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1967



Stokes waves are traveling 1 dimensional, 27-periodic solutions of water waves

It was widely believed in the 60s that Stokes waves are stable solutions

3/36



Benjamin and Feir's experiments to prove the stability of Stokes waves keep
failing
Benjamin: Instability of periodic wavetrains in nonlinear dispersive systems, 1967

¢ ‘Deep-water wave trains were generated at
one end of a long tank and were observed

travelling many wavelengths. It was found
that such a wavetrain may develop conspicuous
irregularities if it travels far enough, even
when departures from periodicity can hardly
be detected near the origin. And eventually,
at great distances from the origin, the train
may become completely disintegrated and its
energy redistributed over a broad spectrum’’

Benjamin-Feir (or moduational) instability

BF heuristic physical mechanism: "with long wave perturbations, Stokes wave becomes
unstable” 4/36



e Many experimental and numerical results, possible mechanism for formation
of rogue waves,

e Rigorous mathematical results for Water Waves:
1. Bridges-Mielke '95 (finite depth), linear instability
2. Nguyen-Strauss 2020 (infinite depth), linear instability
3. Hur-Yang 2020 (finite depth), linear instability (different proof)
4. Chen-Su 2020 (infinite depth), Nonlinear instability

e Many results for dispersive PDEs (NLS, gkdV, Whitham, ...) by
Segur-Henderson-Carter-Hammack, Gallay-Haragus, Haragus-Kapitula,
Bronski-Johnson, Johnson, Hur-Johnson, Bronski-Hur-Johnson, Hur-Pandey,
Leisman-Bronski-Johnson-Marangell, Jin-Liao-Lin

“Take home theorem”: Berti, M., Ventura 2021
Complete description of the spectrum near zero of the linearized water waves
at small amplitude Stokes waves acting on long wave periodic perturbations
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Mathematics of Benjamin-Feir
instability



Water Waves: Euler equations for an incompressible, irrotational fluid in deep water

Dy (t) = {y < n(t,x)} under gravity.

Equation of motions for i = (‘;) iny < n(t,x)
O+ - Vii= —VP — ge,
divi =0

rotd =0

Boundary conditions:
ne=v—unx aty=mn(tx)

P =Py at y = n(t, x)
v=0 at y — —oo
g = gravity,

P = pressure of fluid, Py = atmospheric pressure,

Unknowns: free surface y = n(t, x) velocity field @(t, x, y)
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e For irrotational fluids 7 is the gradient of a velocity potential

a(t,x,y) = Vo, d(t, x, y) velocity potential

e Define

U(t,x) = d(t,x,n(t,x)) trace of potential at the border
® solves elliptic problem with Dirichlet-Neumann bc

—A® =0 iny<n(tx)
b =1 at y = n(t, x)
O —+0 y— —o0

e Zakharov's key observation:

a(t, x,y) is completely determined by n(t, x) and (¢, x) (data at the surface)

Reformulate the equations in terms of (n,1): e.g.

Ne=v—un ~ ne=(dy — 77><‘:I)><)|y:n(1f,><) =G(n)y
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Zakharov formulation of WW

ne = G(n)y . .
Vi | (mxpx + G(n)y)

Dirichlet-Neumann operator: G(n)(x) := /1 4+ 12 0a®|,—p(x) = (Py — 1xPx)ly=r(x)

WW is an infinite dimensional Hamiltonian system with n(x) and v(x) as canonical Darboux

n\ _ ,( VaHm¥) (0 M
#(0)= ) o= 9)

Hamiltonian expressed in terms of (7, )

coordinates

He) = 5 [ 00 Gy dx+ 5 [ ot e

2 (6 x )
den=G(n)d = V4 H(n, ), @¢:_Qr_ﬂz+ﬁlﬂfiﬁjﬂL

__ol?
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Reversibility

The equations are invariant under space translations

Space invariance

Homg=H, (rou)(x):=u(x+0)
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Stokes wave solutions

Periodic traveling waves solution of WW

n(t,x) = ¥i(x — ct),

(t,x) = Px — ct)

2m-periodic profiles #(x), ¥(x), speed c € R

In a reference frame in translational motion with constant speed ¢, the WW equations are

= cnx + G(n)y

P P w£+ !
= cx — = L& R —
‘ 1% T+ m)

n

=

(G(HW + nxwx)z

Stokes waves = equilibrium steady solutions
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Theorem (Stokes, Levi-Civita, Struik, Nekrasov ....)

There exist ¢g > 0 and analytic solutions (n¢(x),ve(x), c.), parameterized by
the amplitude |e| < ey with

o 1(x), Ye(x) 2m periodic in x
e 1c(x) even, P(x) is odd
e expand as

ne(x) = € cos(x) + %cos(Qx) +0(&)

Pe(x) = esin(x) + % sin(2x) + O(e%),

1
=1+ 5e2+o(e3).

Extension:

e Periodic 2D traveling waves:

- vorticity: Dubreil-Jacotin '34, Goyon '58, Zeidler '73, Wahlen '09, Martin '13

- large amplitude: Krasovskii '71, Keady-Norbury '78, Toland '78, McLeod '97,
Constantin-Strauss '04 , Constantin -Strauss -Varvaruca '18

e 2D quasi-periodic traveling waves: Berti-Franzoi-M. '20, Berti-Franzoi-M. '21, Feola-Giuliani
'20
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Main question: are Stokes waves stable/unstable?

= cnx + G(n)

& 1
Yr = CPx — gn*%er

n

=

(G(W)w + nxwX)2

Linearized water waves equations in moving frame at Stokes waves
h: = Lch
L. = linear autonomous operator with 27-periodic coefficients

Unstable “long wave” solutions

Look for solutions
h(t,x) = Re(e e v(x)), uneR,

where v(x) is 2m-periodic, p is Floquet exponent, and A has positive real part.

Bloch-Floquet theory

Analyze the spectrum of
5%5 o eflux o »Cg o el/l,x

acting on 27-periodic functions, for 0 < p <
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Previous results for water waves in deep water

e Numerical: Deconinck-Oliveras 2011:
Fix € > 0, then (L) is numerically computed as p changes: “figure 8"

1.0

0.5

==

-0.5

-1.0
—0.03-0.02-001 0 0.01 0.02 0.03

e Analytic: Nguyen-Strauss 2020:
There exists ¢y > 0 such that for all 0 < e < ¢, there exists 1o = po(€) > 0 such
that for all 0 < || < o, £, has 2 eigenvalues of the form

b g L 2 2 -
M, €) = ﬁluim/wo(u )+ O(pe?)  ifpn>0
T5in T 5sme+O(p?) + O(ue?)  ifp<0
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Main result




Theorem (Berti - M. - Ventura, 2021)

There exist €g, j10 > 0 such that, V(i €) € [0,€) x [0, uo), the operator L,
has 4 eigenvalues close to 0 and

e 2 eigenvalues \f(u, €) have the form

§M+UW¥JEaﬁ)i%J&%1+m@uD—u%1+%kwm,0§u<g@
Lip(e) +ir(e%), w= p(e),
%iu +ir(ue?, ple, p3) £ i \/,u,2(1 + rg (e, 1)) — 8€2(1 + ro(e, ) , oo > pu(e)

where p(e) = 2v/2¢(1 + r(e)). The function

86¢2(1+ ro(e, ) — p? (1 + rg(e, 1)) > 0, respectively < 0, for 0 < pu < p(e),
respectively 1 > pi(e).

e 2 eigenvalues are purely imaginary

Notation: |r(e™p™, ™ p™)| < CZJ?ZI le|™i|u|™ real analytic function
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Curves of \*(u,¢) € C at fixed ¢, as y varies

Al (1> p(e)s €)
AL ((€),€) = A (u(e), €)
N AT (> (o))
sipE §/8e2 —p2,  0< < ple)
AE(p,€) & < Lip(e), = pe),

%iu:l:i%\/;ﬂ —8e2, > pu(e)

AL (ps€) A (py€)

AE(0,6)=0

e For 0 < pu < p(e), A*(u, €) have opposite non-zero real part
o As pu— p(e), the AX(p, €) collide on iR far from 0,
e For 11> p(e) the A*(u, €) are purely imaginary
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1. Our theorem describes ALL the eigenvalues close to 0.3
0, for (i, €) small 0 Eg
2. Complete accordance with numerical simulations by 05

Deconinck-Oliveras, '11

-1.0
—0.03-0.02-001 0 001 002 0.03

3. Nguyen-Strauss [CPAM, 22] describes the unstable eigenvalues |u1| < €, namely the cross
amid the “8". We extend these local branches to global ones

4. The eigenvalues A= (y, €) are not analytic in (u, €) close to (12(€), €). In previous approaches
the eigenvalues are a-priori supposed to be analytic in (i, €). The AT (1, €) are eigenvalues of a
2 X 2 matrix analytic in (u, €).

5. “Figure 8" is found numerically in many other models: we believe our method extends to
these cases

R

Whitham (Deconinck SG (Deconinck
Trichtchenko) Trichtchenko)

gKdV NLS
(Haragus-Kapitula) (Haragus-Kapitula)
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Ideas of the proof




Difficulties:

e bifurcation problem from the defective eigenvalue 0

e the eigenvalues are not analytic “at the top of the 8"

Main ingredients:

1. Symplectic version of Kato's similarity transformation theory
2. exploit Hamiltonian and reversibility structure

3. "KAM inspired” block diagonalization procedure
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Preparation
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Linearization at the Stokes waves

1. Linearize the WW equations at the Stokes wave
2. Apply two changes of coordinates:

e linear good unknown of Alinhac

e Levi-Civita transformation

We get the system h; = L.h

0 Id 1+ ac(x) —(1 4 pe)(x)0x
—Id 0] [dxo (14 pe(x)) |D|

=7 =138

L. Hamiltonian: L=

L. reversible: Lcop=—pol,,
where

Pe(x) = —2ecos(x) + ez(g —2cos(2x)) + O(€?)

ac(x) = —2ecos(x) + €2(2 — 2cos(2x)) + O(e?)
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Bloch-Floquet expansion

Use Bloch-Floquet theory to study its spectrum

oe@(l)= | onmLued), Luc=e "L e
Ne[f%)%)
where £,, . acts on L?(T,C?)
o A, =

o o(Ay) :TA/L):> nw>0
e 0(A,) is 1-periodic = p € [7%7 %)

= We restrict to study o(L,,.) for u € [0, 3)

If X is an eigenvalue of £, . with eigenvector v(x), then

h(t,x) = e*el**v(x) solves hy = L.h
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The Floquet operator associated to L. is the complex Hamiltonian and reversible
operator

0 Id
L=
= [Id 0]

=J = B;L,e

1+ ac(x) —(1 4 pe(x))(0x +ip)
(0x +ip) o (1 + pe(x)) |D + u

domain H(T) := H'(T, C?) and range L?(T) := L*(T,C?)

¢ (Hamiltonian) B, . = B

1€

¢ (Reversibility preserving) B, . commutes with
0] _ [ i)
()| T | =)

Goal: describe the spectrum of £,, . on L2(T) when (i, €) small

- start from the unperturbed spectrum of Lo
- switch on the parameters (u, €)
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The unperturbed spectrum of £y g

_ |0« 1D
EO’O_[—l Ox

o (L) consists of the purely imaginary eigenvalues
AE(0,0) =ik F k), keZ.
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The unperturbed spectrum of £y g

_ |9 1D
EO’O_[—l Ox

o (L) consists of the purely imaginary eigenvalues
AE(0,0) =ik F k), keZ.

e 0 is isolated eigenvalue of Ly o with algebraic multiplicity 4
Ag(0,0) = Ay (0,0) = A\ (0,0) = A",(0,0) =0
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The unperturbed spectrum of £y g

_ |9 1D
EO’O_[—l Ox

o (L) consists of the purely imaginary eigenvalues
AE(0,0) =ik F k), keZ.

e 0 is isolated eigenvalue of Ly o with algebraic multiplicity 4
Ag(0,0) = Ay (0,0) = A\ (0,0) = A",(0,0) =0

e 0 has geometric multiplicity 3. A real basis of Kernel of Ly is

4 |cos(x) _ _ |=sin(x) _ 10
= lsin(x)]  h= lcos(x) 1 ' for:= [1]

together with the generalized eigenvector

1 _
for = [01 ’ Loofy = 1

We want to bifurcate from the defective eigenvalue 0
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Kato’s theory of similarity
transformations

how to prolong analytically a basis of the unperturbed spectral space
to a basis of the perturbed one
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Kato’s theory of similarity transformations: projectors

Define the projectors

1
P,ci= —— — A\
el LT

e well defined, bounded L2 — H!, commuting with £,
e analytic in (p,€)
e V,.:=Rg(P,.) is an invariant subspace

oy & Vne = Upnge

and one has the direct sum decomposition H* = Ve ® Ker(Pye)
o o(Ly)N{zeCinside N} =o(Lyeclv,.)
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Kato’s theory of similarity transformations: projectors

Define the projectors

1
P,ci= —— — A\
e = = e = NN

e well defined, bounded L2 — H!, commuting with £,
e analytic in (p,€)
e V,.:=Rg(P,.) is an invariant subspace

oy & Vne = Upnge

and one has the direct sum decomposition H* =V, . & Ker(P,,..)

o o(Ly)N{zeCinside N} =o(Lyeclv,.)

Goal: Construct a basis of V,, . and represent the action of £, .: V,,c — V..
over this basis as a finite matrix

Q: How to do construct such a basis, in an analytic way?
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Kato’s theory of similarity transformations: transformation operators

Define the transformation operators
-1/2
Upe = (1d = (Puc — P00)?) /2 [PucPoo + (Id — P, )(Id — Py)]

e well defined, bounded H* — H!, invertible, analytic in (i, €)

e conjugate the spectral projectors:
Up,ePooU k= Py, U tPucUpe = Pog
e the subspaces V,, . = Rg(P,,.) are isomorphic one to each other:
Ve = UpeVoyo

Transform the unperturbed basis {f;", f;, ;5. f;7} of Voo via U, .:

Kato basis of V,, ., dimV, . = dim V), o = 4, for any (1, €)

Upefi™ 5 Upefi 3 Unefg™ 5 Unefy -
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In addition, since £, ¢ is Hamiltonian and reversible (9L, c = —L, p):

e The projectors P, . are skew-Hamiltonian, namely
jP/J,,e = P:;’Ej
and reversibility preserving, i.e.

PPue = Pu.cp

e The transformation operators U, . are symplectic, namely

U;‘;’eju,u,,e =J

and reversibility preserving.

= {U/,_Ffli. U,,ffoi} is a symplectic and reversible basis of V), .

A basis F := {£], £, , f5, £5 } of V, c is

o symplecticif  (Tfr,£5) =1, (J£5,£5) =0, (T£7,£7) =0, k£K

o reversible if ptf = £, pf; =—f;, pff =1, pf; = —f,
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Next goal: Represent L, c: Ve = Vye on the basis £7(u,€) = Uy ef7, 0 =+, k=0,1

Lemma

The 4 X 4 matrix that represents the Hamiltonian and reversible operator
Lye = IBu,e : Ve — Ve with respect to the symplectic and reversible basis {f,7 (1, €)} ok

is
Jo 0 0 1
J4Buc, Js = B 5
4B e 4 0 7 2 (_1 0)

where B, c = B}, _ is the matrix (¢ = (i, €))

783

(B 79, £1Q) (B (9),£7Q) (Bt (), f*(o) (B £ (<) f+(<))
(B £7(0) . 67 (9) ( ACH (c) (B 7€) . 67(9) (B< ©)
(B¢ r(o,ﬁ;(o) f1 (©.6©Q) (B Q) f+(<)) (Bcf <<> f*(o)
(B £1(0)  £7(0) A0 6©) (Bh©.5©0) (B ©)

The entries of the matrix By, e are alternatively real or purely imaginary

o Use the expansion of £7(u, €)
1
= Uuysfk‘7 = (ld + €0e P|0,0 + ,uaup|o7o + Me(ae,up|0,0 — EPO’O BGYMP|0,0)) ka + O(M2’ 52)

e at 1 = 0 use also the information on the generalized kernel of Lo . for any e > 0 by
Nguyen-Strauss: (this is not a Taylor expansion)

0 is eigenvalue of Lo . with algebraic multiplicity 4 and geometric multiplicity 2
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Lemma: Matrix expansion

In a symplectically modified basis of V,,  obtained from {U, ef }x—0,1,0—+, the operator

llu,ehj“ye is represented by the Hamiltonian and reversible matrix

L -3 E [F _ JE  JoF
me =4\ px G) = JF* 3G )’
where E = E*, F, G = G™* are the 2 X 2 matrices

:(e2<1+r{(e,#e2>)—*5(1+r{'(e,m) —i(lu +r2(u62,u26,u3))>

2
(34 ra(ue, pe, p®)) — (1 + rs(e, 1))
1+ rg(€3, p2e ue o ) —ip—ing(pe, p?e, 1)
ip 4 irg(pe, p?e, pu3) 4 no(pe, p12)

F o (€ ue pte i) in(pe i)
- g 3 2 3
irg (e, p°) rr(p2e, )

Rk1: because of the Hamiltonian and reversible structure

=i i3 v
E:(_a 15), a,B,yER = JgE(l ,,>
iB 01 —a if

Rk2: Modified basis of V,, . given by (n(yu,€) := W is a real number)
o (K€

g (€)= f (€, g1 (ps€) = (p,€) — n(p, e)fy (p,€),
8 (1€)== (s €) + n(p, ) (mye), &g (1€)== Fy (ms€),
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® The top-left 2 x 2 block of L, ¢ shows the BF phenomenon

1 0 7£(1+r5(e )
JoE =i(=p+ rn(pe?, p2e, 1®))id + 8 ’ .
2B =iGu Al e N | o e )+ £ ) 0

Its eigenvalues are

ip +in(ue®, e, p®) £ %\/862(1 +ro(e, 1) — 2L+ (e, 1)), 0< p < fife),
3ifi(e) +in(e), w=fi(e),
Tip 4 ir(ue®, e, 1) £ik \/uz(l +r5(e, 1)) — 82 (L+ro(e, ), > file) .

e Instead J>G has purely imaginary eigenvalues of size O(\/1)

Idea: Look for a perturbative block-decoupling, cfr. KAM theory

Look for a symplectic and reversibility preserving transformation ¢ s.t.

-1 JE JoF ®— JoEnew 0
JoF*  JG 0 J2Gnew

and JpEpeyn with the same structure as Jo E
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Block-decoupling
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i JE JoF
e\ 3F* 3,6
KAM Heuristic

Decoupling possible if
92l

dst(0(3,E),0(56)) !

e It is a SINGULAR perturbation problem

9(32E) = O(n), a(326) = O(Vp)

e Problem:

r(€3, ue?, e, 13)  —irg(pe, 1)

LF = ( ire (e, 1) rr(uze,pﬁ))

when pu < e = ||J2F|| = O(3)

We would need to impose \% < 1: WRONG! want to keep p, € independent

Next Goal: find a transformation that eliminates —r5(¢?, jic”, 1%, 11?)
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First step of block-decoupling

o When 1 = 0 we have

0 0 0 0
Lo . — (762 +r(®) 0 ‘ r3(€®) 0\
0,6 = \ 0 0 0 0)
r3(e%) 0 ‘ —1+nr() O

We find a symplectic transformation putting it into its Jordan normal form: exploit the
information on the generalized kernel of Lo !

0 0 0 0
(—52 +r() 0 ‘ 0 0\
\ 0 0 0 o)

0 0 ‘ -1+ r5(53) 0
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First step of block-decoupling

o When 1 = 0 we have

0 0 0 0
M. = —& 47l 0 r3(€®) 0
U = \ 0 0 0 0)
r3(e?) 0 —1+4+r(e) 0
We find a symplectic transformation putting it into its : exploit the

information on the generalized kernel of Lo !

0 0 0 0
(762 + rl’(e3) 0 ‘ 0 0\
0
0

\ g ‘ -1 +Or5(s3) 8)

e for . # 0 we continue this transformation to a symplectic and reversibility preserving

transformation ®; such that
Lemma
)

The 4 x 4 Hamiltonian and reversible matrix LLl_ye = ¢;1Lu,5¢1 has structure
(1) J2E(1) JQF(I)
Lie = o) W
Jz(F )* JG
with E&) ~ E, G ~ G and

8 3 2 3
1LFO — irg (e, p2%) r7.(u 67;13) = O(ue, 1) 32/36
—ira(pe, 11°)



Second step of block-decoupling
We have
L _ J,EM) JoF(D)
M€ T Jz(F(l))* J2G(1)

[[92F]| _ Oluer®)
diSt(U(J2E(1)),O'(JQG(I))) o(/r)

is fulfilled uniformly in (p,€)!

e The condition

33/36



Second step of block-decoupling
We have
L _ J,EM) JoF(D)
M€ T Jz(F(l))* J2G(1)

[[92F]| _ Oluer®)
diSt(U(J2E(1)),O'(JQG(I))) o(/r)

is fulfilled uniformly in (p,€)!

e The condition

e We look for an Hamiltonian and reversibility preserving matrix S such that

@ _ 5.1 —s_ [ 1E®  5FO
Lple=e’Lyce = <J2(F(2))* J2G(2)

and E@ ~ E, |32F@ || < [|32FD)|
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Second step of block-decoupling
We have
L _ J,EM) JoF(D)
M€ T Jz(F(l))* J2G(1)

132 FQ)|| -~ O(pe, u3)
dist(c(32EM),0(3,6M)) — O(/n)

is fulfilled uniformly in (p,€)!

e The condition

<1

e We look for an Hamiltonian and reversibility preserving matrix S such that

@ W s _ [ 2E®  2FO
Ly g—e Liee = <J2(F(2))* J2G(2)

and E@) ~ E, [192F@)| < [l32F M)

e Lie expansion: L(2)6 = L# e+ [S, L ] + h.o.t.

_(E® 0 BEW o
_< 0 J,GW t |5 0 J,G()
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Homological equation

Choose S to solve the homological equation

JEQ) 0 0 LFDY
[57( 0 26w TlnEmyr o )T°

0 X L . .
Nk then it is equivalent to the Sylvester equation

Take S = J4 (Z*

HEDX — X3,60 = —3,FD), where X := J,¥
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Homological equation

Choose S to solve the homological equation

JEQ) 0 0 LFDY
[57( 0 56w )| T onEwy o )T

0 X L . .
, then it is equivalent to the Sylvester equation

Take S = J4 (Z*

HEDX — X3,60 = —3,FD), where X := J,¥

Sylvester equation
AX —XB=C
has a solution provided e.g. o(A) C {z: |z| < p} and o(B) C {z: |z| > p}

Here 0(1EM) = O(n), o(326W) = O(/n), so OK!

Rk: differently from KAM theory, to solve the homological equation we DO NOT diagonalize
J2EM and J,GM), which is not even possible when j ~ 21/2¢ since Jordan block appears.

We compute X explicitly and prove it is analytic in (u, €)
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Lemma

The 4 x 4 Hamiltonian and reversible matrix Lﬁ)e = eSL(Hl’)Ee_S has structure

L@ _ JE) JoF(2)
H,€ T J2(F(2))* J2G(2)
with E@) ~ E, G® ~ G and

F@ _ [ ir6(?e, pte, e, uT) (e pte?, ple, u®) \ _ o 00
J2 = 2.3 32 5 7 . 23 a2 5. 7y]=0We)
—r3(pfe’, pie?, e, pf)  —ira(pie’, pte?, pe, ul)

Now the size of JoF(?) is sufficiently small to completely remove the off diagonal terms via a
standard implicit function theorem
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Full block-diagonalization

Lemma

There exists a 4 x 4 reversibility-preserving Hamiltonian matrix Sy such that
LE?,)e = e L(f,)ee*S2 is Hamiltonian, reversible and it has structure

L(3) . J,EG) 0
(s = 0 J2GG3)

_ ( (5t (e, e, 1)) 5+ (e p) )

2
B+ ni(e 1) — AL+ r{(e, ue?)) i(5u + r(ue?, p2e, 1))

1,60 — i (1 + ro(€?, pe, 4?)) o+ rio(p?e, i)
=1l = r8(€2“u2€7ﬂ3) i#(1+r9(€21ll5,#2))

(=

N

gl
<«
|

The eigenvalues of J2EBG) are

i +ir(pe?, p?e, pu®) £ %\/862(1 + ro(e, 1)) — p2 (L + rg(e, 1)) ,0 < o < pa(e)
AE(p,e) = %ig(e) +ir(e3), w=p
i +ir(ue, p?e, pu®) £ i%\/u2(1 + rg(e, 1)) — 82 (1 + ro(e, 1)) 5 1 > p(e) s

The eigenvalues of Jy G®) are purely imaginary

Ay (py€) = Eiya(1+ (€2, pe, 1?)) +ip(1+ ro(€?, pe, p?)) .
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Thanks for your attention!

alberto.maspero@sissa.it
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