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1967



Stokes waves are traveling 1 dimensional, 2π-periodic solutions of water waves

It was widely believed in the 60s that Stokes waves are stable solutions
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Benjamin and Feir’s experiments to prove the stability of Stokes waves keep

failing

Benjamin: Instability of periodic wavetrains in nonlinear dispersive systems, 1967

‘‘Deep-water wave trains were generated at

one end of a long tank and were observed

travelling many wavelengths. It was found

that such a wavetrain may develop conspicuous

irregularities if it travels far enough, even

when departures from periodicity can hardly

be detected near the origin. And eventually,

at great distances from the origin, the train

may become completely disintegrated and its

energy redistributed over a broad spectrum’’

Benjamin-Feir (or moduational) instability

BF heuristic physical mechanism: ”with long wave perturbations, Stokes wave becomes

unstable” 4/36



• Many experimental and numerical results, possible mechanism for formation

of rogue waves,

• Rigorous mathematical results for Water Waves:

1. Bridges-Mielke ’95 (finite depth), linear instability

2. Nguyen-Strauss 2020 (infinite depth), linear instability

3. Hur-Yang 2020 (finite depth), linear instability (different proof)

4. Chen-Su 2020 (infinite depth), Nonlinear instability

• Many results for dispersive PDEs (NLS, gKdV, Whitham, ...) by

Segur-Henderson-Carter-Hammack, Gallay-Haragus, Haragus-Kapitula,

Bronski-Johnson, Johnson, Hur-Johnson, Bronski-Hur-Johnson, Hur-Pandey,

Leisman-Bronski-Johnson-Marangell, Jin-Liao-Lin

“Take home theorem”: Berti, M., Ventura 2021

Complete description of the spectrum near zero of the linearized water waves

at small amplitude Stokes waves acting on long wave periodic perturbations
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Mathematics of Benjamin-Feir

instability



Water Waves: Euler equations for an incompressible, irrotational fluid in deep water

Dη(t) = {y < η(t, x)} under gravity.

Equation of motions for ~u =
(u
v

)
in y < η(t, x)

∂t~u + ~u · ∇~u = −∇P − gey

div~u = 0

rot~u = 0

Boundary conditions:
ηt = v − uηx at y = η(t, x)

P = P0 at y = η(t, x)

v = 0 at y → −∞

g = gravity,

P = pressure of fluid, P0 = atmospheric pressure,

Unknowns: free surface y = η(t, x) velocity field ~u(t, x , y)
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• For irrotational fluids ~u is the gradient of a velocity potential

~u(t, x , y) = ∇Φ, Φ(t, x , y) velocity potential

• Define

ψ(t, x) = Φ(t, x , η(t, x)) trace of potential at the border

Φ solves elliptic problem with Dirichlet-Neumann bc


−∆Φ = 0 in y < η(t, x)

Φ = ψ at y = η(t, x)

∂yΦ→ 0 y → −∞

• Zakharov’s key observation:

~u(t, x , y) is completely determined by η(t, x) and ψ(t, x) (data at the surface)

Reformulate the equations in terms of (η, ψ): e.g.

ηt = v − uηx  ηt = (Φy − ηxΦx )|y=η(t,x) = G(η)ψ
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Zakharov formulation of WW
ηt = G (η)ψ

ψt = −gη − ψ2
x

2
+

(ηxψx + G (η)ψ)2

2(1 + η2
x)

Dirichlet–Neumann operator: G(η)ψ(x) :=
√

1 + η2
x ∂nΦ|y=η(x) = (Φy − ηxΦx )|y=η(x)

WW is an infinite dimensional Hamiltonian system with η(x) and ψ(x) as canonical Darboux

coordinates

∂t

(
η

ψ

)
= J

(
∇ηH(η, ψ)

∇ψH(η, ψ)

)
, J :=

(
0 Id

−Id 0

)

Hamiltonian expressed in terms of (η, ψ)

H(η, ψ) =
1

2

∫
T
ψ(x)G(η)ψ(x) dx +

1

2

∫
T
gη2 dx

∂tη=G(η)ψ= ∇L2

ψ H(η, ψ), ∂tψ=−gη −
ψ2
x

2
+

(
G(η)ψ + ηxψx

)2

2(1 + η2
x )

=−∇L2

η H(η, ψ)
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Symmetries

Reversibility

H ◦ ρ = H, ρ(η(x), ψ(x)) := (η(−x),−ψ(−x))

The equations are invariant under space translations

Space invariance

H ◦ τθ = H , (τθu)(x) := u(x + θ)
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Stokes wave solutions

Periodic traveling waves solution of WW

η(t, x) = η̆(x − ct),

ψ(t, x) = ψ̆(x − ct)

2π-periodic profiles η̆(x), ψ̆(x), speed c ∈ R

In a reference frame in translational motion with constant speed c, the WW equations are


ηt = cηx + G(η)ψ

ψt = cψx − gη −
ψ2
x

2
+

1

2(1 + η2
x )

(
G(η)ψ + ηxψx

)2

Stokes waves = equilibrium steady solutions
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Theorem (Stokes, Levi-Civita, Struik, Nekrasov ....)

There exist ε0 > 0 and analytic solutions (ηε(x), ψε(x), cε), parameterized by

the amplitude |ε| ≤ ε0 with

• ηε(x), ψε(x) 2π periodic in x

• ηε(x) even, ψε(x) is odd

• expand as

ηε(x) = ε cos(x) +
ε2

2
cos(2x) +O(ε3)

ψε(x) = ε sin(x) +
ε2

2
sin(2x) +O(ε3) ,

cε = 1 +
1

2
ε2 +O(ε3) .

Extension:

• Periodic 2D traveling waves:

- vorticity: Dubreil-Jacotin ’34, Goyon ’58, Zeidler ’73, Wahlen ’09, Martin ’13

- large amplitude: Krasovskii ’71, Keady-Norbury ’78, Toland ’78, McLeod ’97,

Constantin-Strauss ’04 , Constantin -Strauss -Varvaruca ’18

• 2D quasi-periodic traveling waves: Berti-Franzoi-M. ’20, Berti-Franzoi-M. ’21, Feola-Giuliani

’20
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Main question: are Stokes waves stable/unstable?


ηt = cηx + G(η)ψ

ψt = cψx − gη − ψ2
x

2
+

1

2(1 + η2
x)

(
G(η)ψ + ηxψx

)2

Linearized water waves equations in moving frame at Stokes waves

ht = Lεh

Lε = linear autonomous operator with 2π-periodic coefficients

Unstable “long wave” solutions

Look for solutions

h(t, x) = Re
(
eλteiµxv(x)

)
, µ ∈ R ,

where v(x) is 2π-periodic, µ is Floquet exponent, and λ has positive real part.

Bloch-Floquet theory

Analyze the spectrum of

Lµ,ε := e−iµx ◦ Lε ◦ eiµx

acting on 2π-periodic functions, for 0 ≤ µ ≤ 1
2
.

λ has positive real part ⇒ h(t, x) grows exponentially in time 12/36



Previous results for water waves in deep water

• Numerical: Deconinck-Oliveras 2011:

Fix ε > 0, then σ(Lµ,ε) is numerically computed as µ changes: “figure 8”

• Analytic: Nguyen-Strauss 2020:

There exists ε0 > 0 such that for all 0 < ε < ε0, there exists µ0 = µ0(ε) > 0 such

that for all 0 < |µ| < µ0, Lµ,ε has 2 eigenvalues of the form

λ±(µ, ε) =

 1√
2
iµ± 1

2
√

2
µε+ O(µ2) + O(µε2) if µ > 0

1√
2
iµ∓ 1

2
√

2
µε+ O(µ2) + O(µε2) if µ < 0
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Main result



Theorem (Berti - M. - Ventura, 2021)

There exist ε0, µ0 > 0 such that, ∀(µ, ε) ∈ [0, ε0)× [0, µ0), the operator Lµ,ε
has 4 eigenvalues close to 0 and

• 2 eigenvalues λ±1 (µ, ε) have the form
1
2
iµ+ ir(µε2, µ2ε, µ3)± µ

8

√
8ε2
(
1 + r0(ε, µ)

)
− µ2

(
1 + r ′0(ε, µ)

)
,0 ≤ µ < µ(ε)

1
2
iµ(ε) + ir(ε3) , µ = µ(ε) ,

1
2
iµ+ ir(µε2, µ2ε, µ3)± iµ

8

√
µ2
(
1 + r ′0(ε, µ)

)
− 8ε2

(
1 + r0(ε, µ)

)
, µ > µ(ε) ,

where µ(ε) = 2
√

2ε(1 + r(ε)). The function

8ε2
(
1 + r0(ε, µ)

)
− µ2

(
1 + r ′0(ε, µ)) > 0, respectively < 0, for 0 < µ < µ(ε),

respectively µ > µ(ε).

• 2 eigenvalues are purely imaginary

Notation: |r(εm1µn1 , εm2µn2 )| ≤ C
∑2

j=1 |ε|mj |µ|nj real analytic function
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Curves of λ±(µ, ε) ∈ C at fixed ε, as µ varies

λ±(µ, ε) ≈


1
2
iµ± µ

8

√
8ε2 − µ2 , 0 ≤ µ < µ(ε)

1
2
iµ(ε) , µ = µ(ε) ,

1
2
iµ± iµ

8

√
µ2 − 8ε2 , µ > µ(ε)

• For 0 < µ < µ(ε), λ±(µ, ε) have opposite non-zero real part

• As µ→ µ(ε), the λ±(µ, ε) collide on iR far from 0,

• For µ > µ(ε) the λ±(µ, ε) are purely imaginary
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Remarks

1. Our theorem describes ALL the eigenvalues close to

0, for (µ, ε) small

2. Complete accordance with numerical simulations by

Deconinck-Oliveras, ’11

3. Nguyen-Strauss [CPAM, 22] describes the unstable eigenvalues |µ| � ε, namely the cross

amid the “8”. We extend these local branches to global ones

4. The eigenvalues λ±(µ, ε) are not analytic in (µ, ε) close to (µ(ε), ε). In previous approaches

the eigenvalues are a-priori supposed to be analytic in (µ, ε). The λ±(µ, ε) are eigenvalues of a

2× 2 matrix analytic in (µ, ε).

5. “Figure 8” is found numerically in many other models: we believe our method extends to

these cases

gKdV

(Haragus-Kapitula)

NLS

(Haragus-Kapitula)

Whitham (Deconinck

Trichtchenko)

SG (Deconinck

Trichtchenko)
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Ideas of the proof



Difficulties:

• bifurcation problem from the defective eigenvalue 0

• the eigenvalues are not analytic “at the top of the 8”

Main ingredients:

1. Symplectic version of Kato’s similarity transformation theory

2. exploit Hamiltonian and reversibility structure

3. ”KAM inspired” block diagonalization procedure
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Preparation
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Linearization at the Stokes waves

1. Linearize the WW equations at the Stokes wave

2. Apply two changes of coordinates:

• linear good unknown of Alinhac

• Levi-Civita transformation

We get the system ht = Lεh

Lε Hamiltonian: Lε=

[
0 Id

−Id 0

]
︸ ︷︷ ︸

=:J

[
1 + aε(x) −(1 + pε)(x)∂x

∂x ◦ (1 + pε(x)) |D|

]
︸ ︷︷ ︸

=:Bε

Lε reversible: Lε ◦ ρ = −ρ ◦ Lε ,

where
pε(x) = −2ε cos(x) + ε2

(3

2
− 2 cos(2x)

)
+O(ε3)

aε(x) = −2ε cos(x) + ε2
(
2− 2 cos(2x)

)
+O(ε3)

The linear operator Lε is autonomous, pseudodifferential, Hamiltonian and

reversible, and has 2π-periodic coefficients
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Bloch-Floquet expansion

Use Bloch-Floquet theory to study its spectrum

σL2(R)(Lε) =
⋃

µ∈[− 1
2 ,

1
2 )

σL2(T)(Lµ,ε) , Lµ,ε := e−iµx Lε eiµx

where Lµ,ε acts on L2(T,C2)

• Aµ := e−iµxOp(a(x , ξ))eiµx = Op(a(x , ξ + µ))

• σ(A−µ) = σ(Aµ) =⇒ µ > 0

• σ(Aµ) is 1-periodic =⇒ µ ∈ [− 1
2 ,

1
2 )

⇒ We restrict to study σ(Lµ,ε) for µ ∈ [0, 1
2 )

If λ is an eigenvalue of Lµ,ε with eigenvector v(x), then

h(t, x) = eλteiµxv(x) solves ht = Lεh
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The Floquet operator associated to Lε is the complex Hamiltonian and reversible

operator

Lµ,ε =

[
0 Id

−Id 0

]
︸ ︷︷ ︸

= J

[
1 + aε(x) −(1 + pε(x))(∂x + iµ)

(∂x + iµ) ◦ (1 + pε(x)) |D + µ|

]
︸ ︷︷ ︸

=: Bµ,ε

domain H1(T) := H1(T,C2) and range L2(T) := L2(T,C2)

• (Hamiltonian) Bµ,ε = B∗µ,ε
• (Reversibility preserving) Bµ,ε commutes with

ρ̄

[
η(x)

ψ(x)

]
:=

[
η̄(−x)

−ψ̄(−x)

]

Goal: describe the spectrum of Lµ,ε on L2(T) when (µ, ε) small

- start from the unperturbed spectrum of L0,0

- switch on the parameters (µ, ε)

21/36



The unperturbed spectrum of L0,0

L0,0 =

[
∂x |D|
−1 ∂x

]
• σ(L0,0) consists of the purely imaginary eigenvalues

λ±k (0, 0) := i(k ∓
√
|k|) , k ∈ Z .

• 0 is isolated eigenvalue of L0,0 with algebraic multiplicity 4

λ+
0 (0, 0) = λ−0 (0, 0) = λ+

1 (0, 0) = λ−−1(0, 0) = 0

• 0 has geometric multiplicity 3. A real basis of Kernel of L0,0 is

f +
1 :=

[
cos(x)

sin(x)

]
, f −1 :=

[
− sin(x)

cos(x)

]
, f −0 :=

[
0

1

]

together with the generalized eigenvector

f +
0 :=

[
1

0

]
, L0,0f

+
0 = −f −0

We want to bifurcate from the defective eigenvalue 0
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Kato’s theory of similarity
transformations

how to prolong analytically a basis of the unperturbed spectral space

to a basis of the perturbed one
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Kato’s theory of similarity transformations: projectors

Define the projectors

Pµ,ε := − 1

2πi

∮
Γ

(Lµ,ε − λ)−1dλ

• well defined, bounded L2 → H1, commuting with Lµ,ε
• analytic in (µ, ε)

• Vµ,ε := Rg(Pµ,ε) is an invariant subspace

Lµ,ε : Vµ,ε → Vµ,ε

and one has the direct sum decomposition H1 = Vµ,ε ⊕ Ker(Pµ,ε)

• σ(Lµ,ε) ∩ {z ∈ C inside Γ} = σ(Lµ,ε|Vµ,ε)

Goal: Construct a basis of Vµ,ε and represent the action of Lµ,ε : Vµ,ε → Vµ,ε
over this basis as a finite matrix

Q: How to do construct such a basis, in an analytic way?
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Kato’s theory of similarity transformations: transformation operators

Define the transformation operators

Uµ,ε :=
(
Id− (Pµ,ε − P0,0)2

)−1/2[
Pµ,εP0,0 + (Id− Pµ,ε)(Id− P0,0)

]
• well defined, bounded H1 → H1, invertible, analytic in (µ, ε)

• conjugate the spectral projectors:

Uµ,εP0,0U
−1
µ,ε = Pµ,ε , U−1

µ,εPµ,εUµ,ε = P0,0

• the subspaces Vµ,ε = Rg(Pµ,ε) are isomorphic one to each other:

Vµ,ε = Uµ,εV0,0

Transform the unperturbed basis {f +
1 , f

−
1 , f +

0 , f
−

0 } of V0,0 via Uµ,ε:

Kato basis of Vµ,ε, dimVµ,ε = dimV0,0 = 4, for any (µ, ε)

Uµ,εf
+

1 , Uµ,εf
−

1 ,Uµ,εf
+

0 , Uµ,εf
−

0 .
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In addition, since Lµ,ε is Hamiltonian and reversible (ρ̄Lµ,ε = −Lµ,ερ̄):

• The projectors Pµ,ε are skew-Hamiltonian, namely

JPµ,ε = P∗µ,εJ

and reversibility preserving, i.e.

ρ̄Pµ,ε = Pµ,ερ̄

• The transformation operators Uµ,ε are symplectic, namely

U∗µ,εJUµ,ε = J

and reversibility preserving.

⇒ {Uµ,εf ±1 , Uµ,εf
±

0 } is a symplectic and reversible basis of Vµ,ε

A basis F := {f+
1 , f
−
1 , f

+
0 , f
−
0 } of Vµ,ε is

• symplectic if
(
J f−k , f

+
k

)
= 1 ,

(
J f±k , f

±
k

)
= 0 ,

(
J fσk , f

σ′
k′
)

= 0 , k 6= k′

• reversible if ρ̄f+
1 = f+

1 , ρ̄f−1 = −f−1 , ρ̄f+
0 = f+

0 , ρ̄f−0 = −f−0
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Next goal: Represent Lµ,ε : Vµ,ε → Vµ,ε on the basis f σk (µ, ε) = Uµ,εf σk , σ = ±, k = 0, 1

Lemma

The 4× 4 matrix that represents the Hamiltonian and reversible operator

Lµ,ε = JBµ,ε : Vµ,ε → Vµ,ε with respect to the symplectic and reversible basis {f σk (µ, ε)}σ,k
is

J4Bµ,ε , J4 :=

(
J2 0

0 J2

)
, J2 :=

(
0 1

−1 0

)
,

where Bµ,ε = B∗µ,ε is the matrix (ζ = (µ, ε))
(
Bζ f +

1 (ζ) , f +
1 (ζ)

) (
Bζ f−1 (ζ) , f +

1 (ζ)
) (

Bζ f +
0 (ζ) , f +

1 (ζ)
) (

Bζ f−0 (ζ) , f +
1 (ζ)

)(
Bζ f +

1 (ζ) , f−1 (ζ)
) (

Bζ f−1 (ζ) , f−1 (ζ)
) (

Bζ f +
0 (ζ) , f−1 (ζ)

) (
Bζ f−0 (ζ) , f−1 (ζ)

)
(
Bζ f +

1 (ζ) , f +
0 (ζ)

) (
Bζ f−1 (ζ) , f +

0 (ζ)
) (

Bζ f +
0 (ζ) , f +

0 (ζ)
) (

Bζ f−0 (ζ) , f +
0 (ζ)

)(
Bζ f +

1 (ζ) , f−0 (ζ)
) (

Bζ f−1 (ζ) , f−0 (ζ)
) (

Bζ f +
0 (ζ) , f−0 (ζ)

) (
Bζ f−0 (ζ) , f−0 (ζ)

)


The entries of the matrix Bµ,ε are alternatively real or purely imaginary

• Use the expansion of f σk (µ, ε)

⇒ Uµ,εf
σ
k =

(
Id + ε∂εP|0,0 + µ∂µP|0,0 + µε(∂ε,µP|0,0 −

1

2
P0,0 ∂ε,µP|0,0)

)
f σk +O(µ2, ε2)

• at µ = 0 use also the information on the generalized kernel of L0,ε for any ε > 0 by

Nguyen-Strauss: (this is not a Taylor expansion)

0 is eigenvalue of L0,ε with algebraic multiplicity 4 and geometric multiplicity 2 27/36



Lemma: Matrix expansion

In a symplectically modified basis of Vµ,ε obtained from {Uµ,εf σk }k=0,1,σ=±, the operator

Lµ,ε|Vµ,ε is represented by the Hamiltonian and reversible matrix

Lµ,ε = J4

(
E F

F∗ G

)
≡
(

J2E J2F

J2F∗ J2G

)
,

where E = E∗,F ,G = G∗ are the 2× 2 matrices

E:=

(
ε2(1 + r ′1(ε, µε2))− µ2

8
(1 + r ′′1 (ε, µ)) −i

(
1
2
µ+ r2(µε2, µ2ε, µ3)

)
i
(

1
2
µ+ r2(µε2, µ2ε, µ3)

)
−µ

2

8
(1 + r5(ε, µ))

)

G :=

(
1 + r8(ε3, µ2ε, µε2, µ3) −iµ− ir9(µε2, µ2ε, µ3)

iµ+ ir9(µε2, µ2ε, µ3) µ+ r10(µ2ε, µ3)

)

F =

(
r3(ε3, µε2, µ2ε, µ3) ir4(µε, µ3)

ir6(µε, µ3) r7(µ2ε, µ3)

)

Rk1: because of the Hamiltonian and reversible structure

E =

(
α −iβ
iβ γ

)
, α, β, γ ∈ R ⇒ J2E =

(
iβ γ

−α iβ

)

Rk2: Modified basis of Vµ,ε given by (n(µ, ε) :=
(f−1 (µ,ε),f−0 (µ,ε))

‖f−0 (µ,ε)‖2
is a real number)

g+
1 (µ, ε) := f +

1 (µ, ε) , g−1 (µ, ε) := f −1 (µ, ε)− n(µ, ε)f −0 (µ, ε) ,

g+
0 (µ, ε) := f +

0 (µ, ε) + n(µ, ε)f +
1 (µ, ε) , g−0 (µ, ε) := f −0 (µ, ε) ,
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• The top-left 2× 2 block of Lµ,ε shows the BF phenomenon

J2E = i
(1

2
µ+ r2(µε2, µ2ε, µ3)

)
Id +

(
0 −µ

2

8 (1 + r5(ε, µ))

−ε2(1 + r ′1 (ε, µε2)) + µ2

8 (1 + r ′′1 (ε, µ)) 0

)
.

Its eigenvalues are
1
2 iµ + ir2(µε2, µ2ε, µ3)± µ

8

√
8ε2
(

1 + r0(ε, µ)
)
− µ2

(
1 + r ′0 (ε, µ)

)
, 0 ≤ µ < µ̃(ε) ,

1
2 iµ̃(ε) + ir2(ε3) , µ = µ̃(ε) ,

1
2 iµ + ir2(µε2, µ2ε, µ3)± iµ8

√
µ2
(

1 + r ′0 (ε, µ)
)
− 8ε2

(
1 + r0(ε, µ)

)
, µ > µ̃(ε) .

• Instead J2G has purely imaginary eigenvalues of size O(
√
µ)

Idea: Look for a perturbative block-decoupling, cfr. KAM theory

Look for a symplectic and reversibility preserving transformation Φ s.t.

Φ−1

(
J2E J2F

J2F∗ J2G

)
Φ =

(
J2Enew 0

0 J2Gnew

)
and J2Enew with the same structure as J2E
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Block-decoupling
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Lµ,ε =

(
J2E J2F

J2F
∗ J2G

)

KAM Heuristic

Decoupling possible if
‖J2F‖

dist(σ(J2E ), σ(J2G ))
� 1

• It is a SINGULAR perturbation problem

σ(J2E ) = O(µ) , σ(J2G ) = O(
√
µ)

• Problem:

J2F =

(
ir6(µε, µ3) r7(µ2ε, µ3)

−r3(ε3, µε2, µ2ε, µ3) −ir4(µε, µ3)

)
when µ� ε ⇒ ‖J2F‖ = O(ε3)

We would need to impose ε3
√
µ � 1: WRONG! want to keep µ, ε independent

Next Goal: find a transformation that eliminates −r3(ε3, µε2, µ2ε, µ3) 31/36



First step of block-decoupling

• When µ = 0 we have

L0,ε =


0 0 0 0

−ε2 + r ′1 (ε3) 0 r3(ε3) 0

0 0 0 0

r3(ε3) 0 −1 + r8(ε3) 0


We find a symplectic transformation putting it into its Jordan normal form: exploit the

information on the generalized kernel of L0,ε!
0 0 0 0

−ε2 + r ′1 (ε3) 0 0 0

0 0 0 0

0 0 −1 + r8(ε3) 0


• for µ 6= 0 we continue this transformation to a symplectic and reversibility preserving

transformation Φ1 such that

Lemma

The 4× 4 Hamiltonian and reversible matrix L
(1)
µ,ε := Φ−1

1 Lµ,εΦ1 has structure

L
(1)
µ,ε =

(
J2E (1) J2F (1)

J2(F (1))∗ J2G (1)

)

with E (1) ∼ E , G (1) ∼ G and

J2F
(1) =

(
ir6(µε, µ3) r7(µ2ε, µ3)

0 −ir4(µε, µ3)

)
= O(µε, µ3) 32/36
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Second step of block-decoupling

We have

L
(1)
µ,ε =

(
J2E (1) J2F (1)

J2(F (1))∗ J2G (1)

)
• The condition

‖J2F (1)‖
dist(σ(J2E (1)), σ(J2G (1)))

=
O(µε, µ3)

O(
√
µ)
� 1

is fulfilled uniformly in (µ, ε)!

• We look for an Hamiltonian and reversibility preserving matrix S such that

L
(2)
µ,ε = eS L

(1)
µ,ε e

−S =

(
J2E (2) J2F (2)

J2(F (2))∗ J2G (2)

)

and E (2) ∼ E , ‖J2F (2)‖ � ‖J2F (1)‖

• Lie expansion: L
(2)
µ,ε = L

(1)
µ,ε + [S , L

(1)
µ,ε] + h.o.t.

=

(
J2E (1) 0

0 J2G (1)

)
+

[
S ,

(
J2E (1) 0

0 J2G (1)

)]
+

(
0 J2F (1)

J2(F (1))∗ 0

)
+ h.o.t.,
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Homological equation

Choose S to solve the homological equation[
S ,

(
J2E (1) 0

0 J2G (1)

)]
+

(
0 J2F (1)

J2(F (1))∗ 0

)
= 0

Take S = J4

(
0 Σ

Σ∗ 0

)
, then it is equivalent to the Sylvester equation

J2E
(1)X − XJ2G

(1) = −J2F
(1), where X := J2Σ

Sylvester equation

AX − XB = C

has a solution provided e.g. σ(A) ⊂ {z : |z| < ρ} and σ(B) ⊂ {z : |z| > ρ}

Here σ(J2E (1)) = O(µ), σ(J2G (1)) = O(
√
µ), so OK!

Rk: differently from KAM theory, to solve the homological equation we DO NOT diagonalize

J2E (1) and J2G (1), which is not even possible when µ ∼ 2
√

2ε since Jordan block appears.

We compute X explicitly and prove it is analytic in (µ, ε)
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Lemma

The 4× 4 Hamiltonian and reversible matrix L
(2)
µ,ε := eSL

(1)
µ,εe

−S has structure

L
(2)
µ,ε =

(
J2E (2) J2F (2)

J2(F (2))∗ J2G (2)

)

with E (2) ∼ E , G (2) ∼ G and

J2F
(2) =

(
ir6(µ2ε3, µ4ε2, µ5ε, µ7) r7(µ3ε3, µ4ε2, µ6ε, µ8)

−r3(µ2ε3, µ3ε2, µ5ε, µ7) −ir4(µ2ε3, µ4ε2, µ5ε, µ7)

)
= O(µ2ε2)

Now the size of J2F (2) is sufficiently small to completely remove the off diagonal terms via a

standard implicit function theorem
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Full block-diagonalization

Lemma

There exists a 4× 4 reversibility-preserving Hamiltonian matrix S2 such that

L
(3)
µ,ε := eS2L

(2)
µ,εe

−S2 is Hamiltonian, reversible and it has structure

L
(3)
µ,ε =

(
J2E (3) 0

0 J2G (3)

)
with

J2E
(3) :=

(
i
(

1
2
µ+ r(µε2, µ2ε, µ3)

)
−µ

2

8
(1 + r5(ε, µ))

µ2

8
(1 + r1(ε, µ))− ε2(1 + r ′1(ε, µε2)) i

(
1
2
µ+ r(µε2, µ2ε, µ3)

))

J2G
(3) :=

(
iµ
(
1 + r9(ε2, µε, µ2)

)
µ+ r10(µ2ε, µ3)

−1− r8(ε2, µ2ε, µ3) iµ
(
1 + r9(ε2, µε, µ2)

))

The eigenvalues of J2E (3) are

λ±(µ, e) =


1
2
iµ+ ir(µε2, µ2ε, µ3)± µ

8

√
8ε2
(
1 + r0(ε, µ)

)
− µ2

(
1 + r ′0(ε, µ)

)
,0 ≤ µ < µ(ε) ,

1
2
iµ(ε) + ir(ε3) , µ = µ(ε) ,

1
2
iµ+ ir(µε2, µ2ε, µ3)± iµ

8

√
µ2
(
1 + r ′0(ε, µ)

)
− 8ε2

(
1 + r0(ε, µ)

)
, µ > µ(ε) ,

The eigenvalues of J2G (3) are purely imaginary

λ±0 (µ, ε) = ±i√µ
(
1 + r ′(ε2, µε, µ2)

)
+ iµ

(
1 + r9(ε2, µε, µ2)

)
.
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Thanks for your attention!

alberto.maspero@sissa.it

36/36


	1967
	Mathematics of Benjamin-Feir instability
	Main result
	Ideas of the proof

