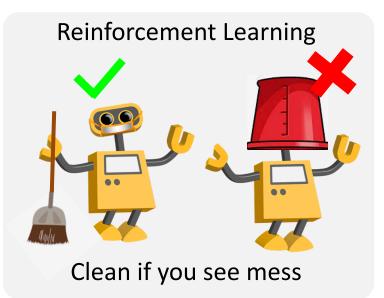
Preference based Reinforcement Learning – Finite-time guarantees

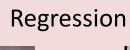
Aarti Singh Associate Professor

> ICERM workshop Aug 2, 2021

Preference vs Label feedback

Preference feedback can be easier and more accurate





What's his age? Who looks older?

Classification



Jet Engine Bracket

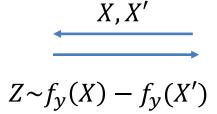
Is a part 3D printable?

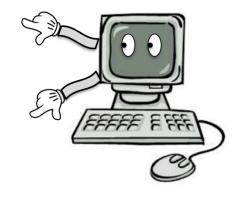
Setup

Two types of queries:

n labels
$$Y \sim f_y(X)$$

m comparisons





Algorithm that decides which type of data to collect, when and how much

Goal: Minimize the number of labels using preference feedback in the form of comparisons to achieve error ϵ

Label complexity, $n \sim f(\varepsilon)$

Comparison complexity, m \sim g(ϵ)

Preference feedback

How much can preference feedback help?

- Convex optimization [Jamieson+'13, Kumagai'17, Ailon+'14, Sui+'17]
- Non-convex GP optimization [UAI'20]
- Reinforcement learning
 - Policy optimization [NeurIPS'20]
- Classification [NIPS'17, Kane+'17]
- Threshold bandits [AISTATS'20]
- Regression [JMLR'20, ICML'18, Asilomar'18]

Take away message

How much can preference feedback help?

- Convex optimization
- Non-convex GP optimization
- Reinforcement learning
 - Policy optimization

Comparisons only suffice and rate same as labels only*

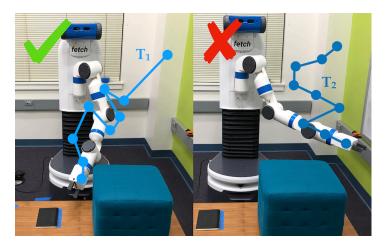
- Classification
- Threshold bandits
- Regression

Comparisons can reduce label complexity to 1-dimension*

^{*}comparison noise no worse than labels

Preference based Reinforcement Learning

Rewards are hard to design in complex problems; poor rewards lead to unexpected and unsafe behaviors



[Palan et al'19]

[Amodei-Clark'16]

Preferences are easier to specify: comparisons of trajectories

[Novoseller et al '19] – asymptotic convergence of Thompson sampling for GP models of state transitions and trajectory reward comparisons

RL set up

Markov Decision Process

|S| States, |A| Actions, horizon H

- Deterministic unobserved reward $r : S \times A \longrightarrow R$ $r \in [0,1]$
- Random state transition $p: S \times A \longrightarrow S$

Non-stationary policy
$$\pi: S \longrightarrow A$$
 $\pi = (\pi_1, \dots, \pi_H)$ Value function $v_h^\pi(s) = E\left[\sum_{t=h}^H r(s_t, \pi(s_t)) \, | s_h = s\right]$ $v_h^\pi(s) \in [0,1]$

<u>Goal</u> – Find policy $\widehat{\pi}$ such that with probability > 1- δ ,

$$v^{\hat{\pi}}(s_0) \ge v^{\pi^*}(s_0) - \varepsilon$$

Assumptions

Preferences: comparison between trajectories τ and τ' can compare partial trajectories

Even with perfect preferences, might not recover the optimal policy:

E.g., π has reward 1 w.p. 0.4 and 0 w.p. 0.6

 π' has reward 0.1

 τ' beats τ w.p. 0.6, but π has a higher expected reward

There exists an MDP and policies π_1 , π_2 , π_3 such that $\pi_1 > \pi_2 > \pi_3 > \pi_1$.

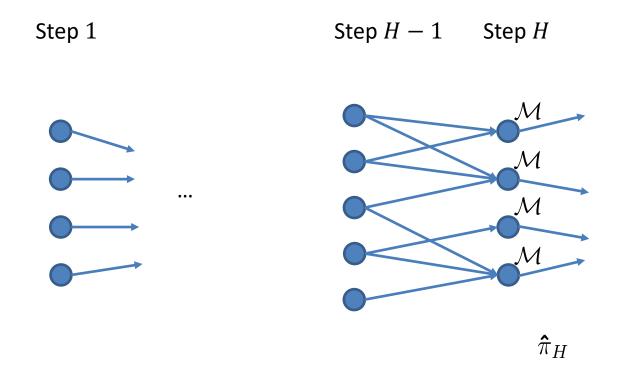
Stochastic comparisons:

Let τ and τ' be two (random) trajectories by executing π and π' from state s, then

$$\Pr[\tau \succ \tau'] \ge C_0(v^{\pi}(s) - v^{\pi'}(s)).$$

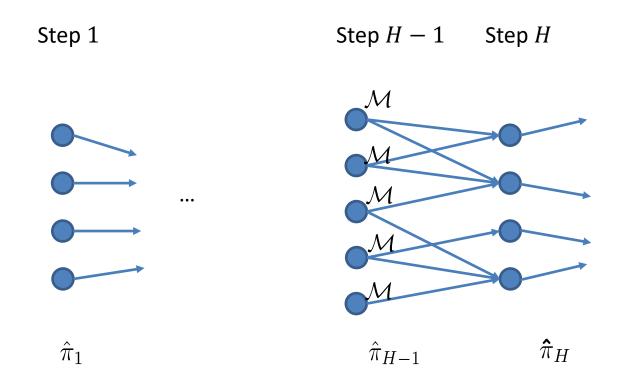
Simulator: can start in any state

Dynamic programming to find best action for each state using a dueling bandit subroutine \mathcal{M} (can't use value function since reward not known)



Simulator: can start in any state

Dynamic programming to find best action for each state using a dueling bandit subroutine \mathcal{M} (can't use value function since reward not known)



Simulator: can start in any state

Dynamic programming to find best action for each state using a dueling bandit subroutine \mathcal{M} (can't use value function since reward not known)

If we run an $(\varepsilon/H, \delta/S)$ optimal dueling bandit algorithm \mathcal{M} on every state s, the algorithm finds an (ε, δ) correct policy using

$$\tilde{O}\left(\frac{H^3SA}{arepsilon^2}\right)$$
 simulator steps and $\tilde{O}\left(\frac{H^2SA}{arepsilon^2}\right)$ comparisons.

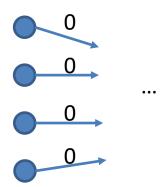
- > Same number of steps and episodes as reward-based RL [Azar et al'13]
- We use OPT-Maximize [Falahatgar et al'17] as \mathcal{M} requires Strong Stochastic Transitivity (SST) of policy preference, implied by

$$\Pr[\tau \succ \tau'] \ge C(r(\tau) - r(\tau'))$$

Dynamic programming to find best action for each state using a dueling bandit subroutine Synthetic reward function +

> reward-free exploration [Du et al'19, Jin et al'20, Misra et al'19]

Step 1



Step
$$H-1$$
 Step H

For each
$$s_h$$
 in S_h
 $r = \int 1$ if reached s_h
0 otherwise

Run any value based tabular RL to optimize r

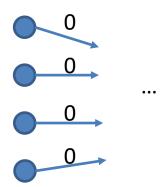
If reach s, generate trajectory & use dueling bandit \mathcal{M} to find best action

We use EULER [Zanette-Brunskill'20] as value based tabular RL algorithm.

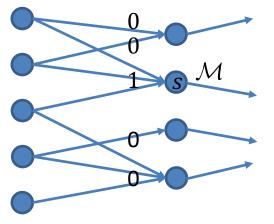
Dynamic programming to find best action for each state using a dueling bandit subroutine Synthetic reward function +

> reward-free exploration [Du et al'19, Jin et al'20, Misra et al'19]

Step 1



Step
$$H-1$$
 Step H



For each
$$s_h$$
 in S_h
 $r = \int 1$ if reached s_h
0 otherwise

Run any value based tabular RL to optimize r

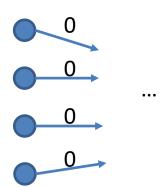
If reach s, generate trajectory & use dueling bandit \mathcal{M} to find best action

We use EULER [Zanette-Brunskill'20] as value based tabular RL algorithm.

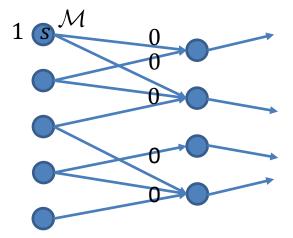
Dynamic programming to find best action for each state using a dueling bandit subroutine Synthetic reward function +

> reward-free exploration [Du et al'19, Jin et al'20, Misra et al'19]

Step 1



Step
$$H-1$$
 Step H



For each
$$s_h$$
 in S_h
 $r = \int 1$ if reached s_h
0 otherwise

Run any value based tabular RL to optimize r

If reach s, generate trajectory & use dueling bandit \mathcal{M} to find best action

➤ We use EULER [Zanette-Brunskill'20] as value based tabular RL algorithm

Sample complexity depends on how we distribute errors over states in ${\mathcal M}$

Uniform error over all states: better comparison complexity

Error on each state	Step complexity	Comparison Complexity
$\tilde{O}\left(rac{arepsilon}{H} ight)$	$\tilde{O}\left(\frac{H^3S^2A}{\varepsilon^3} + \frac{S^4AH^3}{\varepsilon}\right)$	$\tilde{O}\left(\frac{H^2SA}{\varepsilon^2}\right)$

We assume S > H for simplicity

Value based RL:
$$\tilde{O}\left(\frac{H^3SA}{\varepsilon^2}\right)$$
 steps and $\tilde{O}\left(\frac{H^2SA}{\varepsilon^2}\right)$ episodes [Azar et al. 2017]

> Comparisons match number of episodes in reward based RL

Sample complexity depends on how we distribute errors over states in ${\mathcal M}$

- Uniform error over all states: better comparison complexity
- Varied acc to reachability of states: better step complexity

Error on each state	Step complexity	Comparison Complexity	
$\tilde{O}\left(rac{arepsilon}{H} ight)$	$\tilde{O}\left(\frac{H^3S^2A}{\varepsilon^3} + \frac{S^4AH^3}{\varepsilon}\right)$	$\tilde{O}\left(\frac{H^2SA}{\varepsilon^2}\right)$	
unconstrained /	$\tilde{O}\left(\frac{H^2S^2A}{\varepsilon^2} + \frac{S^4AH^3}{\varepsilon}\right)$	$\tilde{O}\left(\frac{HS^2A}{\varepsilon^2}\right)$	
		We assume $S > H$ for simplicity	
Corresponds to error $O\left(\frac{\varepsilon}{\sqrt{\mu(s)SH}}\right)$			

 $\mu(s)$ is the maximum probability to reach s using any policy

Open Questions

- Theory: Comparison complexity bounds
 - can pref RL complexity be independent of horizon H,
 - improved step complexity if non-uniform error over states
 (∝ reachability) but worse comparison complexity
- Adaptive algorithms:

Hybrid reward-preference feedback Limited rounds of interaction

Other forms of feedback:

Comparisons of features

Causal relations, knowledge graphs, demos, instructions, ...

Acknowledgements & References

Yichong Xu

Artur Dubrawski Ruosong Wang Lin F. Yang

Sivaraman Balakrishnan Xi Chen Hariank Muthakana Aparna Joshi Kyle Miller

Preference-based Reinforcement Learning with Finite-Time Guarantees, NeurIPS'20.

Zeroth Order Non-convex optimization with Dueling-Choice Bandits, UAI'20.

Thresholding Bandit Problem with both Duels and Pulls, AISTATS'20.

Interactive Linear Regression with Pairwise Comparisons, Asilomar'18.

Nonparametric Regression with Comparisons: Escaping the Curse of Dimensionality with Ordinal Information, ICML'18, JMLR'20.

Noise-Tolerant Interactive Learning Using Pairwise Comparisons, NIPS 2017.