How to know if a parabolic subgroup of an Artin group merges conjugacy classes

María Cumplido Cabello

15th of February, 2022

Braid in representation theory and algebraic combinatorics

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Presentation of the braid group with n + 1 strands

$$A_n = \left\langle \sigma_1, \dots, \sigma_n \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i, & \text{if } |i-j| > 1 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, & i = 1, \dots, n-1 \end{array} \right\rangle$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Presentation of the braid group with n + 1 strands

$$A_{n} = \left\langle \sigma_{1}, \dots, \sigma_{n} \middle| \begin{array}{l} \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i}, & \text{if } |i - j| > 1 \\ \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1}, & i = 1, \dots, n-1 \end{array} \right\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Presentation of the braid group with n + 1 strands

$$A_{n} = \left\langle \sigma_{1}, \dots, \sigma_{n} \middle| \begin{array}{l} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}, & \text{if } |i-j| > 1 \\ \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1}, & i = 1, \dots, n-1 \end{array} \right\rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Artin groups

Artin groups

S finite set of generators.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Images from John Baez' blog

Artin groups

S finite set of generators.

Images from John Baez' blog

 $A_{S} = \langle S \mid \underbrace{\underset{m_{s,t} \text{ elements}}{\text{stst...}}}_{m_{s,t} \text{ elements}} = \underbrace{\underset{m_{s,t} \text{ elements}}{\text{stst...}}}_{m_{s,t} \text{ elements}} \forall s, t \in S, s \neq t, m_{s,t} \neq \infty \rangle.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\blacktriangleright \mathcal{V} = S$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

 $\blacktriangleright \mathcal{V} = S$

▶ Si *m*_{*s*,*t*} = 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\blacktriangleright \mathcal{V} = S$

▶ Si m_{s,t} = 2

• If $m_{s,t} \neq 2$

t

lf $m_{s,t} \neq 2$

t

Some families of Artin groups

- RAAGs: $m_{s,t} \in \{2,\infty\}$.
- Spherical (or finite type): finite Coxeter group.
- FC-type: All complete subgraphs without ∞ are spherical.

• 2-dimensional:
$$\frac{1}{m_{s,t}} + \frac{1}{m_{s,r}} + \frac{1}{m_{t,r}} \le 1, \forall s, t, r \in S.$$

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

Theorem [Van der Lek 1983]

 $A_{S'}$ is again an Artin group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Standard parabolic subgroup $A_{S'}$ of A_S

It is the subgroup generated by a subset $S' \subseteq S$.

Theorem [Van der Lek 1983]

 $A_{S'}$ is again an Artin group.

Parabolic subgroup P de A_s

$$P = \alpha^{-1} A_{S'} \alpha,$$

where $A_{S'}$ is a standard parabolic subgroup and $\alpha \in A_S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

- Deligne complex [Charney & Davis 1995]
 - It uses spherical parabolic subgroups.
 - CAT(0) in some cases.
 - It has been used to study classic problems:
 - $K(\pi, 1)$ conjecture [Charney & Davis '95, Paris '14].
 - Acylindrical hyperbolicity [Martin & Przytycki '19, Charney & Morris-Wright, Vaskou].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tits Alternative [Martin & Przytycki '19].

- Deligne complex [Charney & Davis 1995]
 - It uses spherical parabolic subgroups.
 - CAT(0) in some cases.
 - It has been used to study classic problems:
 - $K(\pi, 1)$ conjecture [Charney & Davis '95, Paris '14].
 - Acylindrical hyperbolicity [Martin & Przytycki '19, Charney & Morris-Wright, Vaskou].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tits Alternative [Martin & Przytycki '19].

• Complex of irreducible parabolic subgroups [C., Gebhardt, González-Meneses & Wiest '19]

- It has been created for spherical Artin groups.
- It is totally analogous to the curve complex for the braid case.
- Generalized to FC-type Artin groups [Morris-Wright '20].
- Its properties are being studied.

- Deligne complex [Charney & Davis 1995]
 - It uses spherical parabolic subgroups.
 - CAT(0) in some cases.
 - It has been used to study classic problems:
 - $K(\pi, 1)$ conjecture [Charney & Davis '95, Paris '14].
 - Acylindrical hyperbolicity [Martin & Przytycki '19, Charney & Morris-Wright, Vaskou].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tits Alternative [Martin & Przytycki '19].

• Complex of irreducible parabolic subgroups [C., Gebhardt, González-Meneses & Wiest '19]

- It has been created for spherical Artin groups.
- It is totally analogous to the curve complex for the braid case.
- Generalized to FC-type Artin groups [Morris-Wright '20].
- Its properties are being studied.

• Artin complex [C., Martin & Vaskou'20]

Conjugacy stability problem for parabolic sg $A_X < A_S$

If two elements of a parabolic subgroup A_X are conjugate in our Artin group A_S , are they conjugate "inside this parabolic subgroup"?

$$\exists c \in A_S, c^{-1}ac = b \Longrightarrow \exists c' \in A_X, c'^{-1}ac' = b?$$

If the answer is yes, we say that A_X is **conjugacy stable**.

This is always true for braids [González-Meneses 2014], but it is not true in general.

Irreducible Coxeter graphs (of finite type)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 (σ_4) $\sigma_{\tt s}$ E6 :

 (σ_4)

E6 :

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

イロト 不得 トイヨト イヨト

ъ

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

 (σ_5) (σ_4) (σ_1) (σ_4) (σ_5) F_7 : E_6 :

・ロット (雪) ・ (目) ・ (日)

э

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

< ロ > < 同 > < 回 > < 回 >

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

< ロ > < 同 > < 回 > < 回 >

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

(日)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

< ロ > < 同 > < 回 > < 回 >

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

イロト イポト イラト イラト

 (σ_4)

Let A_S be an Artin–Tits group of spherical type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following cases:

 $-(\sigma_3)$

イロト イポト イラト イラト

Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (C., Martin, Vaskou, preprint 2020)

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let A_5 be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

 σ_1

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

SAC

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

Let A_S be an Artin–Tits group of large type and A_X a proper irreducible standard parabolic subgroup. A_X is conjugacy stable in A_S except for the following case:

When are two standard parabolic subgroups conjugate?

- If A_X and A_Y are different and A_X is not spherical, they are never conjugate.
- If A_X and A_Y are spherical...

If A_Z is spherical, we call Δ_Z the generator of the centre $Z(A_Z)$. The conjugation by Δ_Z is trivial except for the cases $A_m, E_6, D_n, I_2(n), n$ odd:

Theorem (Paris '97)

Two irreducible standard parabolic subgroups are conjugate if we can obtain one from the other by conjugating by these four types of Δ_Z .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

<ロト <回ト < 回ト < 回ト

3

<ロト <回ト < 注ト < 注ト

3

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Godelle's conjectures for every Artin group A_S

1. Any element conjugating two parabolic subgroups decomposes as a product of minimal elements doing the same conjugations as the Δ_Z 's of (Paris 97).

Godelle's conjectures for every Artin group A_S

1. Any element conjugating two parabolic subgroups decomposes as a product of minimal elements doing the same conjugations as the Δ_Z 's of (Paris 97).

That is, the conjugacy element depends on the "conjugacy paths" that we can combinatorially find in the Coxeter graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Godelle's conjectures for every Artin group A_S

1. Any element conjugating two parabolic subgroups decomposes as a product of minimal elements doing the same conjugations as the Δ_Z 's of (Paris 97).

That is, the conjugacy element depends on the "conjugacy paths" that we can combinatorially find in the Coxeter graph.

 If P ⊂ A_X are two parabolic subgroups of some Artin group A_S, P is also a parabolic subgroup of A_X.

These conjectures have been shown for spherical Artin groups [Paris '97], FC-type Artin groups [Godelle '03] and two-dimensional Artin groups [Godelle '07] and some Euclidean Artin groups [Haettel '21].

Parabolic closure

Conjecture 3

For every Artin group A_s and any element $g \in A_s$, there is a minimal (with respect to the inclusion) parabolic subgroup containing g. We denote this parabolic subgroup P_g and we call it **parabolic closure** of g.

We know this conjecture is true for spherical Artin groups [C., Gebhardt, González-Meneses, Wiest '19], some FC-type cases [Morris-Wright '20], large-type [C., Martin, Vaskou], some two-dimensional [Blufstein], some Euclidean [Haettel].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Parabolic closure

Conjecture 3

For every Artin group A_s and any element $g \in A_s$, there is a minimal (with respect to the inclusion) parabolic subgroup containing g. We denote this parabolic subgroup P_g and we call it **parabolic closure** of g.

We know this conjecture is true for spherical Artin groups [C., Gebhardt, González-Meneses, Wiest '19], some FC-type cases [Morris-Wright '20], large-type [C., Martin, Vaskou], some two-dimensional [Blufstein], some Euclidean [Haettel].

Lemma (C. 2021, preprint).

Let $a, b, c \in A_S$. If every element in A_S has a parabolic closure, then

$$c^{-1}ac = b \Rightarrow c^{-1}P_ac = P_b.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

We have an algorithm!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

We write this algorithm!

<u>INPUT</u>: An Artin group A_S satisfying our 3 conjectures and a irreducible parabolic subgroup A_X .

<u>OUTPUT</u>: A_X is conj. stable in A_S or A_X is not conj. stable in A_S .

For every pair (A_Y, A_Z) of standard parabolic subgroups in A_X :

- If there are D exceptions, return A_X is not conj. stable in A_S ;
- If they are conjugate in A_S:
 - If they are not conjugate in A_X , return A_X is not conj. stable in A_S ;
 - If they conjugate in A_X but we cannot do the same permutation of components as in A₅, return A_X is not conj. stable in A₅;

return A_X is conj. stable in A_S ;

We can now solve the conjugacy stability problem for new families of Artin groups...

FC-type

- Conjectures 1 and 2 [Godelle '03] \checkmark
- Partial results for Conjecture 3 [CGGW '19, Morris-Wright '20, C. '21].
- We can use the algorithm to know whether a spherical parabolic subgroup is conjugacy stable or not.

2-dimensional

- Conjectures 1 and 2 [Godelle '07] \checkmark
- Conjecture 3 for large [C., Martin, Vaskou, '20] and (2,2)-free [Blufstein, '21].

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Euclidean

• All conjectures for types \tilde{A} and \tilde{C} [Haettel '21].

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うんぐ