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Introduction

A rogue wave is a space-time localized burst of wave amplitude,
conventionally exceeding the significant wave amplitude1 by a factor
of 2.2.

An asymptotic model for slowly-varying modulations of
small-amplitude water waves is the focusing nonlinear Schrödinger
equation

iqt +
1
2

qxx + |q|2q = 0.

After some normalization, a periodic wavetrain (Stokes wave) is
represented in this model by the exact solution q(x, t) = eit.

In this setting, the most basic model for a rogue
wave is the Peregrine solution

q(x, t) = eit
[

1− 4
1 + 2it

1 + 4x2 + 4t2

]
.

1four times the standard deviation of surface height for ocean waves



Frequent “Mad Dog Waves”
Never turn your back to the ocean. . .

Kaohsiung Harbor, Taiwan Bar Harbor, Maine



Introduction

Using integrability, many generalizations of the Peregrine solution
have been obtained:

Each of them retains the essential property of decaying to the
background Stokes wave as (x, t)→ ∞.
These solutions have typically been found by algebraic methods,
leading to expressions in terms of determinants of arbitrary
dimension — the order of the rogue wave.
At each order, new parameters enter into the determinantal
expressions. Distinguished limits in the parameter space are of
particular interest:

In one limit, the rogue wave of order k resembles a triangular
number of distant isolated copies of the Peregrine solution on the
same background; upon rescaling, the peak locations converge to
points determined by the roots of the Yablonskii-Vorob’ev
polynomials (Yang-Yang, 2021).
In another limit, the peaks all combine at one point, forming a peak
of large amplitude. This is the fundamental rogue wave of order k.



Introduction

In the interest of studying rogue waves with extreme amplitude, one
should:

Consider fundamental rogue waves, as they produce a single
large-amplitude peak for each order k;
Increase the order.

Considering the limit as k→ ∞ is difficult via k× k determinants.
However, thanks to a 2× 2 Riemann-Hilbert representation of these
solutions in which k appears as an explicit parameter (Bilman-M,
2019), an effective large-k analysis has become possible.



Riemann-Hilbert representation

Let Σ◦ denote the circle |λ| = ρ > 1, let G be a 2× 2 matrix with
det(G) = 1 and G∗ = σ2Gσ2, let M ≥ 0 be real, and let (x, t) ∈ R2.

RH Problem

Seek a 2× 2 matrix-valued function P(λ) = P(λ; x, t, G, M) with the following
properties:

Analyticity: P(λ) is analytic for λ ∈ C \ Σ◦, and it takes continuous
boundary values P+/P− on Σ◦ from without/within;

Jump condition: The boundary values on Σ◦ are related by

P+(λ) = P−(λ)e−i(λx+λ2t)σ3 β(λ)Mσ3Gβ(λ)−Mσ3ei(λx+λ2t)σ3 ,

where β(λ) denotes the Blaschke factor

β(λ) :=
λ− i
λ + i

;

Normalization: P(λ)→ I as λ→ ∞.



Rogue waves and more
A dressing argument shows that the function

q(x, t; G, M) := 2i lim
λ→∞

λP12(λ; x, t, G, M)

is a solution of iqt +
1
2 qxx + |q|2q = 0.

A fundamental rogue wave of order k is obtained by
restricting to M = 1

4 +
1
2 k, k ∈ Z≥0. If M = 1

4 , this is
the background Stokes wave q(x, t) = eit.

The same RHP also encodes multi-soliton solutions:
when M = 1

2 k, k ∈ Z≥0, q(x, t; G, M) is a kth order
pole soliton solution with conjugate eigenvalues λ =
±i. If M = 0, this is the trivial solution q(x, t) ≡ 0.

So rogue waves are “half-solitons” and solitons are “half-rogue
waves”. And there are many solutions continuously interpolating in
between.



Common Features: The Near-Field Limit

Because they can be placed within the common analytic framework of
the RHP for P, the solutions q(x, t; G, M) have interesting common
features in the limit M→ ∞, regardless of whether q is a soliton, a
rogue wave, or something in between.

For instance, the following near-field limit exists:

Ψ(X, T; G) = lim
M→∞

M−1q(M−1X, M−2T; G, M).
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It is a solution of the NLS equation in the form
iΨT + 1

2 ΨXX + |Ψ|2Ψ = 0 that is “isomonodromic” in that it satisfies
also ordinary differential equations in the Painlevé-III hierarchy with
respect to X and T separately. See Bilman-Ling-M (2020) for the
rogue-wave case and Bilman-Buckingham (2019) for the soliton case.
The generalization to arbitrary M is given in Bilman-M (2021).



Common Features: The Far-Field Regime
The same isomonodromic solution has recently been derived also in
the semiclassical limit of focusing NLS as well as in boundary-layer
theory for the Maxwell-Bloch system. See Suleimanov (2017), Li-M
(2021), and Buckingham-Jenkins-M (in preparation).

Other features common to all of the solutions as M→ ∞ occur in the
far-field regime. There is a bounded but expanding region of the
(x, t)-plane of size proportional to M on which q(x, t; G, M) exhibits
behavior independent of the “type” of solution:



Common Features: The Far-Field Regime

The expanding region of common far-field behavior consists of two
components: the “channels” C, and the “shelves” S .

The channels and shelves are fixed and bounded domains in the plane
of the rescaled variables

(χ, τ) = (M−1x, M−1t).



Common Features: The Channels in the Far-Field
For (χ, τ) ∈ C, there are two critical points a(χ, τ) < b(χ, τ) of

ϑ(λ; χ, τ) := χλ + τλ2 + i log(β(λ)).

Theorem (Bilman-M 2021, Theorem 1.5)
Let s = ±1 be arbitrary. Then as M→ +∞ through any sequence of values,

q(Mχ, Mτ; Q−s, M) = L
[C]
s (χ, τ; M) + O(M−

3
2 ), (χ, τ) ∈ C, where

L
[C]
s (χ, τ; M) := sM−

1
2

[
F[C]

a (χ, τ)eiΘ[C]
a (χ,τ;M) + F[C]

b (χ, τ)eiΘ[C]
b (χ,τ;M)

]
,

Θ[C]
a (χ, τ; M) := MΦ[C]

a (χ, τ)− ln(M)
ln(2)

2π
+ η

[C]
a (χ, τ)

Θ[C]
b (χ, τ; M) = MΦ[C]

b (χ, τ) + ln(M)
ln(2)

2π
+ η

[C]
b (χ, τ),

and where the error term is uniform for (χ, τ) in any compact subset of C.

For the soliton case M ∈ 1
2 Z, see Bilman-Buckingham-Wang (2021).



Common Features: The Shelves in the Far-Field

Theorem (Bilman-M 2021, Theorem 1.8)
Let s = ±1 be arbitrary. Then as M→ +∞ through any sequence of values,

q(Mχ, Mτ; Q−s; M) = L
[S ]
s (χ, τ; M) +S

[S ]
s (χ, τ; M) + O(M−1)

holds for (χ, τ) ∈ S , where

L
[S ]
s (χ, τ; M) +S

[S ]
s (χ, τ; M) = se−2iφ(χ,τ;M)

[
−iB(χ, τ)

+ M−
1
2

(
m+

a (χ, τ)F[S ]
a (χ, τ)eiφa(χ,τ;M) −m−a (χ, τ)F[S ]

a (χ, τ)e−iφa(χ,τ;M)

+ m+
b (χ, τ)F[S ]

b (χ, τ)eiφb(χ,τ;M) −m−b (χ, τ)F[S ]
b (χ, τ)e−iφb(χ,τ;M)

)]
,

where the error term is uniform for (χ, τ) in any compact subset of S .

The leading term was obtained for the soliton case (M ∈ 1
2 Z) in

Bilman-Buckingham-Wang (2021).



Common Features: The Shelves in the Far-Field

This result is more complicated because for (χ, τ) ∈ S , the phase
ϑ(λ; χ, τ) has to be modified by a genus-zero g-function. The
modification h(λ; χ, τ) has critical points a(χ, τ) < b(χ, τ) and a
branch cut with c.c. endpoints λ0 = A(χ, τ)± iB(χ, τ).

The leading term L
[S ]
s (χ, τ; M) is a modulated plane wave of

amplitude B(χ, τ). The subleading term S
[S ]
s (χ, τ; M) is responsible

for the interference pattern visible on plots:

Corollary (Bilman-M 2021, Corollary 1.10)

Let s = ±1 be arbitrary. Then as M→ +∞ through any sequence of values,

|q(Mχ, Mτ; Q−s, M)|2 = B(χ, τ)2 − 2M−
1
2 B(χ, τ)

×
[
F[S ]

a (χ, τ) sin(φa(χ, τ; M)) + F[S ]
b (χ, τ) sin(φb(χ, τ; M))

]
+O(M−1)

where the error term is uniform for (χ, τ) in compact subsets of S .



Common Features: The Shelves in the Far-Field

We plot with red/blue curves the maxima of the two sine functions in
the correction term, over a common region in S :

RW k = 4 RW k = 8 RW k = 16



Distinctive Features

The exterior of channels C and shelves S is a fixed unbounded domain
in the (χ, τ)-plane we call E . Multiple-pole solitons and rogue waves
behave very differently for (χ, τ) ∈ E when M is large.

The multiple-pole soliton case (M ∈ 1
2 Z≥0) was analyzed in

Bilman-Buckingham (2019) and Bilman-Buckingham-Wang (2021). We
review these results first.



Multiple-Pole Solitons in the Exterior Domain E
The boundary curve `sol ⊂ E

The key exponent in the Riemann-Hilbert problem is

ϑ(λ; χ, τ) := χλ + τλ2 + i log(β(λ)).

When (χ, τ) ∈ E , λ 7→ ϑ(λ; χ, τ) has a complex-conjugate pair of
critical points; letting Γ denote a Schwarz-symmetric contour joining
the critical points and given upwards orientation, the condition

Re
(∫

Γ
iϑ′(λ; χ, τ)dλ

)
= 0

defines a curve `sol emanating from the special point

(χ], τ]) :=
(

9
4 , 3
√

3
8

)
into the first quadrant, along with its reflections in the coordinate axes.



Multiple-Pole Solitons in the Exterior Domain E
Oscillatory and Exponential Decay Regions

For multi-pole solitons, the exterior E in the first quadrant is
subdivided along `sol into

the exponential decay region E and
the oscillatory region O.

The curve `sol behaves asymptotically like χ = ln(τ) + O(1) as
τ → +∞.



Multiple-Pole Solitons in the Exterior Domain E
Exponential Decay and Oscillatory Regions

On the exponential decay region, we have the following:

Theorem (Bilman-Buckingham 2019, Theorem 1)

If (χ, τ) ∈ E ⊂ E , then there exists d > 0 such that

q(Mχ, Mτ; G, M) = O(e−dM), 1
2 Z≥0 3 M→ ∞.

The constant d can be assumed fixed on any compact subset of E.

On the oscillatory region, we have the following:

Theorem (Bilman-Buckingham-Wang 2021, Theorem 4)

If (χ, τ) ∈ O ⊂ E , then for M ∈ 1
2 Z≥0, q(Mχ, Mτ; G, M) is approximated

to order O(M−1) by a modulated elliptic function with wavenumber and
frequency proportional to M and elliptic modulus tending to 1 as
(χ, τ)→ `sol.



Multiple-Pole Solitons in the Exterior Domain E
Exponential Decay and Oscillatory Regions

Comparing |q| (dotted red curves) with its elliptic approximation
(black curves) for M = 2, 4, 8 (multiple-pole soliton of order
k = 4, 8, 16) for a certain choice of G:

[Taken from Figure 6 of Bilman-Buckingham-Wang (2021).]

That’s what happens in the exterior region E when q(x, t; G, M) is a
multiple-pole soliton solution, i.e., if M ∈ 1

2 Z. Next we consider what
happens when it is a fundamental rogue wave solution, i.e., if
M ∈ 1

2 Z + 1
4 .



Fundamental Rogue Waves in the Exterior Domain E
The septic polynomial P(u; χ, τ)

If (χ, τ) ∈ E ∪ S , there is a unique real root u = u(χ, τ) of odd
multiplicity of the septic equation P(u; χ, τ) = 0, where

P(u; χ, τ) := 81u7 − 189χu6 + (162χ2 + 72τ2)u5 − (66χ2 + 120τ2)χu4

+ (13χ4 + 56χ2τ2 + 16τ4 + 432τ2)u3

− (χ4 + 8χ2τ2 + 16τ4 + 432τ2)χu2

+ 144χ2τ2u− 16χ3τ2.

Then set

v(χ, τ) := 2τ
2u(χ, τ)− χ

3u(χ, τ)− χ

and define λ0(χ, τ) = A(χ, τ) + iB(χ, τ) with B(χ, τ) > 0 by

A(χ, τ) =
u(χ, τ)− χ

2τ

A(χ, τ)2 + B(χ, τ)2 =
3u(χ, τ)2

4τ2 − v(χ, τ)

τ
+ 2− χu(χ, τ)

τ2 +
χ2

4τ2 .



Fundamental Rogue Waves in the Exterior Domain E
Phase γ and fundamental rogue waves

Let R(λ; χ, τ) be a certain square root of (λ− λ0(χ, τ))(λ− λ0(χ, τ)∗)
and define a real phase by

γ(χ, τ) := χA(χ, τ) + τ(A(χ, τ)2 − 1
2 B(χ, τ)2) + 2Re

(
i
∫ i

λ0(χ,τ)

dλ

R(λ; χ, τ)

)
.

For rogue waves it is better to consider ψk(x, t) = e−itq(x, t; G, 1
4 +

1
2 k)

and to choose a specific matrix for G:

G = Q−s, s := (−1)k, Q :=
1√
2

[
1 −1
1 1

]
.

Then, the rogue wave has the most symmetry and concentration
(making it fundamental) and ψk(x, t) tends to the constant background
ψ0(x, t) = 1 as (x, t)→ ∞.



Fundamental Rogue Waves in the Exterior Domain E
Modulated plane-wave asymptotics

In the exterior domain we then have the following result:

Theorem (Bilman-M 2021, Theorem 1.7)

The fundamental rogue wave ψk(x, t) of order k ∈ Z>0 satisfies

ψk(Mχ, Mτ) = B(χ, τ)e−iMτe−2iMγ(χ,τ) + O(k−1), M = 1
2 k + 1

4 ,

where the error term is uniform for (χ, τ) in compact subsets of E .

When τ = 0, the domain E becomes |χ| > 2, and this asymptotic
formula becomes explicit:

ψk(Mχ, Mτ) =

√
1− 4

χ2 + O(k−1), Z>0 3 k→ ∞, |χ| > 2.

More generally, one can show that B(χ, τ)→ 1 and γ(χ, τ) + 1
2 τ → 0

as (χ, τ)→ ∞, so the leading term reproduces the known decay to
ψ0(x, t) = 1 of the exact solution ψk(x, t).



Fundamental Rogue Waves in the Exterior Domain E
Modulated plane-wave asymptotics

The approximating formula B(χ, τ)e−iM(τ+2γ(χ,τ)) is a modulated
plane wave with slowly varying amplitude B(χ, τ), scaled
wavenumber −2γχ(χ, τ), and scaled frequency 1 + 2γτ(χ, τ). One can
check directly that the following holds:

Corollary (Bilman-M 2021, Corollary 1.13)

For (χ, τ) ∈ E , the expressions

ρ(χ, τ) = B(χ, τ)2 and U(χ, τ) = −2γχ(χ, τ)

satisfy the dispersionless NLS (hydrodynamic) system

ρτ + (ρU)χ = 0 and Uτ + ( 1
2 U2 − ρ)χ = 0.

The proof relies on an identity: γχ(χ, τ) = A(χ, τ) = Re(λ0(χ, τ)).



Fundamental Rogue Waves in the Exterior Domain E
Modulated plane-wave asymptotics

This extends to the exterior domain E a result valid for the whole
family of solutions (continuous M) on the shelves S . Indeed, the
leading term of ψk(Mχ, Mτ) on S is the same modulated plane-wave as
on E , modified by a M-independent phase factor e−2iµ(χ,τ) vanishing
on the common boundary curve. However the interesting sub-leading
term responsible for the interference pattern of waves visible on S is
not present on E .

Left: Modulus |ψ32(Mχ, Mτ)|. Right: Leading-order amplitude B(χ, τ).



Summary: Solitons and Rogue Waves on E
When M = 1

2 k for k ∈ Z≥0, q(x, t; G, M) is a kth-order
pole soliton solution that satisfies zero boundary condi-
tions q → 0 in x. Its behavior on the exterior domain E
splits into two cases relative to the curve `sol and its axis
reflections:

On the sub-domain E ⊂ E , q decays exponentially,
consistent with the zero boundary conditions.
On the sub-domain O ⊂ E , q behaves like a
modulated elliptic function, consistent with the
slowly-diverging trajectories of the k soliton
components propagating with common zero
velocity.

When M = 1
4 + 1

2 k for k ∈ Z≥0, the function ψk(x, t) =

e−itq(x, t; Q(−1)k+1
, M) is the kth-order fundamental rogue

wave solution that satisfies nonzero boundary conditions
ψk → 1 in x. It behaves the same on the whole exterior
domain E , like a modulated plane-wave.



Other Solutions on the Exterior Domain E
Boundary conditions

In general, we may write the “continuous order” M in modular form
with quotient k and remainder r as

M = 1
2 k + r, k ∈ Z≥0, 0 ≤ r < 1

2 .

Then the soliton case is r = 0 and the rogue wave case is r = 1
4 . If

r 6= 0, 1
4 , then one might think that the boundary conditions at x = ∞

are somewhere “in between.” Maybe |q| → c ∈ (0, 1) as |x| → ∞? In
fact, no:

Theorem (Bilman-M, 2021 (in preparation))

Suppose that M = 1
2 k + r with k ∈ Z≥0 and 0 ≤ r < 1

2 . If r 6= 0, then

q(x, 0; Q(−1)k+1
, 1

2 k + r) = 1 + O(|x|− 1
2 ), |x| → ∞.

The error term is sharp unless r = 1
4 (rogue-wave case), in which case it

becomes O(x−2).



Other Solutions on the Exterior Domain E
Large-k behavior

So, except for the soliton case of M ∈ 1
2 Z, the initial condition satisfies

unit amplitude nonzero boundary conditions. In the rogue-wave case
the decay to the background is fast enough for scattering theory
(L1(R)), but in general the decay is so slow that the difference does not
even lie in L2(R).
Now the question arises: suppose that r 6= 0, 1

4 is fixed and k ∈ Z≥0
tends to infinity. How might we expect the asymptotic behavior in the
exterior domain E to vary with r in this limit?
Just as the large-x behavior is insensitive to r 6= 0, 1

4 , so is the large-k
behavior. To describe it, the curve `sol takes a secondary role compared
to another unbounded curve emanating from (χ], τ]) denoted by `trig
and defined by the condition

u(χ, τ)2 − 8τv(χ, τ) = 0.

This unbounded curve is asymptotic to the line χ =
√

8τ for large τ; it
is another branch of the analytic curve separating S from E .



Other Solutions on the Exterior Domain E
Large-k behavior

For r 6= 0, 1
4 , the exterior domain E is divided along `sol and `trig into

the plane-wave region P, and
two oscillatory regions O1 and O2.

When (χ, τ) ∈ P, the solution has the same asymptotic behavior as in
the case r = 1

4 (rogue-wave case), and when (χ, τ) ∈ O1, the solution
has the same asymptotic behavior as in the case r = 0 (soliton case).



Other Solutions on the Exterior Domain E
Large-k behavior

On the remaining domain O2, the asymptotic behavior for large k is
not like either the rogue-wave or soliton cases. It is governed by a
leading-order approximation by a modulated elliptic function, with
elliptic modulus varying from m = 0 on `trig to m = 1 on `sol.

Since `sol bends toward the vertical as τ → ∞ and `trig approaches the
asymptote χ =

√
8τ, when (χ, τ) are large, the large-M asymptotic of the

solution is consistent with the universal long-time asymptotic obtained by
Biondini-Mantzavinos (2017) for solutions of the focusing NLS equation
with nonzero boundary conditions. However, the solutions do not satisfy
the full hypotheses of that result, which points toward a broader
universality.
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Thanks for listening! Questions?



Why?
When (χ, τ) ∈ E , we should deform the original circular jump contour
Σ◦ into a “dumbbell” shape consisting of a “neck” N oriented upwards
and connecting two loops around λ = ±i. When M = 1

2 k + r and
G = Q−s with s = ±1 arbitrary, the jump of
P(λ) = P(λ; Mχ, Mτ, G, M) on the neck reads

P+(λ) = P−(λ)e−iMϑ−(λ;χ,τ)σ3ZeiMϑ+(λ;χ,τ)σ3 , λ ∈ N,

with “core” jump matrix

Z :=
[
(−1)k cos(2πr) s(−1)ki sin(2πr)

s(−1)ki sin(2πr) (−1)k cos(2πr)

]
.

The phase ϑ(λ; χ, τ) and its possible g-function modifications have
nothing to do with r. But, the available algebraic factorizations of Z
depend on which pivots are nonzero, and here one sees the key
difference between r = 0 (Z diagonal), r = 1

4 (Z off-diagonal) and
r 6= 0, 1

4 (Z a full matrix).


