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The configuration of a string of natural length L at time t is given by a
curve

[0,L] > 5+ r(s,t) € R

We always assume that the stretch v(s, t) = |rs(s, t)| > 0.
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The configuration of a string of natural length L at time t is given by a
curve

[0,L] > 5+ r(s,t) € R

We always assume that the stretch v(s, t) = |rs(s, t)| > 0.

The conditions v > 1 and v < 1 are interpreted as the string be
elongated and compressed, respectively.
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Perfectly flexible strings (Euler 1771):
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Perfectly flexible strings (Euler 1771):

m Contact force: There exists a function N(s, t), the tension, such
that the resultant force exerted on a segment [a, s] by the segments
[0,4] and [s, L] is n(s, t) — n(a, t) with

rs(s,t)

n(s,t) = N(s, t)m

Stretch-limited strings 4/22



Perfectly flexible strings (Euler 1771):

m Contact force: There exists a function N(s, t), the tension, such
that the resultant force exerted on a segment [a, s] by the segments
[0,4] and [s, L] is n(s, t) — n(a, t) with

rs(s,t)

n(s,t) = N(s, t)m

m Balance of linear momentum: If p(s) is the mass density of the
string and there are no external forces then for all [a,s] C [0, L]

% /s p(o)ri(o,t)do = n(s,t) — n(a, t).
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Assuming appropriate smoothness we obtain the equations of motion:
p(s)ru(s,t) = ns(s,t), (s,t) €][0,L] x [0, T],

where as before n(s, t) = N(s, t)rs(s,t)/|rs(s,t)|. To close this system
of three equations in four unknowns, one must specify a relation between
the tension N and stretch v.
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Assuming appropriate smoothness we obtain the equations of motion:
p(s)ru(s,t) = ns(s,t), (s,t) €][0,L] x [0, T],

where as before n(s, t) = N(s, t)rs(s,t)/|rs(s,t)|. To close this system
of three equations in four unknowns, one must specify a relation between
the tension N and stretch v.

For example, if v — 1 = £ N with £ > 0 (a Hookean law), then the
equations of motion are:

rs(s, 1) — 1

p(s)ru(s; t) = E( rs(s, )]

r(s.t) . (s.t)efo.L] <o, 7],
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Classical relations for “elastic” strings:
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Classical relations for “elastic” strings:
m Extensible: N = N(v) with N € C°°(0, ), increasing,

A~

N(1)=0, N(OF)=—-oc0, N(c0)=o0.

In particular, N has an inverse so v = D(N).
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Classical relations for “elastic” strings:
m Extensible: N = N(v) with N € C°°(0, ), increasing,

A~

N(1)=0, N(OF)=—-oc0, N(c0)=o0.

In particular, N has an inverse so v = D(N).

m Inextensible: v = const. regardless of the motion, and N is
undetermined.

N
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However, common experience is that a string can be stretched (is
extensible), and after a certain amount of force is applied the stretch of
the string is essentially maximized (with a segment becoming

inextensible).
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However, common experience is that a string can be stretched (is
extensible), and after a certain amount of force is applied the stretch of
the string is essentially maximized (with a segment becoming

inextensible).
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Stretch-limited strings (R. 20"):
m The stretch is a function of the tension v = D(N) and there exist

values of tension Ny < 0 < Np so that

%NO |f N S NO;
v—1= %N ifNE[NO7N1]a
LN, if N> Ny
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Stretch-limited strings (R. 20"):
m The stretch is a function of the tension v = D(N) and there exist

values of tension Ny < 0 < Np so that

%NO |f N S NO;
v—1= %N ifNE[NO7N1]a
LN, if N> Ny

m In particular, we have
1
N< N = V:V0=1+EN0,

1
N>N = V:I/1:1+EN1.
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The extensible, inextensible and stretch-limited relations model
“elastic” behvavior in the sense that no mechanical energy is dissipated:
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The extensible, inextensible and stretch-limited relations model
“elastic” behvavior in the sense that no mechanical energy is dissipated:
for all motions with continuously differentiable (r¢, rs, N) and for all

[a, b] C [0, L]

& [ o o+ & [ Wits, 0. Ms. 1)
a |, 2p(s) r:(s, s+ i v(s, t), N(s, s

=n(s,t) (s, t)3
where the stored energy W(v, N) =

[ N(@)do (extensible),
0, (inextensible),
X[NoéNSNll(N)g(V —1)2+ X[NZNI](N)g(Vl —1)?  (stretch-limited).
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Since a stretch-limited string has bounded strain e = v — 1, one says the
model is strain-limiting.
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Since a stretch-limited string has bounded strain e = v — 1, one says the
model is strain-limiting.

Other strain-limiting models have found applications in the study of:
m electro and magneto-elastic bodies (Bustamante-Rajagopal 13',15'),
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Since a stretch-limited string has bounded strain e = v — 1, one says the
model is strain-limiting.

Other strain-limiting models have found applications in the study of:
m electro and magneto-elastic bodies (Bustamante-Rajagopal 13',15'),

m fracture in brittle materials (Bulicek et al. 15’, Gou et al. 15'),
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Since a stretch-limited string has bounded strain e = v — 1, one says the
model is strain-limiting.

Other strain-limiting models have found applications in the study of:
m electro and magneto-elastic bodies (Bustamante-Rajagopal 13',15'),
m fracture in brittle materials (Bulicek et al. 15’, Gou et al. 15'),

n (Freed-Rajagopal 16")
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Since a stretch-limited string has bounded strain e = v — 1, one says the
model is strain-limiting.

Other strain-limiting models have found applications in the study of:
m electro and magneto-elastic bodies (Bustamante-Rajagopal 13',15'),
m fracture in brittle materials (Bulicek et al. 15’, Gou et al. 15'),
n (Freed-Rajagopal 16")
m gum metal (Bustamante-Rajagopal 20’)
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One inextensible segment and one extensible segment problem:
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One inextensible segment and one extensible segment problem: Assume

mp=E=1,
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One inextensible segment and one extensible segment problem: Assume
mp=E=1,
mr(0,t)=0, n(L,t) = (¢t+ 7)i, with ¢ >0 and 7 > 0,

o
N
N
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One inextensible segment and one extensible segment problem: Assume
mp=E=1,
mr(0,t)=0, n(L,t) = (¢t+ 7)i, with ¢ >0 and 7 > 0,
m the segment parameterized by [0, o(t)] is inextensible
(N(s, t) > Ni) and the segment parameterized by [o(t), L] is
extensible (0 < N(s, t) < M), and

a'(t) >0

Thus, o(t) is a moving shock front separating the growing
inextensible segment from the shrinking extensible segment.
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For r(s,t) = x(s, t)i, the equations of motion and Rankine-Hugoniot
jump conditions are then equivalent to a novel shock-front problem:

m for t € [0, T],s € [0,0(t)],

x(s,t) = (1 + Ny)s,
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For r(s,t) = x(s, t)i, the equations of motion and Rankine-Hugoniot
jump conditions are then equivalent to a novel shock-front problem:

m for t € [0, T],s € [0,0(t)],

x(s,t) = (1 + Ny)s,
N(s,t) = N(ot,t) + (¢/)*(N; — N(o T, 1)),

mfort€[0,T] s€[o(t),L], 0< xs(s,t) —1=N(s, t) < Ny,

Xtt(s7 t) = XSS(57 t)7
X(U+>t) :(1+N1)Ja XS(L7 t):Ct+T+17
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For r(s,t) = x(s, t)i, the equations of motion and Rankine-Hugoniot
jump conditions are then equivalent to a novel shock-front problem:

m for t € [0, T],s € [0,0(t)],

x(s,t) = (1 + Ny)s,
N(s,t) = N(ot,t) + (¢/)*(N; — N(o T, 1)),

mfort€[0,T] s€[o(t),L], 0< xs(s,t) —1=N(s, t) < Ny,

Xtt(s7 t) = XSS(57 t)7
X(U+>t) :(1+N1)Ja XS(L7 t):Ct+T+17

m the shock front satisfies o’ > 1 (Lax condition) and

O_/ _ Xt(a+a t)

SN = (xs(ot ) = 1)
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We say a triple of real-valued functions
(X0, x1, No) € C([0, L]) x L>=([0, L]) x L>([0, L]).

is a set of classical shock front initial data if there exists a unique
oo € (0, L) (the initial shock front) such that

m (xo0,x1) € C? x CY([o0, L]) and N € C*([oo, L]),
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We say a triple of real-valued functions
(X0, x1, No) € C([0, L]) x L>=([0, L]) x L>([0, L]).

is a set of classical shock front initial data if there exists a unique
oo € (0, L) (the initial shock front) such that

] (X07X1) c C? x Cl([O'Q7 L]) and Ny € Cl([O'o7 L]),
m for all s € [og, L], No(s) = x4(s) — 1 and

0< No(S) < Ny,

L X6(L):T+17 X?L(L):Ca XO(O—O):(1+N1)001
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We say a triple of real-valued functions
(X0, x1, No) € C([0, L]) x L>=([0, L]) x L>([0, L]).

is a set of classical shock front initial data if there exists a unique
oo € (0, L) (the initial shock front) such that

] (X07X1) € C? x Cl([O'Q7 L]) and Np € Cl([O'o7 L]),

m for all s € [og, L], No(s) = x4(s) — 1 and

0< No(S) < Ny,
] X6(L):T+17 X?L(L):Ca XO(O—O):(1+N1)O—01

Xl(U(;r) > 1

e T e DY)
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We say a triple of real-valued functions

(X0, x1, No) € C([0, L]) x L>=([0, L]) x L>([0, L]).
is a set of classical shock front initial data if there exists a unique
oo € (0, L) (the initial shock front) such that

] (X07X1) c C? x Cl([O'Q7 L]) and Ny € Cl([O'o7 L]),
m for all s € [og, L], No(s) = x4(s) — 1 and

0< No(S) < Ny,

L X6(L):T+17 X?L(L):Ca XO(O—O):(1+N1)001

xa(og)
M (a(e) D)
m for all s € [0, 0],

m 0] =

xo(s) = (1 + Ny)s,
xi(s) =0,
No(s) = No(ag) + (01)*(N1 — No(og)) > M.
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Since the shock solution is determined by o(t) and the restriction of x to
{(s,t) : t € [0, T],s € [o, L]}, by using finite speed of propagation
arguments and the fact that the shock speed ¢’ > 1 (the speed of
propagation for the wave equation), we obtain the following.
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Since the shock solution is determined by o(t) and the restriction of x to
{(s,t) : t € [0, T],s € [o, L]}, by using finite speed of propagation
arguments and the fact that the shock speed ¢’ > 1 (the speed of
propagation for the wave equation), we obtain the following.

Theorem (R. 21)

Suppose (o, X1, No) is a set of classical shock front initial data with
initial shock front o € (0, 00). Then there exist a unique classical shock
solution (x, N) with (x, 0:x, N)|t=0 = (X0, X1, No), defined on a maximal
time interval [0, T,.) of existence with

_foo if¢=0,
T+<T(C){Nl<_.,- I'f<>0.
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Since the shock solution is determined by o(t) and the restriction of x to
{(s,t) : t € [0, T],s € [o, L]}, by using finite speed of propagation
arguments and the fact that the shock speed ¢’ > 1 (the speed of
propagation for the wave equation), we obtain the following.

Theorem (R. 21)

Suppose (o, X1, No) is a set of classical shock front initial data with
initial shock front o € (0, 00). Then there exist a unique classical shock
solution (x, N) with (x, 0:x, N)|t=0 = (X0, X1, No), defined on a maximal
time interval [0, T,.) of existence with

_foo if¢=0,
T+<T(C){Nl<_.,- I'f<>0.

T(¢) is precisely the time when the tension at the end s = L exceeds the
threshold for inextensibility, N(L, T(¢)) = Nj.
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The simplest solutions are those with piecewise constant stretch:

1+ M s €[0,0],
XS(Svt):
1+(t+7 sel]o, L]
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The simplest solutions are those with piecewise constant stretch:

1+ M s €[0,0],
XS(Svt):
1+(t+7 sel]o, L]

These solutions are parameterized by (09, 01) = (0,0')|t=0: the shock
front is

0’1(/\/1 — T)

t; = —_—
7o) =0t g G

Stretch-limited strings 17 /22



The simplest solutions are those with piecewise constant stretch:

1+ M s €[0,0],
XS(Svt):
1+(t+7 sel]o, L]

These solutions are parameterized by (09, 01) = (0,0')|t=0: the shock
front is

0’1(/\/1 — T)

t; = —_—
7o) =0t g G

for all s € [0, L]

x(s,t;00,01) = (1 + N)oo + (1 + Ct+7)(s — 00) + o1 (N — 7)t,
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The simplest solutions are those with piecewise constant stretch:

1+ M s €[0,0],
XS(Svt):
1+(t+7 sel]o, L]

These solutions are parameterized by (09, 01) = (0,0')|t=0: the shock
front is

0’1(/\/1 — T)

t; = —_—
7o) =0t g G

for all s € [0, L]
x(s,t;00,01) = (L4 Ny)og + (1 + Ct + 7)(s — 00) + o1 (N — 7)t,

and

T =70 (1+ 21 < g,

L—O’o
with o(Ty;09,01) = L.
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If L < oo then the shock front hits the end s = L at time T, < T(¢),
and continuation of the solution within the purely mechanical problem is
unclear.
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If L < oo then the shock front hits the end s = L at time T, < T(¢),
and continuation of the solution within the purely mechanical problem is
unclear.

If L =00 then T, = T((),
o(t;00,01) = 00, ast— T((),

and the string becomes fully inextensible at T(¢). Moreover, if ¢ > 0
then for all s € (0, 00)

N(s,t) = oo, ast— T({).
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If L < oo then the shock front hits the end s = L at time T, < T(¢),
and continuation of the solution within the purely mechanical problem is
unclear.

If L =00 then T, = T((),
o(t;00,01) = 00, ast— T((),

and the string becomes fully inextensible at T(¢). Moreover, if ¢ > 0
then for all s € (0, 00)

N(s,t) = oo, ast— T({).

Question: If L = oo, is this two-parameter family stable?
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Theorem (R. 21)

Assume ¢ > 0. Let (09,01) € (0,00) x (1,00). There exist g > 0 and
C > 0 such that for all € < ¢, the following is true. Suppose (xo, X1, No)
is a set of initial data with initial shock front og such that there exists

r > 0 such that

B := sup [|X6(S) — 7 — 1|+ 5?|xg(s)|

s€[oo,00)

+ xa(s) = o1(My = 7)| + 524 (9)]| <
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Theorem (R. 21)

Assume ¢ > 0. Let (09,01) € (0,00) x (1,00). There exist g > 0 and
C > 0 such that for all € < ¢, the following is true. Suppose (xo, X1, No)
is a set of initial data with initial shock front og such that there exists

r > 0 such that

B := sup )[|X6(S) — 7 — 1|+ 5?|xg(s)|

s€[og,00

+ xa(s) = o1(My = 7)| + 524 (9)]| <

Then the unique solution (x, N) to the equations of motion with initial
data (xo, X1, No) satisfies T, = T((). Moreover, the state variables

(xs, xt, N) and shock speed remain close to and asymptotically approach
those of a piece-wise constant stretched motion as t — T(¢) in a
quantitative way.
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Ingredients of the proof:
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Ingredients of the proof:

m A simple continuation criterion based on finite speed of propagation.
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Ingredients of the proof:
m A simple continuation criterion based on finite speed of propagation.
m A bootstrap argument using D'Alembert’s formula.
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Ingredients of the proof:
m A simple continuation criterion based on finite speed of propagation.

m A bootstrap argument using D'Alembert’s formula.

m The shock speed ¢’ determines o which then determines the size of
Xt(0'+, t) and XS(O-+7 t)'

N
S
N
N

Stretch-limited strings



Ingredients of the proof:
m A simple continuation criterion based on finite speed of propagation.
m A bootstrap argument using D'Alembert’s formula.

m The shock speed ¢’ determines o which then determines the size of
xt(ot,t) and xs(ot, t).

m The size of x:(c",t) and xs(o*, t) determine the shock speed via
the relation

O'I _ Xf(U+7 t)
M = (xs(ot, 1) = 1)
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Ingredients of the proof:
m A simple continuation criterion based on finite speed of propagation.
m A bootstrap argument using D'Alembert’s formula.

m The shock speed ¢’ determines o which then determines the size of
xt(ot,t) and xs(ot, t).

m The size of x:(c",t) and xs(o*, t) determine the shock speed via
the relation

O'I _ Xf(U+7 t)
M = (xs(ot, 1) = 1)

The argument is more delicate when ¢ > 0 since one must show that the
stretch grows like (t + 7 + 1 to leading order (otherwise a second
inextensible segment can form).
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Open problems:

m include thermodynamics (to study the rebound of the shock front
when L < 00),

N
=
N
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Open problems:
m include thermodynamics (to study the rebound of the shock front
when L < 00),
m well-posedness for contact discontinuities where
N(o~,t) = N(o™,t) (necessary when gravity is included i.e.
catenaries)
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Open problems:

m include thermodynamics (to study the rebound of the shock front
when L < 00),

m well-posedness for contact discontinuities where
N(o~,t) = N(o™,t) (necessary when gravity is included i.e.
catenaries)

m well-posedness for the full three dimensional motion r(s, t) of a
stretch-limited string,

N
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Open problems:

m include thermodynamics (to study the rebound of the shock front
when L < 00),

m well-posedness for contact discontinuities where
N(o~,t) = N(o™,t) (necessary when gravity is included i.e.
catenaries)

m well-posedness for the full three dimensional motion r(s, t) of a
stretch-limited string,

m stability of the piece-wise constant stretched family outside of
longitudinal motion,

N
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Open problems:

m include thermodynamics (to study the rebound of the shock front
when L < 00),

m well-posedness for contact discontinuities where
N(o~,t) = N(o™,t) (necessary when gravity is included i.e.
catenaries)

m well-posedness for the full three dimensional motion r(s, t) of a
stretch-limited string,

m stability of the piece-wise constant stretched family outside of
longitudinal motion,

m extension and investigation of strain-limiting behavior for

N
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Thank you for your attention.
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