How to know if a parabolic subgroup of an Artin group merges conjugacy classes

María Cumplido Cabello

15th of February, 2022

Braid in representation theory and algebraic combinatorics
Presentation of the braid group with $n + 1$ strands

$$A_n = \left\langle \sigma_1, \ldots, \sigma_n \bigg| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i, \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad i = 1, \ldots, n-1 \\ \sigma_i \sigma_j = \sigma_j \sigma_i, \quad \text{if } |i - j| > 1 \end{array} \right\rangle$$
Presentation of the braid group with $n + 1$ strands

\[A_n = \left\langle \sigma_1, \ldots, \sigma_n \mid \begin{array}{l}
\sigma_i \sigma_j = \sigma_j \sigma_i, \\
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \\
i = 1, \ldots, n-1
\end{array} \right. \text{ if } |i - j| > 1 \right\rangle \]
Presentation of the braid group with $n + 1$ strands

\[
A_n = \left\langle \sigma_1, \ldots, \sigma_n \right| \begin{align*}
\sigma_i \sigma_j &= \sigma_j \sigma_i, \\
\sigma_i \sigma_{i+1} \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1}, & \text{if } |i - j| > 1 \\
\sigma_i \sigma_i+1 \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1}, & i = 1, \ldots, n-1
\end{align*} \right\rangle
\]
Artin groups
Artin groups

- S finite set of generators.

\[W_S = \left\langle S \mid s^2 = 1, \underbrace{stst \ldots}_{m_{s,t} \text{ elements}} = \underbrace{tsts \ldots}_{m_{s,t} \text{ elements}}, \forall s \in S, \forall s, t \in S, s \neq t, m_{s,t} \neq \infty \right\rangle. \]

Images from John Baez’ blog

\[A_S = \langle S \mid \underbrace{stst \ldots}_{m_{s,t} \text{ elements}} = \underbrace{tsts \ldots}_{m_{s,t} \text{ elements}}, \forall s, t \in S, s \neq t, m_{s,t} \neq \infty \rangle. \]
Artin groups

- S finite set of generators.

Coxeter group (finite)

$$W_S = \left\langle S \mid s^2 = 1, \begin{array}{c} \text{stst \ldots} = \text{tsts \ldots} \end{array}, \forall s \in S, \forall s, t \in S, s \neq t, m_{s,t} \neq \infty \right\rangle.$$

Artin group (of spherical type)

$$A_S = \langle S \mid \begin{array}{c} \text{stst \ldots} = \text{tsts \ldots} \end{array}, \forall s, t \in S, s \neq t, m_{s,t} \neq \infty \rangle.$$
Coxeter graphs

- $\mathcal{V} = S$
Coxeter graphs

- $\mathcal{V} = S$

- Si $m_{s,t} = 2$

\[s \quad t \]
Coxeter graphs

- $\mathcal{V} = S$

- Si $m_{s,t} = 2$

- If $m_{s,t} \neq 2$
Coxeter graphs

- $\mathcal{V} = S$
- If $m_{s,t} = 2$

\[
\begin{array}{c}
\circ \quad s \quad \circ \\
\hline
\circ \quad m_{s,t} \quad \circ \\
\circ \quad t \quad \circ
\end{array}
\]

- If $m_{s,t} \neq 2$

\[
\begin{array}{c}
\circ \quad s \quad \circ \\
\hline
\circ \quad m_{s,t} \quad \circ \\
\circ \quad t \quad \circ
\end{array}
\]

Some families of Artin groups

- RAAGs: $m_{s,t} \in \{2, \infty\}$.
- Spherical (or finite type): finite Coxeter group.
- FC-type: All complete subgraphs without ∞ are spherical.
- 2-dimensional: $\frac{1}{m_{s,t}} + \frac{1}{m_{s,r}} + \frac{1}{m_{t,r}} \leq 1$, $\forall s, t, r \in S$.
Parabolic subgroups

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

Theorem [Van der Lek 1983]

$A_{S'}$ is again an Artin group.
Parabolic subgroups

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

Theorem [Van der Lek 1983]

$A_{S'}$ is again an Artin group.
Parabolic subgroups

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.
Parabolic subgroups

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

Theorem [Van der Lek 1983]

$A_{S'}$ is again an Artin group.
Parabolic subgroups

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

Theorem [Van der Lek 1983]

$A_{S'}$ is again an Artin group.

Parabolic subgroup P de A_S

$$P = \alpha^{-1} A_{S'} \alpha,$$

where $A_{S'}$ is a standard parabolic subgroup and $\alpha \in A_S$.
Complexes using parabolic subgroups

• Deligne complex [Charney & Davis 1995]
 ▶ It uses spherical parabolic subgroups.
 ▶ CAT(0) in some cases.
 ▶ It has been used to study classic problems:
 ▶ $K(\pi, 1)$ conjecture [Charney & Davis ’95, Paris ’14].
 ▶ Acylindrical hyperbolicity [Martin & Przytycki ’19, Charney & Morris-Wright, Vaskou].
 ▶ Tits Alternative [Martin & Przytycki ’19].

• Complex of irreducible parabolic subgroups [C., Gebhardt, González-Meneses & Wiest ’19]
 ▶ It has been created for spherical Artin groups.
 ▶ It is totally analogous to the curve complex for the braid case.
 ▶ Generalized to FC-type Artin groups [Morris-Wright ’20].
 ▶ Its properties are being studied.

• Artin complex [C., Martin & Vaskou’20]
Complexes using parabolic subgroups

- **Deligne complex** [Charney & Davis 1995]
 - It uses spherical parabolic subgroups.
 - $CAT(0)$ in some cases.
 - It has been used to study classic problems:
 - $K(\pi, 1)$ conjecture [Charney & Davis '95, Paris '14].
 - Acylindrical hyperbolicity [Martin & Przytycki '19, Charney & Morris-Wright, Vaskou].
 - Tits Alternative [Martin & Przytycki '19].

- **Complex of irreducible parabolic subgroups** [C., Gebhardt, Gonz´alez-Meneses & Wiest '19]
 - It has been created for spherical Artin groups.
 - Totally analogous to the curve complex for the braid case.
 - Generalized to FC-type Artin groups [Morris-Wright '20].
 - Its properties are being studied.

- **Artin complex** [C., Martin & Vaskou'20]
Complexes using parabolic subgroups

- **Deligne complex** [Charney & Davis 1995]
 - It uses spherical parabolic subgroups.
 - $CAT(0)$ in some cases.
 - It has been used to study classic problems:
 - $K(\pi, 1)$ conjecture [Charney & Davis ’95, Paris ’14].
 - Acylindrical hyperbolicity [Martin & Przytycki ’19, Charney & Morris-Wright, Vaskou].
 - Tits Alternative [Martin & Przytycki ’19].

- **Complex of irreducible parabolic subgroups** [C., Gebhardt, González-Meneses & Wiest ’19]
 - It has been created for spherical Artin groups.
 - It is totally analogous to the curve complex for the braid case.
 - Generalized to FC-type Artin groups [Morris-Wright ’20].
 - Its properties are being studied.
Complexes using parabolic subgroups

- **Deligne complex** [Charney & Davis 1995]
 - It uses spherical parabolic subgroups.
 - $CAT(0)$ in some cases.
 - It has been used to study classic problems:
 - $K(\pi, 1)$ conjecture [Charney & Davis ’95, Paris ’14].
 - Acylindrical hyperbolicity [Martin & Przytycki ’19, Charney & Morris-Wright, Vaskou].
 - Tits Alternative [Martin & Przytycki ’19].

- **Complex of irreducible parabolic subgroups** [C., Gebhardt, González-Meneses & Wiest ’19]
 - It has been created for spherical Artin groups.
 - It is totally analogous to the curve complex for the braid case.
 - Generalized to FC-type Artin groups [Morris-Wright ’20].
 - Its properties are being studied.

- **Artin complex** [C., Martin & Vaskou’20]
Conjugacy stability problem for parabolic sg $A_X < A_S$

If two elements of a parabolic subgroup A_X are conjugate in our Artin group A_S, are they conjugate “inside this parabolic subgroup”?

$$\exists \, c \in A_S, \, c^{-1}ac = b \implies \exists c' \in A_X, \, c'^{-1}ac' = b?$$

If the answer is yes, we say that A_X is **conjugacy stable**.

This is always true for braids [González-Meneses 2014], but it is not true in general.
Irreducible Coxeter graphs (of finite type)
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

\[E_6 : \quad \sigma_1 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6 \]
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

$$E_6 : \sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6$$

$$D_5$$
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

E_6:

\[\sigma_1 \to \sigma_3 \to \sigma_4 \to \sigma_5 \to \sigma_6 \]

D_5

E_7:

\[\sigma_1 \to \sigma_3 \to \sigma_4 \to \sigma_5 \to \sigma_6 \to \sigma_7 \]
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

\[E_6 : \quad \sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6 D_5 \quad \text{and} \quad E_7 : \quad \sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_7 D_5 \]
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

E_6:

\[\sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_4 \rightarrow \sigma_5 \rightarrow \sigma_6 \rightarrow D_5 \]

E_7:

\[\sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_4 \rightarrow \sigma_5 \rightarrow \sigma_6 \rightarrow \sigma_7 \rightarrow D_5 \]

E_8:

\[\sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_4 \rightarrow \sigma_5 \rightarrow \sigma_6 \rightarrow \sigma_7 \rightarrow \sigma_8 \]
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

E_6:

\[\sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_4 \rightarrow \sigma_5 \rightarrow \sigma_6 \rightarrow D_5 \]

E_7:

\[\sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_4 \rightarrow \sigma_5 \rightarrow \sigma_6 \rightarrow \sigma_7 \rightarrow D_5 \]

E_8:

\[\sigma_1 \rightarrow \sigma_3 \rightarrow \sigma_4 \rightarrow \sigma_5 \rightarrow \sigma_6 \rightarrow \sigma_7 \rightarrow \sigma_8 \rightarrow D_5 \]
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

- E_6: $\sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_2 D_5$
- E_7: $\sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_2 \sigma_7 D_5$
- E_8: $\sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_7 \sigma_8 D_5 D_7$
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

E_6:

\[
\begin{array}{c}
\sigma_1 \, \sigma_3 \, \sigma_4 \, \sigma_5 \, \sigma_6 \, D_5
\end{array}
\]

E_7:

\[
\begin{array}{c}
\sigma_1 \, \sigma_3 \, \sigma_4 \, \sigma_5 \, \sigma_6 \, \sigma_7 \, D_5
\end{array}
\]

E_8:

\[
\begin{array}{c}
\sigma_1 \, \sigma_3 \, \sigma_4 \, \sigma_5 \, \sigma_6 \, \sigma_7 \, \sigma_8 \, D_5 \, D_7 \, E_7
\end{array}
\]
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

- E_6: $\sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6 D_5$
- E_7: $\sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_7 D_5$
- E_8: $\sigma_1 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_7 \sigma_8 D_5 D_7 E_7$
- H_4: $\sigma_1 5 \sigma_2 \sigma_3 \sigma_4 H_3$
Theorem (Calvez, Cisneros, C., 2020)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

$$E_6 : \sigma_1 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6 \quad D_5$$
$$E_7 : \sigma_1 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6 \quad D_5$$

$$E_8 : \sigma_1 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6 - \sigma_7 \quad D_5 \quad D_7 \quad E_7$$

$$H_4 : \sigma_1 - 5 \quad \sigma_2 - \sigma_3 - \sigma_4 \quad H_3$$
$$\sigma_1 - \sigma_3 \quad \sigma_2k \quad D_{2k}$$
Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:
Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:
Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

\[
\begin{array}{c}
\sigma_1 \overset{\text{odd}}{\longrightarrow} \sigma_2 \\
\sigma_1 \overset{\text{even}}{\longrightarrow} \sigma_2
\end{array}
\]
Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

$\begin{align*}
\sigma_1 \text{ odd } & \quad \sigma_2 \\
\sigma_1 \text{ even } & \quad \sigma_2
\end{align*}$

conjugate by the generator of its centre:

$\begin{align*}
\sigma_2 \text{ odd } & \quad \sigma_1
\end{align*}$
Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

- σ_1 odd conjugate by the generator of its centre:
- σ_2 odd
- σ_1 even conjugate by the generator of its centre:
- σ_2 even
Theorem (C., Martin, Vaskou, preprint 2020)

Let \(A_S \) be an Artin–Tits group of large type and \(A_X \) a proper irreducible standard parabolic subgroup. \(A_X \) is conjugacy stable in \(A_S \) except for the following case:

\[\sigma_1 \sigma_2 \]

conjugate by the generator of its centre:

\[\sigma_2 \sigma_1 \]

\[\sigma_1 \text{ even} \sigma_2 \]

conjugate by the generator of its centre:

\[\sigma_1 \text{ even} \sigma_2 \]

\[\sigma_1 \text{ odd} \sigma_2 \text{ odd} \sigma_3 \text{ odd} \sigma_4 \text{ even} \sigma_5 \text{ odd} \sigma_6 \]
Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

- $\sigma_1 \text{odd} \quad \sigma_2 \text{odd}$ conjugate by the generator of its centre: $\sigma_2 \text{odd} \quad \sigma_1 \text{odd}$
- $\sigma_1 \text{even} \quad \sigma_2 \text{odd}$ conjugate by the generator of its centre: $\sigma_1 \text{even} \quad \sigma_2 \text{even}$
- $\sigma_1 \text{odd} \quad \sigma_2 \text{odd} \quad \sigma_3 \text{odd} \quad \sigma_4 \text{even} \quad \sigma_5 \text{odd} \quad \sigma_6 \text{odd}$

Coxeter graph of A_S

Coxeter graph of A_S

odd-labelled path

no odd-labelled path
Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

- σ_1 odd, σ_2 odd: conjugate by the generator of its centre: σ_2 odd, σ_1 odd
- σ_1 even, σ_2 odd: conjugate by the generator of its centre: σ_1 even, σ_2 even
- σ_1 odd, σ_2 odd, σ_3 odd, σ_4 even, σ_5 odd, σ_6 odd
Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

- $\sigma_1 \sigma_2$ odd conjugate by the generator of its centre: $\sigma_2 \sigma_1$ odd
- σ_1 even σ_2 even conjugate by the generator of its centre: σ_1 even σ_2
- σ_1 odd σ_2 odd σ_3 odd σ_4 even σ_5 odd σ_6
Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

Conjugate by the generator of its centre:

- $\sigma_1^{\text{odd}} \sigma_2^{\text{odd}}$
- $\sigma_1^{\text{even}} \sigma_2^{\text{odd}}$
- $\sigma_1^{\text{odd}} \sigma_2^{\text{even}} \sigma_3^{\text{odd}} \sigma_4^{\text{even}} \sigma_5^{\text{odd}} \sigma_6^{\text{odd}}$
When are two standard parabolic subgroups conjugate?

- If A_X and A_Y are different and A_X is not spherical, they are never conjugate.
- If A_X and A_Y are spherical...

If A_Z is spherical, we call Δ_Z the generator of the centre $Z(A_Z)$. The conjugation by Δ_Z is trivial except for the cases $A_m, E_6, D_n, I_2(n), n$ odd:

\[
\begin{align*}
A_n : & \quad (\sigma_1 - \sigma_2 - \sigma_3 - \sigma_4 - \sigma_5) \rightarrow (\sigma_5 - \sigma_4 - \sigma_3 - \sigma_2 - \sigma_1) \\
E_6 : & \quad (\sigma_1 - \sigma_3 - \sigma_4 - \sigma_5 - \sigma_6) \rightarrow (\sigma_6 - \sigma_5 - \sigma_4 - \sigma_3 - \sigma_1) \\
D_n, n \text{ odd:} & \quad (\sigma_1 - \sigma_3 - \sigma_4 - \sigma_5) \rightarrow (\sigma_2 - \sigma_3 - \sigma_4 - \sigma_5)
\end{align*}
\]

Theorem (Paris '97)

Two irreducible standard parabolic subgroups are conjugate if we can obtain one from the other by conjugating by these four types of Δ_Z.
An example of two conjugate parabolic subgroups
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?

$Z = D_5$

Δ_z
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?

$Z = D_5$
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?

\[Z = A_5 \]
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?

$Z = A_5$

Δ_Z
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?
An example of two conjugate parabolic subgroups

Are the red and blue parabolic subgroups conjugate?

$Z = E_6$
Godelle’s conjectures for every Artin group A_S

1. Any element conjugating two parabolic subgroups decomposes as a product of minimal elements doing the same conjugations as the Δ_Z’s of (Paris 97).
Godelle’s conjectures for every Artin group A_S

1. Any element conjugating two parabolic subgroups decomposes as a product of minimal elements doing the same conjugations as the Δ_Z's of (Paris ’97). That is, the conjugacy element depends on the “conjugacy paths” that we can combinatorially find in the Coxeter graph.
Godelle’s conjectures for every Artin group A_S

1. Any element conjugating two parabolic subgroups decomposes as a product of minimal elements doing the same conjugations as the Δ_Z’s of (Paris 97). That is, the conjugacy element depends on the “conjugacy paths” that we can combinatorially find in the Coxeter graph.

2. If $P \subset A_X$ are two parabolic subgroups of some Artin group A_S, P is also a parabolic subgroup of A_X.

These conjectures have been shown for spherical Artin groups [Paris '97], FC-type Artin groups [Godelle '03] and two-dimensional Artin groups [Godelle '07] and some Euclidean Artin groups [Haettel '21].
Parabolic closure

Conjecture 3
For every Artin group A_S and any element $g \in A_S$, there is a minimal (with respect to the inclusion) parabolic subgroup containing g. We denote this parabolic subgroup P_g and we call it **parabolic closure** of g.

We know this conjecture is true for spherical Artin groups [C., Gebhardt, González-Meneses, Wiest ’19], some FC-type cases [Morris-Wright ’20], large-type [C., Martin, Vaskou], some two-dimensional [Blufstein], some Euclidean [Haettel].
Conjecture 3
For every Artin group A_S and any element $g \in A_S$, there is a minimal (with respect to the inclusion) parabolic subgroup containing g. We denote this parabolic subgroup P_g and we call it \textbf{parabolic closure} of g.

We know this conjecture is true for spherical Artin groups [C., Gebhardt, González-Meneses, Wiest '19], some FC-type cases [Morris-Wright '20], large-type [C., Martin, Vaskou], some two-dimensional [Blufstein], some Euclidean [Haettel].

Lemma (C. 2021, preprint).
Let $a, b, c \in A_S$. If every element in A_S has a parabolic closure, then

$$c^{-1}ac = b \Rightarrow c^{-1}P_a c = P_b.$$
We (almost) have an algorithm!

\[A_X \] (not conjugacy stable)

\[A_{Y_a} \]

\[A_{Y_b} \]
We (almost) have an algorithm!
We (almost) have an algorithm!

- A_{X} (not conjugacy stable)
- Does not permute connected components

$A_{Y_{a}}$: permutes connected components

$A_{Y_{b}}$: permutes connected components
We (almost) have an algorithm!
We (almost) have an algorithm!
We (almost) have an algorithm!

\[A_s \]

\[A_X \] (not conjugacy stable)

\[A_{Y_a} \]

\[A_{Y_b} \]

does not exchange
and

\[1 \]

\[2 \]
We have an algorithm!
We write this algorithm!

INPUT: An Artin group A_S satisfying our 3 conjectures and a irreducible parabolic subgroup A_X.

OUTPUT: A_X is conj. stable in A_S or A_X is not conj. stable in A_S.

For every pair (A_Y, A_Z) of standard parabolic subgroups in A_X:

- **If** there are D exceptions, return A_X is not conj. stable in A_S;

- **If** they are conjugate in A_S:
 - **If** they are not conjugate in A_X, return A_X is not conj. stable in A_S;
 - **If** they conjugate in A_X but we cannot do the same permutation of components as in A_S, return A_X is not conj. stable in A_S;

return A_X is conj. stable in A_S;
We can now solve the conjugacy stability problem for new families of Artin groups...

FC-type
- Conjectures 1 and 2 [Godelle '03] ✓
- Partial results for Conjecture 3 [CGGW '19, Morris-Wright '20, C. '21].
- We can use the algorithm to know whether a spherical parabolic subgroup is conjugacy stable or not.

2-dimensional
- Conjectures 1 and 2 [Godelle '07] ✓
- Conjecture 3 for large [C., Martin, Vaskou, '20] and (2,2)-free [Blufstein, '21].

Euclidean
- All conjectures for types Ā and Ĉ [Haettel '21].
Algorithm 2: Algorithm to check the D_k, $k > 2$, exceptions described in the proof of Theorem 14.

Input: The Coxeter graph $Γ_S$ of an Artin group A_S and three subgraphs $Γ_X ⊆ Γ_S$, $Γ_Y ⊆ Γ_X$ such that A_X and A_S satisfy the hypotheses of Theorem 14 and $Γ_Y$ is a connected component of $Γ_Y$ of type D_k.

Output: 1 (if we know that A_X is not conjugacy stable) or 0.

Label the elements $x_1, x_2, ..., x_k$ of Y as in Figure 1.

for $t ∈ Adj((x_k)) ∩ (S \setminus X)$ do
 if the connected component of $Γ_{Y∪\{t\}}$, containing Y' and t, is of type D_{2m+1}, for some m then
 for $t' ∈ Adj((x_k)) ∩ X$ do
 if the connected component of $Γ_{Y∪\{t\}}$, containing Y' and t', is of type D_{2m+1}, for some m' then
 return 1;
 return 0;
 return 0;
return 0.

Algorithm 4: Algorithm that tell us if a parabolic subgroup is conjugacy stable or not.

Input: The Coxeter graph $Γ_S$ of an Artin group A_S and a $Γ_X ⊆ Γ_S$ such that A_X and A_S satisfy the hypotheses of Theorem 14.

Output: “A_X is conjugacy stable” or “A_X is not conjugacy stable”.

for $(X_1, X_2) ⊆ (X, X)$ such that $|X_1| = |X_2|$ do
 if $Γ_X$ is of type D_k then
 if $k > 2$ then
 run algorithm 2;
 if algorithm 2 returns 1 then
 return “A_X is not conjugacy stable”;
 if $k = 2$ then
 run algorithm 3;
 if algorithm 3 returns 1 then
 return “A_X is not conjugacy stable”;
 if $|X_1| = X_3$ then
 $D := \{(X_1, X_2, ..., X_m)\}$;
 else
 $D := \{\}$;
 for $(Y_1, Y_2, ..., Y_m) ∈ D$ do
 $Y := Y_1 ∪ Y_2 ∪ ... ∪ Y_m$;
 for $t ∈ X \setminus Adj(Y)$ do
 if the connected component $Γ_Y$ of $Γ_Y∪\{t\}$ containing t is twistable then
 $Z = Δ_Y Y Δ_Y$;
 $T = (Δ_Y Y Δ_Y, Δ_Y Y Δ_Y, ..., Δ_Y Y Δ_Y, Δ_Y Y Δ_Y)$;
 if $T ∉ C$ then
 $C := C ∪ \{T\}$;
 if $Z = X_2$ then
 return “A_X is not conjugacy stable”;