Some Recent Results On Wave Turbulence: Derivation, Analysis, Numerics and Physical Application

Minh-Binh Tran

SMU

ICERM 10/22/2021
OUTLINE OF THE TALK

1. Brief introduction to wave turbulence
 - Wave Turbulence: The Physical History
 - Wave Turbulence: The Modern Mathematical Context

2. Rigorous derivation of the wave kinetic equations

3. Analysis of wave kinetic equations

4. Numerics of wave kinetic equations

5. Physical application: Bose-Einstein Condensates
BRIEF INTRODUCTION TO WAVE TURBULENCE
Wave Turbulence: The Physical History
Physical Literature

- Wave Turbulence is a non-equilibrium statistical system of many randomly interacting waves. Kinetic equations of Wave Turbulence describe evolution of the wave energy in Fourier space.
- Origin in the works of Peierls (1933) and Hasselmann (1962)
- Modern point of view Benney-Saffman-Newell (1966), Zakharov (1966)
- Recent developments Newell, Zakharov, L'vov, Nazarenko, Pomeau, Spohn,...
- Vast range of application:
 - inertial waves due to rotation
 - Alfvén wave turbulence in the solar wind
 - waves in plasmas of fusion devices
 - quantum physics: quantum Boltzmann equations are very similar with wave kinetic equations (Pomeau’s work for BECs)
 - and many others.
Wave Turbulence: The Modern Mathematical Context
We consider the KdV (KP) equation in d-dimension

\[
\partial_t \phi(x, t) = -\Delta \partial_{x_1} \phi(x, t) + \lambda \partial_{x_1} \left(\phi^2(x, t) \right)
\]

\[
\phi(x, 0) = \phi_0(x), \quad x \in \mathbb{T}^d = (\mathbb{R}/2\pi\mathbb{Z})^d.
\]
Energy Cascade Conjecture (Bourgain’s 2000):
Given a solution $\phi(t, x)$ to a dispersive PDE on a compact manifold M, does a migration of energy occur from low frequencies to high frequencies? Take $M = \mathbb{R}^d$ and $\hat{\phi}(t, k)$: the k-th Fourier coefficients.

Do we have migration of energy from low to high k?
Two different approaches

Given $\phi(t, x)$: solution of a dispersive equation.

Appr 1 We study

$$\sum_{k} |\hat{\phi}(t, k)|^2 \langle k \rangle^{2s} = \|\hat{u}(t)\|^{2s}_{H^s}, \quad \lim_{t \to \infty} \|\hat{u}(t)\|^{2s}_{H^s}$$

- **PDE Approach:** Bourgain, Kuksin, Staffilani, Sohinger, Hani, Deng-Germain, Colliander-Keel-Staffilani-Takaoka-Tao, Carles-Fau, Staffilani-Wilson, ...
- **Computational Approach:** Pan,...
- **Dynamical System Approach:** Haus-Procesi, Berti-Maspero, Hani...

Appr 2 Set $a_k = \hat{\phi}(t, k)$ and $|a_k(t)|^2 \to n(\tau, k)$. We arrive at a wave-kinetic equation

$$\partial_\tau n(\tau, k) = Q[n(\tau, k)]$$

in which Q is a non-local operator of kinetic type.
From Dispersive Equations to Kinetic Equations
Two different approaches: Second Approach

Dispersive Equation $\phi(t, x) \rightarrow$ Kinetic equation $(n(t, k) = |\hat{\phi}(t, k)|^2)$.

$$\partial_t \phi(x, t) = -\Delta \partial_{x_1} \phi(x, t) + \lambda \partial_{x_1} \left(\phi^2(x, t)\right)$$

$|\hat{\phi}(t, k)|^2 \rightarrow n(\tau, k)$,

$$\partial_\tau n(\tau, k) = Q[n(\tau, k)],$$

$$Q(n)(k_1) = \int \int dk_2 dk_3 |\mathcal{V}(k_1, k_2, k_3)|^2 \delta(\omega(k_3) + \omega(k_2) - \omega(k_1))$$

$$\times \delta(k_2 + k_3 - k_1) \left(n_2 n_3 - n_1 n_2 \text{sign}(k_1^1) \text{sign}(k_3^1) - n_1 n_3 \text{sign}(k_1^1) \text{sign}(k_2^1) \right)$$

$$- 2 \int \int dk_2 dk_3 |\mathcal{V}(k_1, k_2, k_3)|^2 \delta(\omega(k_1) + \omega(k_2) - \omega(k_3))$$

$$\times \delta(k_1 + k_2 - k_3) \left(n_2 n_1 - n_3 n_2 \text{sign}(k_3^1) \text{sign}(k_1^1) - n_3 n_1 \text{sign}(k_3^1) \text{sign}(k_2^1) \right),$$

where $n_1(\tau) = n(\tau, k_1), n_2(\tau) = n(\tau, k_2), n_3(\tau) = n(\tau, k_3).$

- $\omega = \Delta \partial_{x_1}$
- $\partial_{x_1} \left(\phi^2(x, t)\right)$ quadratic nonlinearity $\rightarrow Q(n)(k_1)$ quadratic collision operator.
Recalling

Given a wave equation whose nonlinear is quadratic, we obtain a 3-wave kinetic equation in the Fourier space.

Given a wave equation whose nonlinear is cubic, we obtain a 4-wave kinetic equation in the Fourier space.
RIGOROUS DERIVATION OF THE WAVE KINETIC EQUATIONS
Homogeneous Problem

Set \(a_k = \hat{u}(t, k) \) and \(|a_k(t)|^2 \rightarrow n(\tau, k) \). Derive the wave-kinetic equation

\[
\partial_\tau n(\tau, k) = Q[n(\tau, k)]
\]

at kinetic limit

\[
t = \tau \lambda^{-2} = \mathcal{O}(\lambda^{-2})
\]

Mathematical Literature: Rigorous Derivations

- **Pioneering work:** Lukkarinen-Spohn (Invent Math 2010): Random Cubic Nonlinear Schrödinger at equilibrium → homogeneous wave kinetic equation at (kinetic limit).

→ To derive the wave kinetic equation, randomizing the equation needs to be done (Spohn-ICM 2010).
Recent results

Random initial data

- Buckmaster-Germain-Hani-Shatah (CPAM 2019, Invent Math 2021) → homogeneous wave kinetic equation at a little below kinetic time. The results triggered the recent whole field of research.

- (2021) Inhomogeneous kinetic equation, a little below kinetic time NLS : Ampatzoglou-Collot-Germain

Stochastic PDEs

- (2021) Homogeneous wave kinetic equation, at kinetic time stochastic KdV: Staffilani-MBT
ANALYSIS OF WAVE KINETIC EQUATIONS
3-wave turbulence kinetic equation

The equation:
\[
\frac{\partial}{\partial t} f(t, k) = C_3W[f](t, k),
\]
\[
f(0, k) = f_0(k)
\]
\[
C_3W[f](k) = \int\int_{\mathbb{R}^{2N}} \left[R_{k,k_1,k_2}[f] - R_{k_1,k,k_2}[f] - R_{k_2,k,k_1}[f] \right] dk_1 dk_2
\]
\[
R_{k,k_1,k_2}[f] := |V_{k,k_1,k_2}|^2 \delta(k - k_1 - k_2) \delta(\omega - \omega_1 - \omega_2) (f_1 f_2 - ff_1 - ff_2)
\]

with the short-hand notation \(f = f(t, k), \omega = \omega(k) \) and \(f_j = f(t, k_j), \omega_j = \omega(k_j) \).

\(\omega(k) \): the dispersion relation of the waves.

In the isotropic (\(\omega = |k|^\alpha, f(t, k) = f(t, |k|) \)) case, we identify \(f(t, k) \) with \(f(t, \omega) \), the isotropic 3-wave kinetic equation takes the form

\[
\frac{\partial}{\partial t} f(t, \omega) = Q[f](t, \omega), \quad \omega \in \mathbb{R}_+,
\]
\[
f(0, \omega) = f_0(\omega),
\]
\[
Q[f](t, \omega) = \int_0^\infty \int_0^\infty \left[R(\omega, \omega_1, \omega_2) - R(\omega_1, \omega, \omega_2) - R(\omega_2, \omega_1, \omega) \right] d\omega_1 d\omega_2,
\]
\[
R(\omega, \omega_1, \omega_2) := \delta(\omega - \omega_1 - \omega_2) [a(\omega_1, \omega_2)f_1 f_2 - a(\omega, \omega_1)ff_1 - a(\omega, \omega_2)ff_2],
\]

where \(a(\omega_1, \omega_2) = (\omega_1 \omega_2)^{\gamma/2} \).
Energy Cascade Theorem for 3-wave (Soffer-MBT (CMP 2020))

- The equation has global weak solutions
- Define the energy of the solution as \(g(t, \omega) = \omega f(t, \omega) \).
- \(g \) can be decomposed into two parts
 \[
 g(t, \omega) = \bar{g}(t, \omega) + \tilde{g}(t) \delta_{\omega=\infty},
 \]
 where \(\bar{g}(t, \omega) \geq 0 \) is the regular part, which is a function, and \(\tilde{g}(t) \delta_{\omega=\infty} \), is the singular part, which is a measure. The function \(\tilde{g}(t) \) is non-negative.
- \(\bar{g}(0, \omega) = g(0, \omega) \) and \(\tilde{g}(0) = 0 \).
- There exists a time \(t_0 \), such that for all time \(t > t_0 \), the function \(\tilde{g}(t) \) is strictly positive.
- Starting from time \(t_0 \), the energy starts to transfer from the regular part \(\bar{g}(t, \omega) \) to the singular part \(\tilde{g}(t) \delta_{\omega=\infty} \), while the total energy of the two regular and singular parts is still conserved. In the limit that \(t \to \infty \), all of the energy will be accumulated to the singular part.
- The cascade rate is bounded by \(O\left(\frac{1}{\sqrt{t}}\right) \) \(\longrightarrow \) Is this optimal?
- Inspired by the result for 4-wave: Escobedo-Velazquez (Memoirs AMS 2015).
Wave kinetic equation

Isotopic 3-wave kinetic equation

\[\partial_t f(t, \omega) = Q[f(t, \omega)] \]

\[Q[f](t, \omega) = \int_0^\omega [a(\omega_1, \omega - \omega_1)f(\omega_1)f(\omega - \omega_1) - a(\omega, \omega_1)f(\omega)f(\omega_1) \]
\[- a(\omega, \omega - \omega_1)f(\omega)f(\omega - \omega_1)]d\omega_1 - 2 \int_0^\infty [a(\omega, \omega_1)f(\omega)f(\omega_1) \]
\[- a(\omega + \omega_1, \omega_1)f(\omega + \omega_1)f(\omega_1) - a(\omega_1 + \omega, \omega)f(\omega)f(\omega_1 + \omega)]d\omega_1 \]

where \(a(\omega_1, \omega_2) = (\omega_1\omega_2)^{\gamma/2} \).

Smoluchowski coagulation equation

\[\partial_t f(t, \omega) = Q[f(t, \omega)] \]

\[Q[f](t, \omega) = \int_0^\omega a(\omega_1, \omega - \omega_1)f(\omega_1)f(\omega - \omega_1)d\omega_1 - 2 \int_0^\infty a(\omega, \omega_1)f(\omega)f(\omega_1)d\omega_1 \]

There is a huge amount of numerical schemes developed for the Smoluchowski coagulation equation \(\rightarrow \) rich resources for wave kinetic equations.
Filbet-Laurencot’s scheme (SIAM Sci. Comp. 2003 for the Smoluchowski coagulation equation)

\[\partial_t f(t, \omega) = \mathbb{Q}[f(t, \omega)] \]

\[\mathbb{Q}[f](t, \omega) = \int_0^\omega a(\omega_1, \omega - \omega_1)f(\omega_1)f(\omega - \omega_1)d\omega_1 - 2\int_0^\infty a(\omega, \omega_1)f(\omega)f(\omega_1)d\omega_1 \]

where \(a \) satisfies \(a(\omega_1, \omega_2) = (\omega_1\omega_2)^{\gamma/2} \).

Test function \(\phi(\omega) = \omega \chi_{[0,c]} \)

\[\int_0^c \int_{c-\omega}^\infty \partial_t f(t, \omega) \omega d\omega d\omega = -2 \int_0^c \int_{c-\omega}^\infty \omega a(\omega, \omega_1)f(\omega_1)f(\omega)d\omega_1 d\omega \]

Taking the derivative

\[\partial_t f(t, c)c = -2\partial_c \int_0^c \int_{c-\omega}^\infty \omega a(\omega, \omega_1)f(\omega_1)f(\omega)d\omega_1 d\omega \]

Truncating

\[\partial_t f(t, c)c = -2\partial_c \int_0^c \int_{c-\omega}^R \omega a(\omega, \omega_1)f(\omega_1)f(\omega)d\omega_1 d\omega \]

After that, apply a Finite Volume Algorithm to solve the truncated problem.

\[\rightarrow \] Adapting this idea to 3-wave kinetic equations
Test 1 Here we choose initial condition

\[g_0(k) = 1.26157 e^{-50(k-1.5)^2} \] (1)

with \(\Delta t = 0.05 \) for \(t \in [0, T] \), \(T = 10000 \) seconds, over a uniform grid, with \(\Delta k = 0.5 \), \(\gamma = 2 \), \(R = 50, 100, 200 \).
Numerical Tests

Figure: Initial Profile
Numerical Tests

Figure: Log of the decay rate
Numerical Tests

Test 2 We consider the initial data given by

\[
g_0(k) = \begin{cases}
1 & k \in [2n\pi, (2n + 1)\pi] \\
0 & k \in ((2n + 1)\pi, 2(n + 1)\pi)
\end{cases}
\]

for \(n = 0, 1, 3, 5, \ldots \) \hspace{2cm} (2)

and perform test for \(t \in [0, T] \) for \(T = 100 \) and \(\Delta t = 0.0004 \), \(R = 50 \). The frequency step is \(\Delta k = 0.1 \) on the interval \([0, R]\).
Numerical Tests

Figure: Initial Profile
Numerical Tests

Figure: Log of the decay rate
Numerical Tests

Test 3 We consider the initial data given by

$$g_0(k) = \frac{k - 2n\pi}{2\pi} \quad k \in [2n\pi, 2(n + 1)\pi),$$

for $n \in \mathbb{N}_0$. We set $\Delta k = 0.1$, $T = 100$ and $\Delta t = 0.0004$, $R = 50$.
Numerical Tests

Figure: Initial Profile
Numerical Tests

Figure: Log of the decay rate
APPLICATIONS IN BOSE-EINSTEIN CONDENSATES: WHAT’S NEW?
A Bose-Einstein condensate is a state of matter in which extremely cold atoms clump together and act as if they were a single atom. This state was first predicted, generally, in 1924-25 by Satyendra Nath Bose and Albert Einstein. On June 5, 1995, the first gaseous condensate was produced by Eric Cornell and Carl Wieman at the University of Colorado at Boulder NIST-JILA lab, in a gas of rubidium atoms cooled to 170 nanokelvins (nK). Shortly thereafter, Wolfgang Ketterle at MIT realized a BEC in a gas of sodium atoms. For their achievements Cornell, Wieman, and Ketterle received the 2001 Nobel Prize in Physics.
Bose-Einstein condensate

Criterion for Bose-Einstein condensation. At high temperatures, a weakly interacting gas can be treated as a system of “billiard balls.” In a simplified quantum description, the atoms can be regarded as wavepackets with an extension λ_{dB}. At the BEC transition temperature, λ_{dB} becomes comparable to the distance between atoms, and a Bose condensate forms. As the temperature approaches zero, the thermal cloud disappears leaving a pure Bose condensate.
Finite Temperature BEC

- \(f(t, r, p)\) density of the non-condensate: Kinetic equation, similar to 3 and 4-wave kinetic equations
- \(\Phi(t, r)\) wave function of the condensate: Gross-Pitaevski equation
C_{12} (3-wave) and C_{22} (4-wave)

Diagram for C_{12}:
- p_2 to p_1
- p_3 to p_1

Diagram for C_{22}:
- p_1 to p_3
- p_2 to p_3
- p_4 to p_3
C_{31}: The missing collision operator (Reichl-Gust’12, MBT-Pomeau’20’21)
C_{31}: The missing collision operator (Reichl-Gust’12, MBT-Pomeau’20’21)

- C_{31}: besides the $2 \leftrightarrow 2$ interaction, there should be another $3 \leftrightarrow 1$ one.
- The new kinetic operator should be

 $$C_{22}[f] + C_{31}[f] + C_{12}[f].$$

- However, the formal derivation of the new collision operator C_{31} is very complicated, since the process generates around 40000 individual terms and one will need to do a combinatorics problem for all of them. Checking C_{31} is a challenging problem. The paper (Reichl-Gust’12) cannot be published.

- MBT-Pomeau (Physical Review E 2020, EPJP 2021): The computations of C_{31} reduce from 40000 to only around 30 terms, providing a full confirmation of C_{31}.
THANK YOU SO MUCH!