certain specific subreps of

 $H_k(G_0), H_k(G_1), \ldots, H_k(G_{d_k})$

Eg,
$$\chi_{H_1(P_n;\mathbb{Q})}(\sigma)$$

= $(\#2\text{-cycles in }\sigma) + \begin{pmatrix} \#1\text{-cycles in }\sigma\\ 2 \end{pmatrix}$
for $\sigma \in S_n$, for all n .
Eg, $H_1(P_n) = \bigoplus_{\{i,j\} \subseteq \{1,2,\dots,n\}} \mathbb{Z}\alpha_{i,j}$
 $\cong \operatorname{Ind}_{S_2 \times S_{n-2}}^{S_n} H_1(P_2)$

 $\alpha_{i,i} =$

Other instances of representation stability

The (co)homology groups are finitely generated Fl[#]-modules for ...

- Ordered configuration spaces *F_n(M)*, *M* an open connected manifold of dim ≥ 2 (Church, Church–Ellenberg–Farb, Miller–W 2010s)
- Certain complex hyperplane complements (Church-Ellenberg-Farb, W 2010s)
- Pure string motion group $P\Sigma_n$ (W 2010s)
- $PMod^{n}(M)$, M connected smooth manifold, dim $M \ge 2$, $\partial M \ne 0$ (Jimenez Rolland, 2010s)
- Pure virtual braid groups PvBn & pure flat braid groups PfBn (Lee, 2010s)
- ... many more ...

FI-modules and FI[#]-modules

Definition (FI and FI-modules)

Let FI denote the category of Finite sets and Injective maps.

An FI-module is a functor $V : FI \rightarrow Ab$ Gps.

V is an FI \ddagger -module if it admits is both a covariant and contravariant functor FI \rightarrow Ab Gps (in compatible way).

Some FI[#]-modules

Examples of FI[#]-modules

Example:	$\mathbb{Z} \xrightarrow{\cong} \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} \xrightarrow{\cong} \cdots$	trivial <i>S_n</i> -reps
Example:	$\mathbb{Z} \hookrightarrow \mathbb{Z}^2 \hookrightarrow \mathbb{Z}^3 \hookrightarrow \cdots$	canonical S_n permutation reps
Example:	$\mathbb{Z}[x_1] \hookrightarrow \mathbb{Z}[x_1, x_2] \hookrightarrow \mathbb{Z}[x_1, x_2, x_3] \hookrightarrow \cdots$	S_n permutes variables
Non-Example:	$\mathbb{Z} \xrightarrow{\cong} \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} \xrightarrow{\cong} \cdots$	alternating Sn-reps
Non-Example:	$\mathbb{Z}[S_1] \hookrightarrow \mathbb{Z}[S_2] \hookrightarrow \mathbb{Z}[S_3] \hookrightarrow \cdots$	left regular <i>S</i> _n -reps
Example: $H_k($	$F_1(M)) \rightarrow H_k(F_2(M)) \rightarrow H_k(F_3(M)) \rightarrow \ldots$	(<i>M</i> open manifold, dim \ge 2)

Finite generation

Finite generation

Homogeneous degree-2 polynomials in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$.

 $\{\mathbb{Z}[x_1,\ldots,x_n]_{(2)}\}_n$ is finitely generated in degree ≤ 2 by generators

 $x_1^2 \in V_1, \quad x_1x_2 \in V_2.$

Goals:

- Develop commutative algebra tools for proving finiteness properties of FI- or FI[#]-modules.
- Adapt tools to study other categories (eg) encoding actions of groups other than S_n.

Thank you!