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The configuration of a string of natural length L at time t is given by a
curve

[0, L] 3 s 7→ r(s, t) ∈ R3.

We always assume that the stretch ν(s, t) = |r s(s, t)| > 0.

The conditions ν > 1 and ν < 1 are interpreted as the string be
elongated and compressed, respectively.
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Perfectly flexible strings (Euler 1771):

Contact force: There exists a function N(s, t), the tension, such
that the resultant force exerted on a segment [a, s] by the segments
[0, a] and [s, L] is n(s, t)− n(a, t) with

n(s, t) = N(s, t)
r s(s, t)

|r s(s, t)|
.

Balance of linear momentum: If ρ(s) is the mass density of the
string and there are no external forces then for all [a, s] ⊆ [0, L]

d

dt

∫ s

a

ρ(σ)r t(σ, t)dσ = n(s, t)− n(a, t).
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Assuming appropriate smoothness we obtain the equations of motion:

ρ(s)r tt(s, t) = ns(s, t), (s, t) ∈ [0, L]× [0,T ],

where as before n(s, t) = N(s, t)r s(s, t)/|r s(s, t)|. To close this system
of three equations in four unknowns, one must specify a relation between
the tension N and stretch ν.

For example, if ν − 1 = 1
EN with E > 0 (a Hookean law), then the

equations of motion are:

ρ(s)r tt(s, t) = E
( |r s(s, t)| − 1

|r s(s, t)|
r s(s, t)

)
s
, (s, t) ∈ [0, L]× [0,T ],
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Classical relations for “elastic” strings:

Extensible: N = N̂(ν) with N̂ ∈ C∞(0,∞), increasing,

N̂(1) = 0, N̂(0+) = −∞, N̂(∞) =∞.

In particular, N̂ has an inverse so ν = ν̂(N).

Inextensible: ν = const. regardless of the motion, and N is
undetermined.
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However, common experience is that a string can be stretched (is
extensible), and after a certain amount of force is applied the stretch of
the string is essentially maximized (with a segment becoming
inextensible).
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Stretch-limited strings (R. 20’):

The stretch is a function of the tension ν = ν̂(N) and there exist
values of tension N0 < 0 < N1 so that

ν − 1 =


1
EN0 if N ≤ N0,
1
EN if N ∈ [N0,N1],
1
EN1 if N ≥ N1.

In particular, we have

N ≤ N0 =⇒ ν = ν0 = 1 +
1

E
N0,

N ≥ N1 =⇒ ν = ν1 = 1 +
1

E
N1.
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The extensible, inextensible and stretch-limited relations model
“elastic” behvavior in the sense that no mechanical energy is dissipated:

for all motions with continuously differentiable (r t , r s ,N) and for all
[a, b] ⊆ [0, L]

d

dt

∫ b

a

1

2
ρ(s)|r t(s, t)|2ds +

d

dt

∫ b

a

W (ν(s, t),N(s, t))ds

= n(s, t) · r t(s, t)|ba

where the stored energy W (ν,N) =
∫ ν
1
N̂(ν̄)d ν̄ (extensible),

0, (inextensible),

χ[N0≤N≤N1](N)E
2 (ν − 1)2 + χ[N≥N1](N)E

2 (ν1 − 1)2 (stretch-limited).
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Since a stretch-limited string has bounded strain e = ν − 1, one says the
model is strain-limiting.

Other strain-limiting models have found applications in the study of:

electro and magneto-elastic bodies (Bustamante-Rajagopal 13’,15’),

fracture in brittle materials (Bulicek et al. 15’, Gou et al. 15’),

biological fibers (Freed-Rajagopal 16’)

gum metal (Bustamante-Rajagopal 20’)
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One inextensible segment and one extensible segment problem:

Assume

ρ = E = 1,

r(0, t) = 0, n(L, t) = (ζt + τ)i , with ζ ≥ 0 and τ > 0,

the segment parameterized by [0, σ(t)] is inextensible
(N(s, t) > N1) and the segment parameterized by [σ(t), L] is
extensible (0 < N(s, t) < N1), and

σ′(t) > 0

Thus, σ(t) is a moving shock front separating the growing
inextensible segment from the shrinking extensible segment.
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For r(s, t) = χ(s, t)i , the equations of motion and Rankine-Hugoniot
jump conditions are then equivalent to a novel shock-front problem:

for t ∈ [0,T ], s ∈ [0, σ(t)],

χ(s, t) = (1 + N1)s,

N(s, t) = N(σ+, t) + (σ′)2(N1 − N(σ+, t)),

for t ∈ [0,T ], s ∈ [σ(t), L], 0 < χs(s, t)− 1 = N(s, t) < N1,

χtt(s, t) = χss(s, t),

χ(σ+, t) = (1 + N1)σ, χs(L, t) = ζt + τ + 1,

the shock front satisfies σ′ > 1 (Lax condition) and

σ′ =
χt(σ

+, t)

N1 − (χs(σ+, t)− 1)
.
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We say a triple of real-valued functions

(χ0, χ1,N0) ∈ C ([0, L])× L∞([0, L])× L∞([0, L]).

is a set of classical shock front initial data if there exists a unique
σ0 ∈ (0, L) (the initial shock front) such that

(χ0, χ1) ∈ C 2 × C 1([σ0, L]) and N0 ∈ C 1([σ0, L]),

for all s ∈ [σ0, L], N0(s) = χ′0(s)− 1 and

0 < N0(s) < N1,

χ′0(L) = τ + 1, χ′1(L) = ζ, χ0(σ0) = (1 + N1)σ0,

σ1 :=
χ1(σ

+
0 )

N1−(χ′
0(σ

+
0 )−1)

> 1,

for all s ∈ [0, σ0],

χ0(s) = (1 + N1)s,

χ1(s) = 0,

N0(s) = N0(σ+
0 ) + (σ1)2(N1 − N0(σ+

0 )) > N1.
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Since the shock solution is determined by σ(t) and the restriction of χ to
{(s, t) : t ∈ [0,T ], s ∈ [σ, L]}, by using finite speed of propagation
arguments and the fact that the shock speed σ′ > 1 (the speed of
propagation for the wave equation), we obtain the following.

Theorem (R. 21’)

Suppose (χ0, χ1,N0) is a set of classical shock front initial data with
initial shock front σ0 ∈ (0,∞). Then there exist a unique classical shock
solution (χ,N) with (χ, ∂tχ,N)|t=0 = (χ0, χ1,N0), defined on a maximal
time interval [0,T+) of existence with

T+ ≤ T (ζ) =

{
∞ if ζ = 0,
N1−τ
ζ if ζ > 0.

T (ζ) is precisely the time when the tension at the end s = L exceeds the
threshold for inextensibility, N(L,T (ζ)) = N1.
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The simplest solutions are those with piecewise constant stretch:

χs(s, t) =

{
1 + N1 s ∈ [0, σ],

1 + ζt + τ s ∈ [σ, L].

These solutions are parameterized by (σ0, σ1) = (σ, σ′)|t=0: the shock
front is

σ(t;σ0, σ1) = σ0 +
σ1(N1 − τ)

N1 − (ζt + τ)
t,

for all s ∈ [σ, L]

χ(s, t;σ0, σ1) = (1 + N1)σ0 + (1 + ζt + τ)(s − σ0) + σ1(N1 − τ)t,

and

T+ = T (ζ)
(

1 +
σ1T (ζ)

L− σ0

)−1
≤ T (ζ),

with σ(T+;σ0, σ1) = L.
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with σ(T+;σ0, σ1) = L.
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If L <∞ then the shock front hits the end s = L at time T+ < T (ζ),
and continuation of the solution within the purely mechanical problem is
unclear.

If L =∞ then T+ = T (ζ),

σ(t;σ0, σ1)→∞, as t → T (ζ),

and the string becomes fully inextensible at T (ζ). Moreover, if ζ > 0
then for all s ∈ (0,∞)

N(s, t)→∞, as t → T (ζ).

Question: If L =∞, is this two-parameter family stable?
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Theorem (R. 21’)

Assume ζ ≥ 0. Let (σ0, σ1) ∈ (0,∞)× (1,∞). There exist ε0 > 0 and
C > 0 such that for all ε < ε0, the following is true. Suppose (χ0, χ1,N0)
is a set of initial data with initial shock front σ0 such that there exists
r > 0 such that

B := sup
s∈[σ0,∞)

[
|χ′0(s)− τ − 1|+ s r+2|χ′′0 (s)|

+ |χ1(s)− σ1(N1 − τ)|+ s r+2|χ′1(s)|
]
< ε.

Then the unique solution (χ,N) to the equations of motion with initial
data (χ0, χ1,N0) satisfies T+ = T (ζ). Moreover, the state variables
(χs , χt ,N) and shock speed remain close to and asymptotically approach
those of a piece-wise constant stretched motion as t → T (ζ) in a
quantitative way.
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Ingredients of the proof:

A simple continuation criterion based on finite speed of propagation.

A bootstrap argument using D’Alembert’s formula.

The shock speed σ′ determines σ which then determines the size of
χt(σ

+, t) and χs(σ
+, t).

The size of χt(σ
+, t) and χs(σ

+, t) determine the shock speed via
the relation

σ′ =
χt(σ

+, t)

N1 − (χs(σ+, t)− 1)
.

The argument is more delicate when ζ > 0 since one must show that the
stretch grows like ζt + τ + 1 to leading order (otherwise a second
inextensible segment can form).
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Open problems:

include thermodynamics (to study the rebound of the shock front
when L <∞),

well-posedness for contact discontinuities where
N(σ−, t) = N(σ+, t) (necessary when gravity is included i.e.
catenaries)

well-posedness for the full three dimensional motion r(s, t) of a
stretch-limited string,

stability of the piece-wise constant stretched family outside of
longitudinal motion,

extension and investigation of strain-limiting behavior for rods.
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Thank you for your attention.
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