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The Flag Manifold

A complete flag F = (F1,...,F,) in C" is a sequence of vector
subspaces
FRCkhC---CF,

where dim F; = /.

The flag manifold F1(n) is the set of complete flags in C".



Cohomology of the Flag Manifold

F1(n) decomposes into a disjoint union of open cells X,, indexed by
permutations w in S,,.

Their closures are the Schubert varieties X, .

{[Xw]}wes, is a linear basis of the cohomology ring H*(F1(n)).



Borel's Isomorphism

Theorem (Borel 1953)

H*(FI(n)) 2 Z[x1, ..., Xn]/In,

where |, = (symmetric functions with zero constant term).

What is a good choice of polynomial representatives for the basis

{Xul}?



Schubert Polynomials

Schubert polynomials were defined by Lascoux and Schiitzenberger
(1982) divided difference operators 0;:

o:f — f—f( . Xit1, Xiy--.)

Xj — Xi+1

Definition

The Schubert polynomial &, of w € S, is defined by

n—1_n-2

X1 X < Xp—1 ifW:n(n_l)___21

S if w(i) <w(i+1)




Divided Difference Operators
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312 231
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123



Nonnegativity of Schubert Polynomials

Theorem (Lascoux-Schiitzenberger 1982)

The coefficients of &, are nonnegative integers.

The Transition Rule:

Sw =x6, + Z 6v(ki)

k<i
v-(ki) covers v

O

v

Is there a combinatorial interpretation behind the nonnegativity?

First answered by Billey—Jockusch—Stanley (1993), and

re-answered in many interesting ways since.



A Sample of the Nonnegativity of G143,
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Semistandard Young Tableaux

Given a partiton A= (A1 > Ay > --- > \,) € Z’éo, a semistandard
Young tableaux (SSYT) of shape A is a filling of the Young
diagram of A with numbers from [n] such that:

@ The entries weakly increase left-to-right in each row,

@ The entries strictly increase top-to-bottom in each column.

SSYT(2,1,0) :

111] [1[2] [1[3] [I[1] [1[2] [1[3] [2]2] [2]3]
2 2 2 3 3 3 3 3




Schur Polynomials

Definition

Given a partition A € ZZ, the Schur polynomial sy is defined by

s\(Xty .-y Xn) = Z X;Vt(T)l x (T
TESSYT())
SSYT(2,1,0) :
111] [12] [1]3] [1]1] [1]2] [1]3] [2]2] [2]3]
220 2 B B 3]

$210(X1, X2, X3) = X{ XoHX1X5 +X1X0 5+ X X3+ X1X0 5+ X105 55 X3+ X5



Kostka Numbers

The coefficient of x® in sy is the Kostka number

Kya = # of SSYT with shape A and weight o

1[1] [1[2] [1[3] [I[1] [1]2] [1[3] [2]2] [2]3]

Ki2,1,0),1,1,1) = 2

sp10(x1, X2, X3) = x12x2 + x1x22 + 2x1X0X3 + X12X3 + x1x32 + X22X3 + x2x§



VIPs (Very Important Polynomials)

Schur polynomials are symmetric polynomials, and form a basis for

the space of symmetric polynomials.

Representation Theory:
The characters of the irreducible representations V) of GL, are

exactly Schur polynomials.

Geometry:
Schur polynomials form a linear basis for the cohomology ring of
the Grassmannian Gry ,(C).



Littlewood—Richardson Coefficients

The Littlewood—Richardson coefficients are C;\/M defined by
SASy = Z cj\’#s,,.
v

Representation Theory:
CK“ controls tensor products of GL, irreducible representations via

vev,= g v
L(v)<n
Geometry:
For o) the cohomology class of the Schubert variety X in the

Grassmannian Gry ,(C),

ONOy = Z Cr v
vCkx(n—k)
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Log-Concavity

Continuous:
A function f : R" — Ry is log-concave if

log f(6x + (1 — 6y)) > flog f(x) + (1 — 6) log f(y)
F(Ox+ (1—0y)) > F(x)’F(y)'°

Discrete:
A function a : Z — Ry is log-concave if

2
ai 2 aiy1ai-1



Okounkov's Conjecture

Conjecture (Okounkov 2003)

The discrete function

(A, p,v) = log c§,,

is a concave function of \, u, v.




Okay, but why?

Why would multiplicities be log-concave 7

Andrei Okounkov

Abstract

It is a basic property of the entropy in statistical physics that is
concave as a function of energy. The analog of this in representation
theory would be the concavity of the logarithm of the multiplicity of
an irreducible representation as a function of its highest weight. We
discuss various situations where such concavity can be established or
reasonably conjectured and consider some implications of this concav-
ity. These are rather informal notes based on a number of talks I gave
on the subject, in particular, at the 1997 International Press lectures
at UC Irvine.



Okounkov's Conjecture

In the cone of partition tuples (A, i, V), consider

v

v 2v 3v N,
Cap Cox2u C3)3u Tt CNANp

Log-concavity would imply

Nv (N+1)v (N-1)v
(CNA,NM)2 Z SN DA (N1 SN— DA (N—1)p”

Counterexample found by Chindris—Derksen—Weyman (2007):
A= w= (321’ 2217 121)’ v = (4217 342’ 221)



Okounkov's Conjecture

Okounkov's Conjecture is false.
Some consequences of it are true.
Okounkov proved log-concavity holds asymptotically.

Are there interesting special sets of tuples (A, p, /) for which a

version of Okounkov’s conjecture holds?



A True Log-Concavity

Theorem (Huh—Matherne-Mészdros-S. 2019)

Choose any i,j > 0 and any partitions \, i, v such that v/ is a
skew shape with at most one box per column. Whenever all
subscripts and superscripts are partitions,

2 v+ —w; V—w;+w;
14 I J i 'J
(CA#) = C>\7#+wifl—wj71 A p—wj_1+w; 1

where wy is the kth fundamental weight (1,07=F).

For example, if n =15, i =2, and j = 4, then

2 87641 2 87531 87751 _
117 = (¢52100,76410)" = C5210075310C52100,77510 = 14 X 4
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A Polytopal Perspective

Any polynomial f =3 ., a,x* € C[xy, ..., x,] has an associated
integer polytope called its Newton polytope:

Newton(f) = Conv(z : a, # 0)
(1,2) » .(2,2)

Newton(l +z +y+ 2> +2y° +2%y°) = (0,1) » (1,1) o e (2,1)

Newton(1 + y + xy + zy? + 22 + 224?) =

(0,0) o . *(2,0)
(1,0)



Schur Polynomial Newton Polytopes

What kind of polytopes are the Newton polytopes of Schur
polynomials?

T3 2 2
° $2$3 .1'11'3
[ 2 L ]
$§$3 . . . x%xg
N ° 221 T2%3
T2 €1
5(1,0,0) = . d
b 2 2
x1+ x2 + x3 T1T3 T1T2

_ 2 2 2
5(2,1,0) = X2X3 +X1X3 + X7 X3 +
X12x2 + X1X22 + X22X3 + 2X1X0X3



Schur Polynomial Newton Polytopes

Theorem (Rado 1952)

The Newton polytope of sy is the permutahedron Py (the convex
hull of all permutations of \).

Newton(sz2,1,0))

0231 0321
° )
0132 @
. G ® 0312
0123 S
1230 @ ® 1320
1032 @
° 105 120 ® 1302
® 2130 SEE
2031 @ \
2301
2OLE 2103
° °
3210
® °
3021 @ 3120 v

o ° 3201



Coefficients and Newton Polytopes

How do the Kostka numbers within the Schur Newton polytope
look?

Newton(s(4,2,0))
1, ! ol

[ 1N}
[ 1\V)

1. .1

[ 198

le 2e 2 '3l

1e *1

Can there be zeros in the polytope?

Ne
noe




Saturated Newton Polytopes (SNP)

Definition (Monical-Tokcan-Yong 2017)

A polynomial f is said to have saturated Newton polytope (SNP)

if every integer point in the Newton polytope corresponds to a

monomial with nonzero coefficient in f.

Theorem (Monical-Tokcan-Yong 2017)

The following all have SNP:
@ Schur polynomials
@ Skew-Schur polynomials

@ Stanley symmetric functions

e (q,t) evaluations of symmetric Macdonald polynomials




Back to Kostka Numbers

SNP says there are no zeros within the Newton polytope. How are

the nonzero coefficients distributed?

le

ld

1.

Newton(s(4,2,0))

1

Qe

L1\

Ne

i

[ 198}

L1\

[Nl ]

ol
.1
2 o]

°1



Back to Kostka Numbers

SNP says there are no zeros within the Newton polytope. How are
the nonzero coefficients distributed?

Newton(s(4,2,0))

AN

€2 — €3 €1 — €3

Idea: look along lines in root directions!



Unimodal and Log-Concave Sequences

ao a e Q; T an-1 Qn

Unimodal: ag < a; <--- < ajand aj > aj41 > --- > a, for some
Log-concave: a,2 > aj_1aj41 forall j

Positive and log-concave implies unimodal

Do the Schur coefficients form unimodal sequences along lines in

root directions? Even better, are they log-concave?




The SSYT Crystal

The crystal structure on SSYT provides some insight into

unimodality of Kostka numbers.

Define the ith crystal operator f; on SSYT(\) to be the function

that changes an j to an i + 1 in a tableau T by the recipe:

@ map i) and i+ 1 (
@ read parentheses up columns
e iteratively remove matched pairs ()

@ change the rightmost ) to a (

1[2[212]3]

3[3]

fo: % S 0= )

‘»J;OJL\:J»—
e



A Crystal Graph




Crystals: Some Unimodality

Newton(s4,2,0))
1 1 1

—
[
oo
oo
o
—

s1 C2—€3€1—¢€3

—_

()
Ne
noe



Crystals: Some Unimodality

fi
-—
1[1]3]3]
212
1[2]1213] | [1]1]2]3] | [1]1]13]
213 213 213
2121212] | [1[2]2]2] | [1]1[2]2] | [2]afal2] | [a]a]1]1]
313 313 313 313 313
1 2 3 2 1



Log-Concavity of Kostka Numbers

For any partition A\ and o € Z%,, is

2
K)\a > K)\,a—f—e,-—ej K)\,a—e,-—l—ej

for all i,j € [n]?

v

K)\,a-%—?(ej—(n) KA,0+(6J—6,) Ko K)\A,(H—(el—cj) K)\,a+2(e,—e])



But what about Littlewood—Richardson?

When the skew shape v/u has at most one box in each column,
CKM = K)v(l’—lt)‘
Conversely, for any partition A and any «,
Kxa = CK,;N

where v and p are the partitions given by

n n
Vi = E Q; and M = E Qj.
j=i

j=i+1

B = C) e



Kostka and Littlewood—Richardson

v V—‘rwi—’lﬂj V—wi-i-’lﬂj
<C)\7 ) Z C)v erifl*w'flc)\v/i*wiflﬂﬂ'A
12 12 j j

2
K,\a > KA,oH-ei —e;j K)\,a—ei—l—ej

Discrete log-concavity of the Kostka numbers is a special case of

Okounkov's conjecture!
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Definition

A subset J C Z" is
with a; > B;, there

M-convex if for any index i and any «, 5 € J

is an index j satisfying

O¢j<,3j, a—e;—l—ejeJ, and B+e;—ej€J.

7

A

=¥



Generalized Permutahedra

permutahedron Py generalized permutahedron
(0,1,2), «(1,0,2) (0,1,2), «(1,0,2)
(0,2,1)s *(2,0,1)
(3,0, 3)
(1,2,0)* *(2,1,0) (0,3,0)* *5, 3.0

The support of a polynomial f is M-convex if and only if f has

SNP and Newton(f) is a generalized permutahedon.




Lorentzian Polynomials

Definition (Brandén—-Huh 2019)

A homogeneous polynomial f of degree d with nonnegative

coefficients is Lorentzian if

@ f has M-convex support

9 .. ._9
aX,‘1 BX,'d_

f has at most one positive eigenvalue.

2

Lorentzian polynomials generalize volume polynomials of
irreducible projective varieties from algebraic geometry and stable

polynomials from optimization.



Example and Nonexample of Lorentzian-ness

Nonexample: Example:
— 2 2 X2 x2
f=xi+xixa+x35 g=7txe+3
1 1/2 1/2
Matrix: / Matrix: 12 1
1/2 1 1/2 1)2

Eigenvalues: 1/2 and 3/2 Eigenvalues: 0 and 1



Lorentzian Polynomials and Discrete Log-Concavity

Let N be the normalization operator defined by N(x%) = %

patd
al”
v

Theorem (Brandén—Huh 2019)

Iff =75, cax® is nonzero and N(f) is Lorentzian, then

2
Ca Z Ca+ei*ejca*ei+ej'

for every o and 1 < i, j < n.

N




Lorentzian Polynomials and Discrete Log-Concavity

Theorem (Brandén—Huh 2019)

Iff =75, cax® is nonzero and N(f) is Lorentzian, then

2
C” 2 Cotej—ejCa—ej+te;

for every a and 1 < i,j < n.

Proof idea:

60&761762 1

— N(f = —¢ X2 Cux1X0 + = Co X2
Oxo—e1—e ( )X3:"~:X,,:O 2 ate—eX] T CaXi 2"'2 a—ey+e X2

C _ Cqo
det a+e;—ep «Q S 0
Ca Ca—e1+ez



Lorentzian Polynomials and Continuous Log-Concavity

Theorem (Brandén—Huh 2019)

Iff =75, cax® is nonzero and N(f) is Lorentzian, then the

function log(N(f)) is concave on RZ.

The Lorentzian property is actually equivalent to being strongly

log-concave or completely log-concave.



A Lorentzian Polynomial

Theorem (Huh—Matherne-Mészaros-S. 2019)

For any permutation w € S,,
N((xg-- -X,,)"_IGW(Xfl, . ,X_l))

is Lorentzian.

Proof Idea:
Knutson—Miller (2001): Schubert polynomials are multidegrees of

matrix Schubert varieties



A Very Convenient Trick

By a symmetry argument:




Schur Polynomial Conclusions

Theorem (Huh—Matherne-Mészdros-S. 2019)

For any partition A, N(sy) is Lorentzian.

Immediately implies discrete and continuous log-concavity:

Corollary (Huh—Matherne-Mészaros-S. 2019)

2
o K)\a Z K)\,a—i-e;—ejK)\,a—e,-—i-ej

o log(N(sy)) is a concave function on RZ,

What about Schubert polynomials?



What about Schubert Polynomials?

Theorem (Fink-Mészaros-S. 2017)

Sy has SNP and Newton(S,,) is a generalized permutahedron.

Newton(Sa1543) = P(U1,1) + P(Uz4) + P(Ui 3)

1120
1021 1100
0010
o
*1210
2020¢ 1111 0110 0101
a #1201 = gy + +
e2011 2110 | 10104 1001
| L °
Vooro 1000 0100
. 2101 e .
3010 of1
ad
3100

.
3001



Log-Concavity of Schubert Coefficients

Let 6, = Z Cwax®. Consider

N((x1 - xa)" 18w h, X b))

Theorem (Huh—Matherne-Mészaros-S. 2019)

For any w € S, and i,j € [n],

2
Cwa > Cw,a—f—e,-—ej Cw,oa—e,-—&-ej‘

Discrete log-concavity holds for Schubert polynomials.

(Combinatorial proof?)



What about Schubert Polynomials?

Even if N(f) is Lorentzian,

N(xFOxqt o x b))

rn

may not be.

Conjecture (Huh—Matherne-Mészaros-S. 2019)

For any permutation w, N(&,,) is Lorentzian.




Known Lorentzian Schubert Polynomials

Theorem (Huh—Matherne-Mészdros-S. 2019)

If w avoids 12543, 13254, 13524, 13542, 21543, 125364, 125634,
215364, 215634, 315264, 315624, and 315642, then N(&,,) is
Lorentzian.

Theorem (Huh—Matherne-Mészaros-S. 2019)

If w avoids 1432 and 1423, then &,, and N(S,,) are Lorentzian.

What other interesting families of polynomials have Lorentzian

normalizations?




Conjecturally SNP

Conjecture (Monical-Tokcan-Yong 2017)

The following all have the saturated Newton polytope property:
@ Schubert polynomials
@ Double Schubert polynomials

@ Grothendieck polynomials

@ Key polynomials




Conjecturally Lorentzian

Conjecture (Huh—Matherne-Mészaros-S. 2019)

With appropriate modifications, the following all have Lorentzian

normalizations:
@ Double Schubert polynomials

@ Grothendieck polynomials

Key polynomials

Skew-Schur polynomials

Characters of (infinite dimensional) irreducible GL,

representations




Thanks for Listening!

Newton(s<4‘210))

AN

€9 — €3 €1 — €3




Other Log-Concavity

Another perspective is the log-concavity properties of the function
A S\

For symmetric functions f and g, say f > g if f — g expands
positively in the Schur basis.

Theorem (Lam—Postnikov—Pylyavskyy 2005)

° (SL‘gV/HTﬂ’)z >s Sx/uSv/p (Okounkov)
® Ssorty (A,u)Ssorta(A,u) =s SASu (Fomin—Fulton—Li—-Poon)
o JIiLy sy =5 [1iq Sytivmi (Lascoux—Leclerc—Thibon)
© S\ (v/p) SN mA(w/p) Z5 SN/ uSv/p (Lam—Pylyavskyy)




