Reinforcement Learning in High Dimensional Systems
(and why “reward” is not enough... )
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ress of RL in Practice
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| et’s start with Supervised Learning (SL)
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Generalization is possible in the |ID supervised learning setting!

To get c-close to best in hypothesis class 7, we need # of samples that is:

. Finite hypothesis class: need O(log(| Z | )/€?)
» Linear hypothesis classes F:

Linear regression: O(dimension/ez); Classification (margin bounds): O(margin)/ez);

« Neural Hypothesis Classes: O(size of weights IayerS/62)
o VCdim: O(VC(F)/e?)

The key idea in SL: data reuse
With a training set, we can simultaneously evaluate the loss of all hypotheses in our class.



What about RL?



» Episodic setting: We start at s,; act for H steps; repeat...

Markov Decision Processes:
a framework for RL (standard notation)

A policy:
Tt . States — Actions

state
\

Execute & to obtain a trajectory:
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Goal: Find a policy & that maximizes our value V" (s,) from s,

(so we must balance exploration/exploitation)

action
A



Sample Efficient RL in for  fua] |
small, unknown MDPs 1 . -..

E- N
e S = #states, A = #actions, H = #horizon 3 ......

e [hm [Kearns & Singh "98]: In the episodic setting,
the E- algo finds an e-opt policy with poly(S,A, H,1/¢) samples.
 No generalization here due to poly($) dependence.

 Many improvements on the rate:

* [Brafman& Tennenholtz '02][K. '03][Auer+ ‘09] [Agrawal, Jia ’17]
* minimax rates: [Azar+ ‘13],[Dann & Brunskill ’15]

 provable Q-learning: [Strehl+ (2006)], [Szita & Szepesvari ‘10],[Jin+ ‘18]



Provable Generalization in RL?

« Suppose our hypothesis class & is a set of policies.
« Can we find an e-opt policy with no S dependence,

poly H, and log( | # | ) dependence?

. No: We need min(2”, log(| % | ) samples (for no S dependence)

[Kearns, Mansour, & Ng '00][K" 03]
e Proof:

e Consider a binary tree
with a single rewarding leaf

. We have 2" policies
 We have to try them all

ZH leaves

« Unlike SL, data reuse not possible!



Outline

What are necessary representational and distributional conditions that permit
provably sample-efficient offline reinforcement learning”?

 Part |: Lower bounds (necessity)
Is RL possible under linear realizability?

e Part ll: Upper bounds (sufficiency)
Are there unifying conditions that are sufficient?



| ower bounds:
What Is ?



Approx. Dynamic Programming
with Linear Function Approximation

ldea: Approximate the Q(s, a) values with linear basis functions,
O(s,a) =w - ¢d(s,a), where ¢ (s,a) € R?and d < S, A.

Some context:

 C. Shannon. Programming a digital computer for playing chess.
Philosophical Magazine, '50.

 R.E. Bellman and S.E. Dreyfus. Functional approximations and dynamic
programming. ’59.

» [Tesauro, '95], [de Farias & Van Roy ’03], [Wen & Van Roy ’13]

What conditions must our basis functions (our representations) satisfy in
order for his approach to work?
Let’s look at the most basic question with “linearly realizable Q"

« Analogous to (bandit) linear regression (when H = 1)



Linearly Realizable Values is Not Sufficient for RL

Linearly realizable values: suppose Q (s,a) = wh O(s,a)
Sub-optimality gap (a “margin”): For all a # z*(s), V*(s) — Q*(s,a) > A_.

Theorem: [Wang, Wang, K. ‘21| There exists a class of MDPs with
linearly realizable values + constant sub-optimality gap s.t. any online

RL algorithm requires min(<2(29), Q(2'")) samples to obtain a 0.1-near
optimal policy (with prob. > 0.9).

 Theorem [Weisz, Amortila, Szepesvari '21]: With only linearly realizable values, the

lower bound still holds (even in a generative model).
e Theorem [Du, K., Wang, Yang ‘20]: With linearly realizable values + constant gap +

generative model, there Is a sample efficient algorithm.



Linearly Realizable Policies are also Not Sufficient for RL

Linearly realizable policies: 7%(s) = argmax w™ - ¢(s, a)
Large “margin”: Suppose ||w™*|| < const (and ||¢]|| < 1)

Theorem [Du, K., Wang, Yang "20]: There exists a class of MDPs with
Inearly realizable policies + large margin s.t. any online RL algorithm

requires min(C2(29), Q(2)) samples to obtain a 0.1-near optimal
policy (with prob. > 0.9).

» For (bandit) classification and regression (H = 1),
learning is poly(d) for H = 1




The Construction: a Hard MDP Family

(A "leaking complete graph’’)
s * misan integer (we will set m ~ 2

. the state space: {1, ---, m,f}
» call the special state f a “terminal state”.
- at state i, the feasible actions set is [m]\ {i}

at f, the feasible action set is [m — 1].
i.e. there are m — 1 feasible actions at each state.

 each MDP in this family is specified by an inde»
a* € [m] and denoted by ./ -
h—1 9 9 H l.e. there are m MDPs in this family.

—

wl ol

T \\

f o—0—e

_emma: For any y > 0, there exist m = Lexp(%yzd)J unit vectors {vy, *=*, vV}
nRYst. Vi,je[mlandi#j, | (v.v)| <.

We will set y = 1/4.
(proof: Johnson-Lindenstrauss)



Upper bounds:
VWhat are



Special case: linear Bellman complete classes
(let’s make stronger assumptions)

Linear hypothesis class: & = {Q,, : Q,(s,a) =w - ¢(s,a)}
Bellman “backup” operator: 7 (Q)(s, @) = r(s,a) + Ey_p.|; a)[max O(s’,a’)l

Linear Completeness [Munos, ’05]: Q € & — 9 (0) € &

Linear completeness is much stronger than linearly realizability!
» Adding a feature to ¢ can break the completeness property.
o |t is fundamentally related to the underlying dynamics model P(s’|s, a)

Theorem [Zanette+ “19]: Sample efficient RL, poly(d, H,1/¢), is possible with
Bellman complete, linear &

Are there other conditions when sample efficient RL is possible?



Sufficiency: under what conditions is generalization in RL possible®?

 There are many others cases where sample efficient RL possible:
 Linear Bellman Completion: [Munos, 05, Zanette+ ‘19]

 Linear MDPs: [Wang & Yang’18]; [Jin+ ’19] (the transition matrix is low rank)

e Linear Quadratic Reqgulators (LQR): standard control theory model

FLAMBE / Feature Selection: [Agarwal, K., Krishnamurthy, Sun ’20]

Linear Mixture MDPs: [Modi+’20, Ayoub+ '20]

Block MDPs [Du+ ’19]

Factored MDPs [Sun+ '19]

Kernelized Nonlinear Regulator [K.+ *20]

And more.....

* Are there commonalities?

Theorem [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19]:
All the “named” models above are special cases of bilinear classes

(see paper for formal def).
Also, provable generalization is possible for bilinear classes.

* Bilinear classes generalize the Bellman rank [Jiang+ ‘17]

* Proof techniques come from linear bandits framework [Dani, Hayes, K. ’08]
* Bilinear classes work for model based and model free settings



Bilinear Classes: A Structural Framework for Sample Efficient RL

(Near-)Deterministic Linear Q*

[WV’13, DLWZ’19, DLMW’20] R
Bilinear Classes

[DKLLMSWW’21]

Linear Q* & V* Linear Mixture
Bellman Completeness [MJTS’20, JYSW’20]
1ZLKB 20] | Kernelized LQR
[ KLOS'20]
Linear MDPs 21t OBl S
Complexity

Reactive POMDPs
\

Block MDPs

|
|
1

Low Bellman Eluder Dimension
[JLM’21], WSY’20] |

Factored MDPs

FLAMBE/ Low Witness Rank
Feature Selection [SIKAL'19]
_ Low Bellman Rank
. [KALS'17]

 [wo exceptions: linear Q* with deterministic dynamics; Q*—state aggregation
 The framework leads to new models (see paper).



Def: BiLinear Classes

. For each hypothesis / €& 7, suppose there are associated Qf(s, a), Vf(S), Ty

« The hypothesis class . can be model based or model-free class.

Def: A (F, £) forms an (implicit) Bilinear class class if:
* Bilinear regret: on-policy difference between claimed reward and true reward

E, [0 ) = r(sp @) = Vilsy)] | < w(F) = wyt, @,(0)
 estimation (the on-policy case): there is a discrepancy function z,”f(s, a,s’, o) s.t.
Vg, Enf[?/ﬂf(sh, Ay Shi1 8)] = (Wy(8) — Wh , D, (f))

Data reuse: the key is that £( - , ) can be estimated simultaneously Vg € F#



Special case: Linear O™, V™ is sufficient for RL

Linearly O™, V" suppose O *(s,a) = wé - po(s,a) and V*(s) = w) - dy(s)

Theorem [Du, K., Lee, Lovett, Mahajan, Sun, Wang ’19]:

Suppose the linear O, V" assumption is satisfied (with known features) then
sample efficient RL is possible.

* This assumption is subtle. It does impose much stronger constraints than just
linear Q.



Thanks!

* A generalization theory in RL is possible and different from SL!
 necessary: linear realizability insufficient. need much stronger assumptions.
o sufficient: bilinear classes is a more general framework.

* covers known cases/new cases
« FLAMBE: [Agarwal+ '20] feature learning possible in this framework.

o related: offline RL has similar challenges
[Wang, Foster, K. ’20], [Zanette '21], [Wang, Wu, Salakhutdinov, K., 2021]

Ruosong Wang Gauv aan Yuanhao Wang

\ ) o
) A = P
A se VR S R . -
- o Y A 2
e ’ =y
T \ 7
Bl 3 < q T g
240 LY = 3 A
MRS el ) AN
R B . Al
’ Y o A (4 "J [ ;r‘
- AN - * U
g\
e N
Ty ‘ )’
‘. ol B b

Simon Du Jason Lee Shachar Lovett Wen Sun

See https://ritheorybook.github.io/ for forthcoming book!



https://rltheorybook.github.io/
https://rltheorybook.github.io/

