On the Convergence Rate of Entropy-Regularized Natural Policy Gradient with Linear Function Approximation

R. Srikant

c3.ai DTI/CSL/ECE
University of Illinois at Urbana-Champaign
Coauthors

Semih Cayci
UIUC

Niao He
ETH Zurich
Markov Decision Processes

Dynamical system in discrete time:

\[s_{t+1} = f(s_t, a_t, w_t) \]
\[a_t \sim \pi(\cdot | s_t) \]
\[r_t = r(s_t, a_t) \]

\(s_t \): state, \(a_t \): control action, \(w_t \): noise

Value function: For discount factor \(\gamma \in (0, 1) \)

\[V^\pi(s) = \sum_{t \geq 0} \gamma^t E_\pi[r(s_t, a_t) | s_0 = s] \]

Goal: Find \(\pi^* \) to maximize \(E_{s_0 \sim \mu} V^\pi(s_0) \)

RL: Policy gradient
Main Challenge in RL: Large State Spaces

• Optimal policy can be found via tabular methods (in principle)

• Problem: High memory and time complexity for large state spaces

• Example: Go, Chess (Shannon number for Chess: 10^{120})

Source: Cheerla, '18
Entropy-Regularized NPG with LFA: Highlights

- **Function approximation**: Key element behind the success of RL in practice

Outline: Natural Policy Gradient with Linear Approximation

- Policy optimization with linear function approximation
- Entropy-regularization to encourage exploration and smoothen the optimization landscape
- **Linear** convergence rate up to compatible function approximation error
- **O(1/T)** convergence rate with weaker assumptions

Main message: Entropy regularization leads to improved convergence rates
Existing Work

• **NPG in function approximation regime:**

 (Agarwal, Kakade, Lee, Mahajan ’20): Unregularized NPG and Q-NPG with log-linear parameterization

 $O \left(\frac{1}{\sqrt{T}} \right)$ convergence up to approximation errors

 (Chen, Khodadadian, Maguluri ’21): $O(1/T)$ convergence with off-policy NPG

• **Entropy-Regularized NPG/PG:** Tabular setting

 (Cen, Cheng, Chen, Wei, Chi ‘20): Regularized NPG with direct softmax parameterization

 Linear convergence

 (Mei, Xiao, Szepesvari ‘20): Linear convergence of entropy-regularized PG with softmax

 $\Theta \left(\frac{1}{T} \right)$ convergence rate for unregularized PG

 (Lan ’21): Linear convergence of NPG with general convex regularizers

 (Khodadadian, Jhunjhunwala, Varma, Maguluri ’21): Linear convergence of unregularized NPG
Softmax Parameterization with LFA

Log-linear policy class \(\Pi = \{\pi_\theta: \theta \in \mathbb{R}^d\} \)

\[
\pi_\theta(a|s) = \frac{e^{\theta^T \phi_{s,a}}}{\sum_{a' \in A} e^{\theta^T \phi_{s,a'}}}
\]

Basis vectors \(\{\phi_{s,a}: s \in S, a \in A\} \)

\[
\max_{(s,a) \in S \times A} \|\phi_{s,a}\|_2 \leq 1
\]

- **Restricted policy class**: Does not contain all randomized policies
- **Convergence results** with respect to the best policy \(\pi^* \in \Pi \)
Entropy Regularization

Value function

\[V^\pi(\mu) = \sum_{t \geq 0} \gamma^t E_\pi[r(s_t, a_t)|s_0 \sim \mu] \]

Regularizer

\[H^\pi(\mu) = \sum_{t \geq 0} \gamma^t E_\pi[-\log \pi(a_t|s_t)|s_0 \sim \mu] \]

Entropy-Regularized Value function

\[V^\pi_\lambda(\mu) = V^\pi(\mu) + \lambda \cdot H^\pi(\mu) \]

\(\lambda > 0 \) ⇒ Encourages exploration (Why? Max-entropy policy is \(\pi(\cdot|s) \sim Unif(A), \forall s \in S \))

Avoids near-deterministic suboptimal policies (Haarnoja et al., ’17; Ahmed et al., ’19)
Optimization Problem

Objective

\[
\max_{\theta \in \mathbb{R}^d} V^\pi_\theta (\mu)
\]

Challenge: Highly non-convex optimization problem

\[
\theta^* \in \arg \max_{\theta \in \mathbb{R}^d} V^\pi_\theta (\mu)
\]

\[
\pi^* := \pi_\theta^*
\]
Algorithms

- **Entropy-Regularized Natural Policy Gradient**
- **Entropy-Regularized Q-NPG with Gradient Clipping**

 - **Deterministic setting**: Sample-based estimation is not considered
 - **Questions**: What is the role of entropy-regularization in convergence of NPG? How do approximation errors impact convergence?
 - **Methodology**: Lyapunov analysis based on weighted-D_{KL} (Agarwal et al., ‘20)
Natural Policy Gradient Algorithm

Idea: Mirror descent with Bregman divergence

\[D(\theta, \theta') = (\theta - \theta')^T G^\pi_\theta(\mu)(\theta - \theta') \]

Fisher info matrix

\[G^\pi_\theta(\mu) = E_{s \sim d_\mu, a \sim \pi_\theta(\cdot|s)} \left[\nabla_\theta \log \pi_\theta(a|s) \nabla_\theta^T \log \pi_\theta(a|s) \right] \]

NPG Update

\[\theta^+ = \arg \max_{\theta^-} \left\{ \nabla_\theta V^\pi_{\theta^-}(\mu)(\theta - \theta^-) - \frac{1}{2\eta} D(\theta, \theta^-) \right\} \]

\[= \theta^- + \eta \cdot [G^\pi_{\theta^-}(\mu)]^{-1} \cdot \nabla_\theta V^\pi_{\theta^-}(\mu) \]

Algorithm 1. NPG with Entropy Regularization

Initialization: \(\theta_0 = 0 \)

for \(t = 0, 1, ..., T - 1 \)

\[w_t = [G^\pi_t(\mu)]^{-1} \cdot \nabla_\theta V^{\pi_t}(\mu) \]

\[\theta_{t+1} = \theta_t + \eta \cdot w_t \]
Compatible Function Approximation

\[Q^\pi(s, a) = r(s, a) + \gamma E_{s' \sim P(\cdot|s,a)}[V^\pi_\lambda(s')] \]

\[G^{\pi\theta}(\mu) = E_{s \sim d_\mu^\pi, a \sim \pi_\theta(\cdot|s)}[\nabla_\theta \log \pi_\theta(a|s) \nabla^T_\theta \log \pi_\theta(a|s)] \]

\[
L(w, \theta) = E_{s \sim d_\mu^\pi, a \sim \pi_\theta(\cdot|s)}\left[(w^T \nabla_\theta \log \pi_\theta(a|s) - \{Q^\pi_\lambda(s, a) - \lambda \log \pi_\theta(a|s)\})^2\right]
\]

\[w^* = \arg \min_{w \in \mathbb{R}^d} L(w, \theta) \]

\[w^* = \frac{1}{1 - \gamma} [G^{\pi\theta}(\mu)]^{-1} \cdot \nabla_\theta V^{\pi\theta}_\lambda(\mu) \]
Assumptions

1. Approximation Error
 \[\sup_{t \geq 1} \min_{w \in \mathbb{R}^d} L(w, \theta_t) \leq \epsilon_{\text{approx}} \]

2. Concentrability Coefficient
 \[C_t = E_{s \sim d_{\mu}^t, a \sim \pi_t(\cdot|s)} \left[\left(\frac{d_{\mu}^{\pi} (s) \pi^{*}(a|S)}{d_{\mu}^{\pi} (s) \pi_{t}(a|S)} \right)^2 \right] \leq C^* < \infty, \forall t \]

3. Regularity of the Basis Vectors
 \[F(\mu) = E_{s \sim \mu, a \sim \text{Unif}(A)} \left[(\phi_s, a - E_{a' \sim \text{Unif}(A)} \phi_s, a') (\phi_s, a - E_{a' \sim \text{Unif}(A)} \phi_s, a')^T \right] \]
 \[\sigma_{\text{min}}(F(\mu)) \geq \sigma > 0 \]
NPG: Convergence Results

NPG with constant step-size: \[\eta = \frac{(1 - \gamma)^2 \sigma^2 r_{\min}}{(r_{\max} + \lambda \log |A|)^2} \]

Potential function: \[\Phi(\pi) = \sum_s d_{\mu}^*(s)D_{KL}(\pi^* (\cdot |s)||\pi (\cdot |s)) \]

Linear convergence:

\[\Phi(\pi_T) \leq (1 - \eta \lambda)^T \log |A| + \frac{\sqrt{C^* \epsilon_a}}{\lambda} \]

\[V^\pi_\lambda (\mu) - V_t^\pi_\lambda (\mu) \leq \frac{(1 - \eta \lambda)^T}{\eta (1 - \gamma)} \log |A| + \frac{\sqrt{C^* \epsilon_a}}{\lambda \eta (1 - \gamma)} \]
Lyapunov Drift Analysis

Lyapunov Function

\[\Phi(\pi) = \sum_s d_{\mu}^\pi(s) D_{KL}(\pi^*(s) \| \pi(s)) \]

Lyapunov Drift

\[\Phi(\pi_{t+1}) - \Phi(\pi_t) \leq -\eta \lambda \Phi(\pi_t) - \eta (1 - \gamma) \left(V_{\lambda}^{\pi^*_t}(\mu) - V_{\lambda}^{\pi_t}(\mu) \right) \]

\[-\eta E_{s \sim d_{\mu}^{\pi^*_t}, a \sim \pi^*_t(s)} \left[w_t^T \nabla_{\theta} \log \pi_t(a|s) - Q_{\lambda}^{\pi_t}(s, a) + \lambda \log \pi_t(a|s) \right] \]

\[-\eta E_{s \sim d_{\mu}^{\pi^*_t}} \left[V_{\lambda}^{\pi_t}(s) \right] + \frac{1}{2} \eta^2 \| w_t \|_2^2 \]

(Asgarwal et al., ’20) for unregularized Q-NPG
Lyapunov Drift Analysis

Lyapunov Function

\[\Phi(\pi) = \sum_s d_{\mu}^\pi(s) D_{KL}(\pi^*(\cdot|s)||\pi(\cdot|s)) \]

Lyapunov Drift

(Agarwal et al., '20) for unregularized Q-NPG

\[\Phi(\pi_{t+1}) - \Phi(\pi_t) \leq -\eta \lambda \Phi(\pi_t) - \eta (1 - \gamma) \left(V_{\lambda}^\pi(\mu) - V_{\lambda}^{\pi_t}(\mu) \right) \]

\[-\eta E_{s \sim a^\pi_{\mu}, a \sim \pi^*(\cdot|s)} \left[w_t^T \nabla_{\theta} \log \pi_t(a|s) - Q_{\lambda}^{\pi_t}(s, a) + \lambda \log \pi_t(a|s) \right] \]

\[-\eta E_{s \sim a^\pi_{\mu}} \left[V_{\lambda}^{\pi_t}(s) \right] + \frac{1}{2} \eta^2 \| w_t \|_2^2 \]
Lyapunov Drift Analysis

Lyapunov Function

\[\Phi(\pi) = \sum_s d_{\mu}^\pi(s)D_{KL}(\pi^* (\cdot | s)||\pi (\cdot | s)) \]

Lyapunov Drift

\[\Phi(\pi_{t+1}) - \Phi(\pi_t) \leq -\eta \lambda \Phi(\pi_t) - \eta(1 - \gamma) \left(V_{\lambda}^\pi(\mu) - V_{\lambda}^{\pi_t}(\mu) \right) \]

\[+ \eta \cdot \sqrt{C_t} \cdot \sqrt{L(w_t, \theta_t)} \]

\[-\eta E_{s \sim a_{\mu}^\pi} \left[V_{\lambda}^{\pi_t}(s) \right] + \frac{1}{2} \eta^2 \| w_t \|_2^2 \]

(CFA + Assumptions 1 & 2)
Lyapunov Drift Analysis

Lyapunov Function

\[\Phi(\pi) = \sum_s d_{\mu}^* (s) D_{KL}(\pi^* \cdot | s) || \pi(\cdot | s) \]

Lyapunov Drift

\[\Phi(\pi_{t+1}) - \Phi(\pi_t) \leq -\eta \lambda \Phi(\pi_t) - \eta (1 - \gamma) \left(V_{\lambda}^\pi(\mu) - V_{\lambda}^{\pi_t}(\mu) \right) \]

\[+ \eta \sqrt{C^*} \cdot \sqrt{\epsilon_{\text{approx}}} \]

\[-\eta E_{s \sim d_{\mu}^*} \left[V_{\lambda}^{\pi_t}(s) \right] + \frac{1}{2} \eta^2 \| w_t \|_2^2 \]

\[w_t = (G^{\pi_t}(\mu))^{-1} \nabla V_{\lambda}^\pi(\mu) \]

\[\sigma_{\text{min}}(G^{\pi_t}(\mu)) \geq \sigma > 0 \]
Lyapunov Drift Analysis

Lyapunov Function

\[\Phi(\pi) = \sum_s d^\pi_{\mu}(s) D_{KL}(\pi^* (\cdot | s) || \pi(\cdot | s)) \]

Lyapunov Drift

\[\Phi(\pi_{t+1}) \leq (1 - \eta \lambda) \Phi(\pi_t) - \eta (1 - \gamma) \left(V^\pi_{\lambda}(\mu) - V^\pi_{\lambda}(\mu) \right) \]

\[+ \eta \cdot \sqrt{C^*} \cdot \sqrt{\epsilon_{approx}} \]

\[- \eta E_{s \sim a^\pi_{\mu}} \left[V^\pi_{\lambda}(s) \right] + \frac{1}{2} \eta^2 \| w_t \|^2 \]

Linear convergence under our assumptions
Regularity of Random Features

Question When is the regularity condition (Assumption 3) satisfied?

Random features

1. **Gaussian ensemble**

\[\phi_{s,a} \sim N(0, I_d) \text{ iid for all } (s, a) \in S \times A \]

\[|A| = 2, x \in (0,1), \sigma_{\text{min}}(F(\mu)) \geq \frac{x^2}{4} \left(1 - x - \frac{\log \delta^{-1}}{2|S|} - \sqrt{\frac{d \cdot \log(|S| + 1)}{|S|}} \right) \text{ for any w.p. } 1 - \delta \in (0, 1) \]

2. **Neural Tangent Kernel**

\[\phi_{s,a} = \left[\frac{1}{\sqrt{m}} c_i \psi(s, a) 1\{W_i^T \psi(s, a) \geq 0\} \right]_{i \in [m]} \]

\[c_i \sim \text{Rademacher}; \ W_i \sim N(0, I_k); \ d = k \times m \]

Assumption 3 holds if \(d \ll |S \times A| \)
NPG: Convergence Results

NPG with constant step-size: \[\eta = \frac{(1 - \gamma)^2 \sigma^2 r_{\text{min}}}{(r_{\text{max}} + \lambda \log |A|)^2} \]

Potential function: \[\Phi(\pi) = \sum_s d_{\mu}^* (s) D_{K\text{L}}(\pi^* (\cdot | s) || \pi(\cdot | s)) \]

Linear convergence:

\[\Phi(\pi_T) \leq (1 - \eta \lambda)^T \log |A| + \frac{\sqrt{C^* \epsilon_a}}{\lambda} \]

\[V_{\lambda}^{\pi^*}(\mu) - V_{\lambda}^{\pi_t}(\mu) \leq \frac{(1 - \eta \lambda)^T}{\eta (1 - \gamma)} \log |A| + \frac{\sqrt{C^* \epsilon_a}}{\lambda \eta (1 - \gamma)} \]
Assumptions

1. Approximation Error

\[
\sup_{t \geq 1} \min_{w \in \mathbb{R}^d} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}, a \sim \pi_{\theta_t}(\cdot | s)} \left[(w^T \nabla_{\theta} \log \pi_{\theta_t}(a | s) - \left\{ Q_{\lambda}^{\pi_{\theta_t}}(s, a) - \lambda \log \pi_{\theta_t}(a | s) \right\})^2 \right] \leq \epsilon_{\text{approx}}
\]

2. Concentrability Coefficient

3. Regularity of the Basis Vectors
Q-NPG with Entropy Regularization

Q-NPG: variant of algorithm originally proposed in [Agarwal et al., ’20]

\[w_t = \arg \min_{w : ||w||_2 \leq R} E_{s,a} \left[(w^\top \phi_{s,a} - Q^\pi_{\lambda_t}(s,a))^2 \right] \]

\[\theta_{t+1} = \theta_t (1 - \eta_t \lambda) + \eta_t w_t \quad \text{with step-size} \quad \eta_t = \frac{1}{1/(\lambda(t+1))} \]

Algorithm 2. Q-NPG with Entropy Regularization

Initialization: \(\theta_0 = 0 \)

for \(t = 0, 1, ..., T - 1 \)

\[w_t = \arg \min_{w : ||w||_2 \leq R} E_{s,a} \left[(w^\top \phi_{s,a} - Q^\pi_{\lambda}(s,a))^2 \right] \]

\[g_t = w_t - \lambda \cdot \theta_t \]

\[\theta_{t+1} = \theta_t + \eta_t \cdot g_t \]
Assumptions

1. Approximation Error

\[\sup_{\theta} \min_{w:|w| \leq R} E \left[\left(w^T \phi_{s,a} - Q_{\lambda}^{\pi_{\theta}}(s,a) \right)^2 \right] \leq \epsilon(R) \]

2. Concentrability Coefficient

\[M_t = E_{s \sim d_{\mu}^{\pi_t}} \left[\left(\frac{d_{\mu}^{\pi_t}(s)}{d_{\mu}^{\pi}(s)} \right)^2 \right] \leq M < \infty, \forall t \]
What Does Entropy Regularization Do?

1. Regularization

\[
\sup_{t \geq 0} \| \theta_t \|_2 \leq \frac{R}{\lambda}
\]

\[
\sup_{t \geq 0} \| g_t \|_2 \leq 2R
\]

2. Persistence of Excitation

\[
\inf_{t \geq 0} \min_{s,a} \pi_t(a|s) \geq p_{\min} \geq \frac{e^{-2R/\lambda}}{|A|} > 0
\]
Q-NPG: Convergence Results

NPG with adaptive step-size: \(\eta_t = \frac{1}{\lambda(t + 1)} \)

O(1/T) convergence:

\[
\Phi(\pi_T) \leq \frac{\sqrt{M\epsilon(R)(1 + p_{\min}^{-1})}}{\lambda} + \frac{2R^2}{\lambda^2} \cdot \frac{\log T}{T}
\]

\[
\min_{0 \leq t < T} \{ V_{\lambda}^{\pi^*}(\mu) - V_{\lambda}^{\pi_t}(\mu) \} \leq \frac{\sqrt{M\epsilon(R)(1 + p_{\min}^{-1})}}{1 - \gamma} + \frac{2R^2}{(1 - \gamma)} \cdot \frac{\log T}{\lambda T}
\]
Q-NPG: Convergence Results

O(1/T) convergence:

\[
\Phi(\pi_T) \leq \frac{\sqrt{M \varepsilon(R)}(1 + p_{\min}^{-1})}{\lambda} + \frac{2R^2}{\lambda^2} \cdot \frac{\log T}{T}
\]

\[
\min_{0 \leq t < T} \{ V_{\lambda}^{\mu^*}(\mu) - V_{\lambda}^{\pi_t}(\mu) \} \leq \frac{\sqrt{M \varepsilon(R)(1 + p_{\min}^{-1})}}{1 - \gamma} + \frac{2R^2}{(1 - \gamma)} \cdot \frac{\log T}{\lambda T}
\]

- **No regularity conditions**
- **\(\lambda = \frac{1}{\log T} \) can be chosen, convergence to \(\max_\theta V^{\pi_\theta}(\mu) \)**
- **Sublinear convergence and not last iterate convergence**
- **Higher approximation error \(\varepsilon(R) \) due to "gradient clipping"**
Q-NPG: Lyapunov Analysis

\[
\Phi(\pi_t) - \Phi(\pi_{t-1}) \leq - \frac{t - 1}{t} \Phi(\pi_{t-1}) - \eta_{t-1} (1 - \gamma) \left(V^\pi_\lambda (\mu) - V^\pi_{t-1}(\mu) \right) \\
+ \eta_{t-1} \cdot \sqrt{M} (1 + p_{\text{min}}^{-1}) \sqrt{E_{s,a} \left[(w_{t-1}^T \phi_s, a - Q^\pi_{t-1}(s,a))^2 \right]} + 2 \eta^2_{t-1} R^2
\]

Induction:

\[
\Phi(\pi_T) \leq - \frac{1 - \gamma}{\lambda T} \sum_{t < T} \left(V^\pi_\lambda (\mu) - V^\pi_{t}(\mu) \right) + \sqrt{M \epsilon(R)} (1 + p_{\text{min}}^{-1}) \frac{2 R^2}{\lambda^2} \cdot \frac{\log T}{T} + \frac{2 R^2}{\lambda^2} \cdot \frac{\log T}{T}
\]
Conclusions

NPG with entropy-regularization achieves linear convergence up to CFA error

- Regularity conditions (basis & concentrability) are required
- Works well in function approximation regime $d \ll |S \times A|$
- Last iterate convergence

Q-NPG with entropy-regularization achieves $O(1/T)$ rate up to approximation error

- Much milder conditions
- Best iterate convergence
- Extensions to neural network based actor-critic algorithms