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Artin groups

I S finite set of generators.

Coxeter group

WS =

〈
S

s2 = 1, ∀s ∈ S
stst . . .︸ ︷︷ ︸

ms,t elements

= tsts . . .︸ ︷︷ ︸
ms,t elements

, ∀s, t ∈ S, s 6= t, ms,t 6=∞

〉
.
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Artin group (of spherical type)
AS = 〈S | stst . . .︸ ︷︷ ︸

ms,t elements

= tsts . . .︸ ︷︷ ︸
ms,t elements

∀s, t ∈ S, s 6= t, ms,t 6=∞〉.



Coxeter graphs
I V = S

I Si ms,t = 2

s t

I If ms,t 6= 2

s t
ms,t

Some families of Artin groups
• RAAGs: ms,t ∈ {2,∞}.
• Spherical (or finite type): finite Coxeter group.
• FC-type: All complete subgraphs without ∞ are spherical.

• 2-dimensional: 1
ms,t

+ 1
ms,r

+ 1
mt,r

≤ 1, ∀s, t, r ∈ S.
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Parabolic subgroups

Standard parabolic subgroup AS′ of AS

It is the subgroup generated by a subset S ′ ⊆ S.

Theorem [Van der Lek 1983]
AS′ is again an Artin group.

Parabolic subgroup P de AS

P = α−1AS′α,

where AS′ is a standard parabolic subgroup and α ∈ AS .
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Complexes using parabolic subgroups

• Deligne complex [Charney & Davis 1995]
I It uses spherical parabolic subgroups.
I CAT (0) in some cases.
I It has been used to study classic problems:

I K(π, 1) conjecture [Charney & Davis ’95, Paris ’14].
I Acylindrical hyperbolicity [Martin & Przytycki ’19, Charney &

Morris-Wright, Vaskou].
I Tits Alternative [Martin & Przytycki ’19].

• Complex of irreducible parabolic subgroups [C., Gebhardt,
González-Meneses & Wiest ’19]

I It has been created for spherical Artin groups.
I It is totally analogous to the curve complex for the braid case.
I Generalized to FC-type Artin groups [Morris-Wright ’20].
I Its properties are being studied.

• Artin complex [C., Martin & Vaskou’20]
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Conjugacy stability problem for parabolic sg AX < AS
If two elements of a parabolic subgroup AX are conjugate in our Artin
group AS , are they conjugate “inside this parabolic subgroup” ?

∃ c ∈ AS , c−1ac = b =⇒ ∃c ′ ∈ AX , c ′−1ac ′ = b?

If the answer is yes, we say that AX is conjugacy stable.

?

This is always true for braids [González-Meneses 2014], but it is not true
in general.



Irreducible Coxeter graphs (of finite type)
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Let AS be an Artin–Tits group of spherical type and AX a proper irreducible
standard parabolic subgroup. AX is conjugacy stable in AS except for the
following cases:
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Theorem (C., Martin, Vaskou, preprint 2020)

Let AS be an Artin–Tits group of large type and AX a proper irreducible standard
parabolic subgroup. AX is conjugacy stable in AS except for the following case:
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When are two standard parabolic subgroups conjugate?

• If AX and AY are different and AX is not spherical, they are never conjugate.
• If AX and AY are spherical...
If AZ is spherical, we call ∆Z the generator of the centre Z(AZ ). The
conjugation by ∆Z is trivial except for the cases Am,E6,Dn, I2(n), n odd:

An : σ1 σ2 σ3 σ4 σ5 → σ5 σ4 σ3 σ2 σ1

E6 : σ1 σ3 σ4 σ5 σ6

σ2

→ σ6 σ5 σ4 σ3 σ1

σ2

Dn, n odd: σ1 σ3 σ4 σ5

σ2

→ σ2 σ3 σ4 σ5

σ1

Theorem (Paris ’97)
Two irreducible standard parabolic subgroups are conjugate if we can obtain one
from the other by conjugating by these four types of ∆Z .
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Godelle’s conjectures for every Artin group AS

1. Any element conjugating two parabolic subgroups decomposes as a product of
minimal elements doing the same conjugations as the ∆Z ’s of (Paris 97).

That is, the conjugacy element depends on the “conjugacy paths” that we can
combinatorially find in the Coxeter graph.

2. If P ⊂ AX are two parabolic subgroups of some Artin group AS , P is also a
parabolic subgroup of AX .

These conjectures have been shown for spherical Artin groups [Paris ’97],
FC-type Artin groups [Godelle ’03] and two-dimensional Artin groups [Godelle
’07] and some Euclidean Artin groups [Haettel ’21].
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Parabolic closure

Conjecture 3
For every Artin group AS and any element g ∈ AS , there is a minimal (with re-
spect to the inclusion) parabolic subgroup containing g . We denote this parabolic
subgroup Pg and we call it parabolic closure of g .

We know this conjecture is true for spherical Artin groups [C., Gebhardt, González-
Meneses, Wiest ’19], some FC-type cases [Morris-Wright ’20], large-type [C.,
Martin, Vaskou], some two-dimensional [Blufstein], some Euclidean [Haettel].

Lemma (C. 2021, preprint).
Let a, b, c ∈ AS . If every element in AS has a parabolic closure, then

c−1ac = b ⇒ c−1Pac = Pb.
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We have an algorithm!

(conjugacy stable)

without permutations 
and D exceptions



We write this algorithm!

INPUT: An Artin group AS satisfying our 3 conjectures and a irreducible
parabolic subgroup AX .
OUTPUT: AX is conj. stable in AS or AX is not conj. stable in AS .

For every pair (AY ,AZ ) of standard parabolic subgroups in AX :
I If there are D exceptions, return AX is not conj. stable in AS ;

I If they are conjugate in AS :
I If they are not conjugate in AX , return AX is not conj. stable in AS ;
I If they conjugate in AX but we cannot do the same permutation of

components as in AS , return AX is not conj. stable in AS ;

return AX is conj. stable in AS ;



We can now solve the conjugacy stability problem
for new families of Artin groups...

FC-type
I Conjectures 1 and 2 [Godelle ’03] X
I Partial results for Conjecture 3 [CGGW ’19, Morris-Wright ’20, C.

’21].
I We can use the algorithm to know whether a spherical parabolic

subgroup is conjugacy stable or not.

2-dimensional
I Conjectures 1 and 2 [Godelle ’07] X
I Conjecture 3 for large [C., Martin, Vaskou, ’20] and (2,2)-free

[Blufstein, ’21].

Euclidean
I All conjectures for types Ã and C̃ [Haettel ’21].



Thank y
ou!


