Simple motion of stretch-limited elastic strings

Casey Rodriguez

December 9, 2021

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

Casev Rodriguez

The **configuration** of a string of natural length L at time t is given by a curve

$$[0, L] \ni s \mapsto \mathbf{r}(s, t) \in \mathbb{R}^3.$$

We always assume that the **stretch** $\nu(s, t) = |\mathbf{r}_s(s, t)| > 0$.

Casey Rodriguez

The **configuration** of a string of natural length L at time t is given by a curve

$$[0, L] \ni s \mapsto \mathbf{r}(s, t) \in \mathbb{R}^3.$$

We always assume that the **stretch** $\nu(s, t) = |\mathbf{r}_s(s, t)| > 0$.

The conditions $\nu > 1$ and $\nu < 1$ are interpreted as the string be **elongated** and **compressed**, respectively.

Casey Rodriguez

Casev Rodriguez

Perfectly flexible strings (Euler 1771):

Casev Rodriguez

Perfectly flexible strings (Euler 1771):

Contact force: There exists a function N(s, t), the tension, such that the resultant force exerted on a segment [a, s] by the segments [0, a] and [s, L] is n(s, t) - n(a, t) with

$$\boldsymbol{n}(s,t) = N(s,t) \frac{\boldsymbol{r}_s(s,t)}{|\boldsymbol{r}_s(s,t)|}$$

Perfectly flexible strings (Euler 1771):

Contact force: There exists a function N(s, t), the tension, such that the resultant force exerted on a segment [a, s] by the segments [0, a] and [s, L] is n(s, t) - n(a, t) with

$$\boldsymbol{n}(s,t) = N(s,t) \frac{\boldsymbol{r}_s(s,t)}{|\boldsymbol{r}_s(s,t)|}.$$

■ Balance of linear momentum: If *ρ*(*s*) is the mass density of the string and there are no external forces then for all [*a*, *s*] ⊆ [0, *L*]

$$\frac{d}{dt}\int_{a}^{s}\rho(\sigma)\boldsymbol{r}_{t}(\sigma,t)d\sigma=\boldsymbol{n}(s,t)-\boldsymbol{n}(a,t).$$

▲ロ▶▲舂▶▲差▶▲差▶ 差 のQの

Casev Rodriguez

Assuming appropriate smoothness we obtain the equations of motion:

$$\rho(s)\mathbf{r}_{tt}(s,t) = \mathbf{n}_s(s,t), \quad (s,t) \in [0,L] \times [0,T],$$

where as before $\mathbf{n}(s,t) = N(s,t)\mathbf{r}_s(s,t)/|\mathbf{r}_s(s,t)|$. To close this system of three equations in four unknowns, one must specify a relation between the **tension** N and **stretch** ν .

Assuming appropriate smoothness we obtain the equations of motion:

$$\rho(s)\boldsymbol{r}_{tt}(s,t) = \boldsymbol{n}_s(s,t), \quad (s,t) \in [0,L] \times [0,T],$$

where as before $\mathbf{n}(s,t) = N(s,t)\mathbf{r}_s(s,t)/|\mathbf{r}_s(s,t)|$. To close this system of three equations in four unknowns, one must specify a relation between the **tension** N and **stretch** ν .

For example, if $\nu - 1 = \frac{1}{E}N$ with E > 0 (a Hookean law), then the equations of motion are:

$$\rho(s)\boldsymbol{r}_{tt}(s,t) = E\Big(\frac{|\boldsymbol{r}_s(s,t)|-1}{|\boldsymbol{r}_s(s,t)|}\boldsymbol{r}_s(s,t)\Big)_s, \quad (s,t) \in [0,L] \times [0,T],$$

Casey Rodriguez

Classical relations for "elastic" strings:

Casev Rodriguez

Classical relations for "elastic" strings:

Extensible: $N = \hat{N}(\nu)$ with $\hat{N} \in C^{\infty}(0,\infty)$, increasing,

$$\hat{N}(1)=0, \quad \hat{N}(0^+)=-\infty, \quad \hat{N}(\infty)=\infty.$$

In particular, \hat{N} has an inverse so $\nu = \hat{\nu}(N)$.

Classical relations for "elastic" strings:

Extensible: $N = \hat{N}(\nu)$ with $\hat{N} \in C^{\infty}(0,\infty)$, increasing,

$$\hat{N}(1)=0, \quad \hat{N}(0^+)=-\infty, \quad \hat{N}(\infty)=\infty.$$

In particular, \hat{N} has an inverse so $\nu = \hat{\nu}(N)$.

Inextensible: ν = const. regardless of the motion, and N is undetermined.

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Casey Rodriguez

However, common experience is that a string can be stretched (is extensible), and after a certain amount of force is applied the stretch of the string is essentially maximized (with a segment becoming inextensible).

However, common experience is that a string can be stretched (is extensible), and after a certain amount of force is applied the stretch of the string is essentially maximized (with a segment becoming inextensible).

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Casev Rodriguez

Stretch-limited strings (R. 20'):

• The stretch is a function of the tension $\nu = \hat{\nu}(N)$ and there exist values of tension $N_0 < 0 < N_1$ so that

$$\nu - 1 = \begin{cases} \frac{1}{E}N_0 & \text{if } N \leq N_0, \\ \frac{1}{E}N & \text{if } N \in [N_0, N_1], \\ \frac{1}{E}N_1 & \text{if } N \geq N_1. \end{cases}$$

Stretch-limited strings (R. 20'):

The stretch is a function of the tension $\nu = \hat{\nu}(N)$ and there exist values of tension $N_0 < 0 < N_1$ so that

$$\nu - 1 = \begin{cases} \frac{1}{E} N_0 & \text{if } N \le N_0, \\ \frac{1}{E} N & \text{if } N \in [N_0, N_1], \\ \frac{1}{E} N_1 & \text{if } N \ge N_1. \end{cases}$$

■ In particular, we have

$$\begin{split} N &\leq N_0 \implies \nu = \nu_0 = 1 + \frac{1}{E}N_0, \\ N &\geq N_1 \implies \nu = \nu_1 = 1 + \frac{1}{E}N_1. \end{split}$$

|▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Casev Rodriguez

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Casev Rodriguez

The **extensible**, **inextensible** and **stretch-limited** relations model "elastic" behvavior in the sense that no mechanical energy is dissipated:

▲□▶▲□▶▲□▶▲□▶ = つくぐ

Casev Rodriguez

The extensible, inextensible and stretch-limited relations model "elastic" behvavior in the sense that no mechanical energy is dissipated: for all motions with continuously differentiable $(\mathbf{r}_t, \mathbf{r}_s, N)$ and for all $[a, b] \subseteq [0, L]$

$$\frac{d}{dt}\int_{a}^{b}\frac{1}{2}\rho(s)|\boldsymbol{r}_{t}(s,t)|^{2}ds + \frac{d}{dt}\int_{a}^{b}W(\nu(s,t),N(s,t))ds$$
$$= \boldsymbol{n}(s,t)\cdot\boldsymbol{r}_{t}(s,t)|_{a}^{b}$$

where the stored energy $W(\nu, N) =$

$$\begin{cases} \int_{1}^{\nu} \hat{N}(\bar{\nu}) d\bar{\nu} & (\text{extensible}), \\ 0, & (\text{inextensible}), \\ \chi_{[N_0 \le N \le N_1]}(N) \frac{E}{2} (\nu - 1)^2 + \chi_{[N \ge N_1]}(N) \frac{E}{2} (\nu_1 - 1)^2 & (\text{stretch-limited}). \end{cases}$$

Casey Rodriguez

Casev Rodriguez

Stretch-limited strings

11 / 22

Other strain-limiting models have found applications in the study of:

electro and magneto-elastic bodies (Bustamante-Rajagopal 13',15'),

Casey Rodriguez

Other strain-limiting models have found applications in the study of:

- electro and magneto-elastic bodies (Bustamante-Rajagopal 13',15'),
- fracture in brittle materials (Bulicek et al. 15', Gou et al. 15'),

Other strain-limiting models have found applications in the study of:

- electro and magneto-elastic bodies (Bustamante-Rajagopal 13',15'),
- fracture in brittle materials (Bulicek et al. 15', Gou et al. 15'),
- biological fibers (Freed-Rajagopal 16')

Other strain-limiting models have found applications in the study of:

- electro and magneto-elastic bodies (Bustamante-Rajagopal 13',15'),
- fracture in brittle materials (Bulicek et al. 15', Gou et al. 15'),
- biological fibers (Freed-Rajagopal 16')
- gum metal (Bustamante-Rajagopal 20')

One inextensible segment and one extensible segment problem:

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

Casev Rodriguez

One inextensible segment and one extensible segment problem: Assume • $\rho = E = 1$,

Casev Rodriguez

One inextensible segment and one extensible segment problem: Assume

•
$$\rho = E = 1$$
,
• $r(0, t) = 0$, $n(L, t) = (\zeta t + \tau)i$, with $\zeta \ge 0$ and $\tau > 0$,

Casev Rodriguez

One inextensible segment and one extensible segment problem: Assume

$$\bullet \ \rho = E = 1,$$

- $\mathbf{r}(0,t) = \mathbf{0}$, $\mathbf{n}(L,t) = (\zeta t + \tau)\mathbf{i}$, with $\zeta \ge 0$ and $\tau > 0$,
- the segment parameterized by $[0, \sigma(t)]$ is **inextensible** $(N(s, t) > N_1)$ and the segment parameterized by $[\sigma(t), L]$ is **extensible** $(0 < N(s, t) < N_1)$, and

$$\sigma'(t) > 0$$

Thus, $\sigma(t)$ is a moving shock front separating the growing inextensible segment from the shrinking extensible segment.

Casev Rodriguez

For $\mathbf{r}(s, t) = \chi(s, t)\mathbf{i}$, the equations of motion and Rankine-Hugoniot jump conditions are then equivalent to a novel shock-front problem:

• for
$$t \in [0, T], s \in [0, \sigma(t)]$$
,

$$\chi(s,t) = (1 + N_1)s,$$

 $N(s,t) = N(\sigma^+,t) + (\sigma')^2(N_1 - N(\sigma^+,t)),$

Casev Rodriguez

For $\mathbf{r}(s, t) = \chi(s, t)\mathbf{i}$, the equations of motion and Rankine-Hugoniot jump conditions are then equivalent to a novel shock-front problem:

• for
$$t \in [0, T], s \in [0, \sigma(t)],$$

 $\chi(s, t) = (1 + N_1)s,$
 $N(s, t) = N(\sigma^+, t) + (\sigma')^2(N_1 - N(\sigma^+, t)),$
• for $t \in [0, T], s \in [\sigma(t), L], 0 < \chi_s(s, t) - 1 = N(s, t) < N_1,$
 $\chi_{tt}(s, t) = \chi_{ss}(s, t),$
 $\chi(\sigma^+, t) = (1 + N_1)\sigma, \quad \chi_s(L, t) = \zeta t + \tau + 1,$

Casey Rodriguez

Stretch-limited strings

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト の Q ()

For $\mathbf{r}(s, t) = \chi(s, t)\mathbf{i}$, the equations of motion and Rankine-Hugoniot jump conditions are then equivalent to a novel shock-front problem:

• for
$$t \in [0, T]$$
, $s \in [0, \sigma(t)]$,
 $\chi(s, t) = (1 + N_1)s$,
 $N(s, t) = N(\sigma^+, t) + (\sigma')^2(N_1 - N(\sigma^+, t))$,
• for $t \in [0, T]$, $s \in [\sigma(t), L]$, $0 < \chi_s(s, t) - 1 = N(s, t) < N_1$,
 $\chi_{tt}(s, t) = \chi_{ss}(s, t)$,
 $\chi(\sigma^+, t) = (1 + N_1)\sigma$, $\chi_s(L, t) = \zeta t + \tau + 1$,

• the shock front satisfies $\sigma' > 1$ (Lax condition) and

$$\sigma' = \frac{\chi_t(\sigma^+, t)}{N_1 - (\chi_s(\sigma^+, t) - 1)}.$$

Casev Rodriguez

Stretch-limited strings

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

$$(\chi_0, \chi_1, N_0) \in C([0, L]) \times L^{\infty}([0, L]) \times L^{\infty}([0, L]).$$

is a set of classical **shock front initial data** if there exists a unique $\sigma_0 \in (0, L)$ (the initial shock front) such that

• $(\chi_0, \chi_1) \in C^2 \times C^1([\sigma_0, L])$ and $N_0 \in C^1([\sigma_0, L])$,

Casev Rodriguez

$$(\chi_0, \chi_1, N_0) \in C([0, L]) \times L^{\infty}([0, L]) \times L^{\infty}([0, L]).$$

is a set of classical **shock front initial data** if there exists a unique $\sigma_0 \in (0, L)$ (the initial shock front) such that

- $(\chi_0, \chi_1) \in C^2 \times C^1([\sigma_0, L])$ and $N_0 \in C^1([\sigma_0, L])$,
- for all $s \in [\sigma_0, L]$, $N_0(s) = \chi_0'(s) 1$ and

 $0 < N_0(s) < N_1,$

• $\chi'_0(L) = \tau + 1$, $\chi'_1(L) = \zeta$, $\chi_0(\sigma_0) = (1 + N_1)\sigma_0$,

$$(\chi_0, \chi_1, N_0) \in C([0, L]) \times L^{\infty}([0, L]) \times L^{\infty}([0, L]).$$

is a set of classical **shock front initial data** if there exists a unique $\sigma_0 \in (0, L)$ (the initial shock front) such that

- $(\chi_0, \chi_1) \in C^2 \times C^1([\sigma_0, L])$ and $N_0 \in C^1([\sigma_0, L])$,
- for all $s \in [\sigma_0, L]$, $N_0(s) = \chi_0'(s) 1$ and

 $0 < N_0(s) < N_1,$

$$\begin{array}{l} \chi_0'(L) = \tau + 1, \quad \chi_1'(L) = \zeta, \quad \chi_0(\sigma_0) = (1 + N_1)\sigma_0, \\ \sigma_1 := \frac{\chi_1(\sigma_0^+)}{N_1 - (\chi_0'(\sigma_0^+) - 1)} > 1, \end{array}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ● のへの

$$(\chi_0, \chi_1, N_0) \in C([0, L]) \times L^{\infty}([0, L]) \times L^{\infty}([0, L]).$$

is a set of classical **shock front initial data** if there exists a unique $\sigma_0 \in (0, L)$ (the initial shock front) such that

- $(\chi_0, \chi_1) \in C^2 \times C^1([\sigma_0, L])$ and $N_0 \in C^1([\sigma_0, L])$,
- for all $s \in [\sigma_0, L]$, $N_0(s) = \chi_0'(s) 1$ and

 $0 < N_0(s) < N_1,$

$$\begin{array}{l} \chi_0'(L) = \tau + 1, \quad \chi_1'(L) = \zeta, \quad \chi_0(\sigma_0) = (1 + N_1)\sigma_0, \\ \sigma_1 := \frac{\chi_1(\sigma_0^+)}{N_1 - (\chi_0'(\sigma_0^+) - 1)} > 1, \\ \bullet \text{ for all } s \in [0, \sigma_0], \end{array}$$

$$\begin{split} \chi_0(s) &= (1+N_1)s, \\ \chi_1(s) &= 0, \\ N_0(s) &= N_0(\sigma_0^+) + (\sigma_1)^2 (N_1 - N_0(\sigma_0^+)) > N_1. \end{split}$$

Since the shock solution is determined by $\sigma(t)$ and the restriction of χ to $\{(s, t) : t \in [0, T], s \in [\sigma, L]\}$, by using finite speed of propagation arguments and the fact that the shock speed $\sigma' > 1$ (the speed of propagation for the wave equation), we obtain the following.

Since the shock solution is determined by $\sigma(t)$ and the restriction of χ to $\{(s, t) : t \in [0, T], s \in [\sigma, L]\}$, by using finite speed of propagation arguments and the fact that the shock speed $\sigma' > 1$ (the speed of propagation for the wave equation), we obtain the following.

Theorem (R. 21')

Suppose (χ_0, χ_1, N_0) is a set of classical shock front initial data with initial shock front $\sigma_0 \in (0, \infty)$. Then there exist a unique classical shock solution (χ, N) with $(\chi, \partial_t \chi, N)|_{t=0} = (\chi_0, \chi_1, N_0)$, defined on a maximal time interval $[0, T_+)$ of existence with

$$T_+ \leq T(\zeta) = \begin{cases} \infty & \text{if } \zeta = 0, \\ rac{N_1 - au}{\zeta} & \text{if } \zeta > 0. \end{cases}$$

Casey Rodriguez

Stretch-limited strings

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ● のへの

Since the shock solution is determined by $\sigma(t)$ and the restriction of χ to $\{(s, t) : t \in [0, T], s \in [\sigma, L]\}$, by using finite speed of propagation arguments and the fact that the shock speed $\sigma' > 1$ (the speed of propagation for the wave equation), we obtain the following.

Theorem (R. 21')

Suppose (χ_0, χ_1, N_0) is a set of classical shock front initial data with initial shock front $\sigma_0 \in (0, \infty)$. Then there exist a unique classical shock solution (χ, N) with $(\chi, \partial_t \chi, N)|_{t=0} = (\chi_0, \chi_1, N_0)$, defined on a maximal time interval $[0, T_+)$ of existence with

$$T_+ \leq T(\zeta) = \begin{cases} \infty & \text{if } \zeta = 0, \\ rac{N_1 - au}{\zeta} & \text{if } \zeta > 0. \end{cases}$$

 $T(\zeta)$ is precisely the time when the tension at the end s = L exceeds the threshold for inextensibility, $N(L, T(\zeta)) = N_1$.

$$\chi_{s}(s,t) = \begin{cases} 1 + N_{1} & s \in [0,\sigma], \\ 1 + \zeta t + \tau & s \in [\sigma, L]. \end{cases}$$

Casev Rodriguez

Stretch-limited strings

17 / 22

$$\chi_{s}(s,t) = \begin{cases} 1 + N_{1} & s \in [0,\sigma], \\ 1 + \zeta t + \tau & s \in [\sigma,L]. \end{cases}$$

These solutions are parameterized by $(\sigma_0, \sigma_1) = (\sigma, \sigma')|_{t=0}$: the shock front is

$$\sigma(t;\sigma_0,\sigma_1) = \sigma_0 + \frac{\sigma_1(N_1-\tau)}{N_1-(\zeta t+\tau)}t,$$

Casev Rodriguez

$$\chi_s(s,t) = \begin{cases} 1 + N_1 & s \in [0,\sigma], \\ 1 + \zeta t + \tau & s \in [\sigma,L]. \end{cases}$$

These solutions are parameterized by $(\sigma_0, \sigma_1) = (\sigma, \sigma')|_{t=0}$: the shock front is

$$\sigma(t;\sigma_0,\sigma_1)=\sigma_0+\frac{\sigma_1(N_1-\tau)}{N_1-(\zeta t+\tau)}t,$$

for all $s \in [\sigma, L]$

$$\chi(\mathbf{s}, \mathbf{t}; \sigma_0, \sigma_1) = (1 + N_1)\sigma_0 + (1 + \zeta \mathbf{t} + \tau)(\mathbf{s} - \sigma_0) + \sigma_1(N_1 - \tau)\mathbf{t},$$

Casey Rodriguez

$$\chi_{s}(s,t) = \begin{cases} 1 + N_{1} & s \in [0,\sigma], \\ 1 + \zeta t + \tau & s \in [\sigma,L]. \end{cases}$$

These solutions are parameterized by $(\sigma_0, \sigma_1) = (\sigma, \sigma')|_{t=0}$: the shock front is

$$\sigma(t;\sigma_0,\sigma_1)=\sigma_0+\frac{\sigma_1(N_1-\tau)}{N_1-(\zeta t+\tau)}t,$$

for all $s \in [\sigma, L]$

$$\chi(s,t;\sigma_0,\sigma_1)=(1+N_1)\sigma_0+(1+\zeta t+\tau)(s-\sigma_0)+\sigma_1(N_1-\tau)t,$$

and

$$T_+ = T(\zeta) \Big(1 + rac{\sigma_1 T(\zeta)}{L - \sigma_0} \Big)^{-1} \leq T(\zeta),$$

with
$$\sigma(T_+; \sigma_0, \sigma_1) = L$$

Casev Rodriguez

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ● のへの

If $L < \infty$ then the shock front hits the end s = L at time $T_+ < T(\zeta)$, and continuation of the solution within the purely mechanical problem is unclear.

▲□▶▲□▶▲□▶▲□▶ = つくぐ

If $L < \infty$ then the shock front hits the end s = L at time $T_+ < T(\zeta)$, and continuation of the solution within the purely mechanical problem is unclear.

If
$$L = \infty$$
 then $T_+ = T(\zeta)$,
 $\sigma(t; \sigma_0, \sigma_1) \to \infty$, as $t \to T(\zeta)$,

and the string becomes **fully inextensible** at $T(\zeta)$. Moreover, if $\zeta > 0$ then for all $s \in (0, \infty)$

$$N(s,t) o \infty$$
, as $t o T(\zeta)$.

Casey Rodriguez

Stretch-limited strings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

If $L < \infty$ then the shock front hits the end s = L at time $T_+ < T(\zeta)$, and continuation of the solution within the purely mechanical problem is unclear.

If
$$L = \infty$$
 then $T_+ = T(\zeta)$,
 $\sigma(t; \sigma_0, \sigma_1) \to \infty$, as $t \to T(\zeta)$,

and the string becomes **fully inextensible** at $T(\zeta)$. Moreover, if $\zeta > 0$ then for all $s \in (0, \infty)$

$$N(s,t) \to \infty$$
, as $t \to T(\zeta)$.

Question: If $L = \infty$, is this two-parameter family stable?

Casev Rodriguez

Stretch-limited strings

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ● のへの

Theorem (R. 21')

Assume $\zeta \geq 0$. Let $(\sigma_0, \sigma_1) \in (0, \infty) \times (1, \infty)$. There exist $\epsilon_0 > 0$ and C > 0 such that for all $\epsilon < \epsilon_0$, the following is true. Suppose (χ_0, χ_1, N_0) is a set of initial data with initial shock front σ_0 such that there exists r > 0 such that

$$\begin{split} B &:= \sup_{s \in [\sigma_0,\infty)} \left[|\chi_0'(s) - \tau - 1| + s^{r+2} |\chi_0''(s)| \right. \\ &+ |\chi_1(s) - \sigma_1(N_1 - \tau)| + s^{r+2} |\chi_1'(s)| \right] < \epsilon. \end{split}$$

Casev Rodriguez

Stretch-limited strings

19 / 22

Theorem (R. 21')

Assume $\zeta \geq 0$. Let $(\sigma_0, \sigma_1) \in (0, \infty) \times (1, \infty)$. There exist $\epsilon_0 > 0$ and C > 0 such that for all $\epsilon < \epsilon_0$, the following is true. Suppose (χ_0, χ_1, N_0) is a set of initial data with initial shock front σ_0 such that there exists r > 0 such that

$$\begin{split} B &:= \sup_{s \in [\sigma_0,\infty)} \left[|\chi_0'(s) - \tau - 1| + s^{r+2} |\chi_0''(s)| \right. \\ &+ |\chi_1(s) - \sigma_1(N_1 - \tau)| + s^{r+2} |\chi_1'(s)| \right] < \epsilon. \end{split}$$

Then the unique solution (χ, N) to the equations of motion with initial data (χ_0, χ_1, N_0) satisfies $T_+ = T(\zeta)$. Moreover, the state variables (χ_s, χ_t, N) and shock speed remain close to and asymptotically approach those of a piece-wise constant stretched motion as $t \to T(\zeta)$ in a quantitative way.

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

Casev Rodriguez

A simple continuation criterion based on finite speed of propagation.

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Casev Rodriguez

- A simple continuation criterion based on finite speed of propagation.
- A bootstrap argument using D'Alembert's formula.

- A simple continuation criterion based on finite speed of propagation.
- A bootstrap argument using D'Alembert's formula.
 - The shock speed σ' determines σ which then determines the size of $\chi_t(\sigma^+, t)$ and $\chi_s(\sigma^+, t)$.

- A simple continuation criterion based on finite speed of propagation.
- A bootstrap argument using D'Alembert's formula.
 - The shock speed σ' determines σ which then determines the size of $\chi_t(\sigma^+, t)$ and $\chi_s(\sigma^+, t)$.
 - The size of $\chi_t(\sigma^+, t)$ and $\chi_s(\sigma^+, t)$ determine the shock speed via the relation

$$\sigma' = \frac{\chi_t(\sigma^+, t)}{N_1 - (\chi_s(\sigma^+, t) - 1)}.$$

Casey Rodriguez

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ● のへの

- A simple continuation criterion based on finite speed of propagation.
- A bootstrap argument using D'Alembert's formula.
 - The shock speed σ' determines σ which then determines the size of $\chi_t(\sigma^+, t)$ and $\chi_s(\sigma^+, t)$.
 - The size of $\chi_t(\sigma^+, t)$ and $\chi_s(\sigma^+, t)$ determine the shock speed via the relation

$$\sigma' = \frac{\chi_t(\sigma^+, t)}{N_1 - (\chi_s(\sigma^+, t) - 1)}.$$

The argument is more delicate when $\zeta > 0$ since one must show that the stretch grows like $\zeta t + \tau + 1$ to leading order (otherwise a second inextensible segment can form).

• include **thermodynamics** (to study the rebound of the shock front when $L < \infty$),

- include **thermodynamics** (to study the rebound of the shock front when $L < \infty$),
- well-posedness for **contact discontinuities** where $N(\sigma^-, t) = N(\sigma^+, t)$ (necessary when gravity is included i.e. catenaries)

- include **thermodynamics** (to study the rebound of the shock front when $L < \infty$),
- well-posedness for **contact discontinuities** where $N(\sigma^-, t) = N(\sigma^+, t)$ (necessary when gravity is included i.e. catenaries)
- well-posedness for the full three dimensional motion r(s, t) of a stretch-limited string,

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ● のへの

- include thermodynamics (to study the rebound of the shock front when L < ∞),</p>
- well-posedness for **contact discontinuities** where $N(\sigma^-, t) = N(\sigma^+, t)$ (necessary when gravity is included i.e. catenaries)
- well-posedness for the full three dimensional motion r(s, t) of a stretch-limited string,
- stability of the piece-wise constant stretched family outside of longitudinal motion,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- include thermodynamics (to study the rebound of the shock front when L < ∞),</p>
- well-posedness for **contact discontinuities** where $N(\sigma^-, t) = N(\sigma^+, t)$ (necessary when gravity is included i.e. catenaries)
- well-posedness for the full three dimensional motion r(s, t) of a stretch-limited string,
- stability of the piece-wise constant stretched family outside of longitudinal motion,
- extension and investigation of strain-limiting behavior for rods.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Thank you for your attention.

Casev Rodriguez