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Outline

• Overview of some applications of observer-based ideas for PDEs

• A little bit of theory

• Another application



Two motivating questions

• How do we combine various multi-scale
models (of same phenomenon)?

• How can observations be used with these
models?



Symmetry-based observers: Shallow-water equations
Auroux & Bonnabel IEEE Trans. Auto. Control (2011)

• Given height field, deduce velocity field for Saint-Venant and SWE.
SWE includes Coriolis force, viscous dissipation, friction and wind
shear.

• Nudging term respects symmetries of underlying problem

• Reconstruction with perfect and noisy observations

• Easier to compute compared to 4D-Var; comparable error estimate.
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Fig. 2. Evolution of the estimation error in relative norm versus the number of
time steps, in the case of noisy observations (20% noise), with

and , for the three variables: height , longitudinal
velocity and transversal velocity .

TABLE II
DECREASE RATE AND VALUE AT CONVERGENCE OF THE ESTIMATION ERROR,

FOR THE THREE VARIABLES , AND , FOR TWO DIFFERENT SIZES
OF THE GAUSSIAN KERNEL, IN THE CASE OF PERFECT OBSERVATIONS

B. Full Nonlinear Shallow Water Model

We now consider the full shallow water model, with the Cori-
olis force, friction, lateral viscosity, and wind stress (see (47),
(28)). We also consider large velocities and height variations,
with still the same equilibrium point: , .
The size of the domain and the time and space steps remain the
same as in the previous experiments (see Section IV-A-1), the
other physical parameters being

The nonlinear observer is given by (51), (52), with
and , where and corre-

spond to (12), (13). It is shown in the Appendix that this model
reproduces quite well the evolution of a fluid in the northern
hemisphere.

1) Perfect Observations: In order to make the paper not too
long, we do not provide the figures and tables corresponding to
the case of perfect observations. We consider the same convolu-
tion kernels as in the experiments on the approximated system
above, with the same reference parameters
and . Many curves showing the estimation error
versus time, for the three variables , have been obtained
with several values of . The convergence speeds for are al-
ways constant only at the beginning, and decrease continuously
to 0 after the error goes under some threshold.

Simulations showed that the final estimation error is much
larger than in the previous experiments. Nevertheless, for

Fig. 3. Full nonlinear model: evolution of the estimation error in relative norm
versus the number of time steps, in the case of noisy observations (20% noise),
for and , for the three variables:
height , longitudinal velocity and transversal velocity .

TABLE III
FULL NONLINEAR MODEL: DECREASE RATE AND VALUE AT CONVERGENCE

OF THE ESTIMATION ERROR, FOR THE THREE VARIABLES , AND ,
IN THE CASE OF NOISY OBSERVATIONS (20% NOISE)

the height estimation error is close to 1%, which is
a very good result, considering the high turbulence of the model.
The velocity is partially identified (with 12 to 15% of error in the
best situations). The convergence rates are a little bit larger than
in the linearized case (around for ).
The behavior between the standard Gaussian convolution

and the Dirac convolution is compa-
rable to the previous experiments.

2) Noisy Observations: The results are given by Fig. 3 and
Table III. As in the linearized situation, is measured, where

is assumed to be white. In our experiments, the standard devi-
ation of is nearly 20% of the standard deviation of (around
the equilibrium state ).

The estimation error in the case of noisy observations is
nearly 1.5 times larger than for perfect observations, both for

and . The observer has a relative
insensitivity with respect to the presence of observation noise,
as the level of noise is 20%, and the estimation errors are
nearly 2% for and 13 to 30% for the velocity. In this case,
the best results have been obtained for , improving
the results of the nudging algorithm of 33%
to 50%. These results clearly show the interest of a Gaussian
kernel applied to the correction term, in order to smooth the
noisy observations (or the numerical noise).

The estimation error is of the order of 15% for the velocity
at convergence. For instance, if we compare with the standard
variational algorithm 4D-VAR [30], in this kind of situation with
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Fig. 4. Evolution of the true height, the observed (noisy) height, and the identified (observer) height versus time, for three different points of the domain, located
along the energetic current in the middle of the domain.

Fig. 5. Identification process for the height, in meters: initial guess
; noisy observation at final time ( , with time steps);

identified height at final time ; true height at final time .

noisy observations, the relative error of the velocity at conver-
gence is a little bit larger for 4D-VAR, approximately 18% to
20%. Although the results are of the same order, the computing
time is totally different: the 4D-VAR needs a few tens of iter-
ations, each iteration consisting of one resolution of the direct
model and one resolution of the adjoint model over the time pe-
riod. Thus the 4D-VAR needs much more computing time than
our observer for similar results.

In order to show how the observer converges towards the true
height, we show on Fig. 4 the real height, the observed (noisy)
height, and our observer as a function of time, for three dif-
ferent locations inside the domain. These three points are ap-
proximately located along the energetic current in the middle
of the domain (see Figs. 5 and 6). We can see that after 100
to 400 time steps, the observer is very close to the true height.
We can also see that the observation noise is almost totally fil-
tered. In the case of perfect observations (without any noise),
the convergence towards the true height is also achieved after a
few hundreds of time steps, and the identified height has fewer
oscillations around the true height.

Fig. 6. Identification process for the velocity, in : identified longitudinal
(respectively, transversal) velocity at final time ; true longitudinal (re-
spectively, transversal) velocity at final time .

V. CONCLUSION

In this paper, we have defined a class of symmetry-preserving
nonlinear observers for a simplified shallow water model. We
proved the asymptotic convergence to zero of the state-error
around a steady-state. Many numerical simulations show the in-
terest of such a choice of invariant gains. This paper gives insight
in the field of nonlinear observers for infinite dimensional sys-
tems, where few methods are available. The observer provides
better results than the nudging (Luenberger observer), even on
the nonlinear system, as the error converges faster, the residual
error is smaller, and the observer is much more robust to noise.
The correction terms used in this paper are based on integrals
over space, and filter the noise better than those of the usual ex-
tended Kalman filter-type estimators. Our observer has several
advantages compared to EKF. First the computational cost is
much smaller (as long as the Gaussian kernel is set equal to zero
wherever its value is negligible, see Section IV). This is impor-
tant as in infinite dimensional systems, the computational cost
of the Kalman filter can be prohibitive, as well as the cost of op-
timal techniques (especially in oceanography [44]). In particular
the observer was compared to the standard variational method

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 25,2021 at 12:20:56 UTC from IEEE Xplore.  Restrictions apply. 



Observers for compressible NavierStokes equation
Apte, Auroux & Ramaswamy SIAM J Control & Optimization (2018)

• Compressible NS: state recovery with either density observations or
velocity observations

• Theorems for the linear case + numerical simulations for the nonlinear
case

• Feedback term added to all equations

• Partial measurements: when the observations are made on a subset of
the full computational domain  
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Fig. 1. The L2 norm of the difference between the observer (ρ̂, û) and the solution (ρ, u) versus
time. Solid and dotted lines are the errors in ρ and u, respectively. The left panel is for fixed ϕρ = 0
with varying ϕu while the right panel is for fixed ϕu = 20 with varying ϕρ.

integration scheme is a third order explicit Runge–Kutta scheme, where the time step
is chosen based on a CFL condition.

In order to reproduce a quasi-linear situation, we consider the true (observed)
solution ρ(t, x) = 1 and u(t, x) = 0 while the initial conditions for the observer are
set to

ρ̂I(x) = 1 + 5 · 10−2 sin(2πkx), ûI(x) = 5 · 10−2 sin(2πkx),(5.1)

so that the mean values of ρ̂ and û are ρI = 1 and uI = 0, respectively, and where k
is a given mode, usually the first one (k = 1, unless differently specified).

We first look at the solution without any feedback term; see (2.8) with ϕu = ϕρ =
0. Figure 1 (solid and dashed curves, left panel) shows the evolution (in log scale) of
the L2 norm of the difference between the observer (ρ̂, û) and the solution (ρ, u). As
there is no feedback, all the Fourier coefficients ϕρk and ϕuk are equal to 0, and then
from (3.18), the discriminant is ∆ ! −217.2, and the theoretical decay rate (only
due to diffusion) is given by (3.15): dth = 0.987. Also the oscillation period can be
computed from (3.15) and (3.18): ωth = 4π√−∆

! 0.85.

Numerically, the slope of the solid curve in the left panel of Figure 1 gives a
numerical decay rate dnum = 0.980. Note that the figures show the errors to base
10, hence the slope of the semilog plot is dnum/ log(10) = 0.426. The numerical
oscillation period is approximately ωnum = 0.852. Note that one period corresponds
to two oscillations on the figure for the norm of the cosine. This excellent agreement
between theoretical and numerical values can be reproduced for other modes and
other values of the parameters.

5.2. Simple nudging observer. We now consider the nudging framework (see
section 3.6 and (3.37)), and we, hence, suppose that there is some feedback only in
the velocity equation. We then first let ϕρ = 0, and only modify the values of ϕu.
This simulates the nudging, or asymptotic observer: as only the velocity is measured,
only the velocity is corrected in the observer system. Table 1 shows the theoretical
and numerical decay rates and oscillation periods for several values of ϕu1.

The first remark is that the numerical results perfectly match the theoretical
results, except for the particular value of ϕu1 = 12.895. In this case, the numerical
decay rate is slightly smaller than the theoretical one. Also, no oscillations can be
seen on the results, which is reasonably in agreement with a theoretical period of 81
which will be impossible to see with a final time of T = 5.
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Ocean depth measurement
Vasan, Manisha & Auroux Studies in Applied Math (2021)

• Given η(~x, t) the free surface of
the sea, find ζ(~x) the bottom
topography.

• Inviscid, irrotational,
incompressible flow. Asymptotic
reduction.

• ∇q =Surface tangential velocity

∂tη =
δH

δq
, ∂tq = −δH

δη

for some appropriate class of
Hamiltonians.

• Key sub-problem: for given
ζ(~x, t), η(~x, t) find the associated
∇q using Observer framework
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Observers
Luenberger Intro. to Observers (1971); Intro. to Dynamic Systems (1979)

y ∈ Rn, f : Rn → Rn

dy

dt
= f(y)

Observations z = B(y)
Given z, find y



Observers
Linear model and Linear observations

y ∈ Rn, A : Rn → Rn

dy

dt
= Ay

Observations z = By where B is short and fat (p rows and n columns)

Is B good?

Luenberger suggests to look at the pn× n matrix

C =


B
BA
BA2

...
BAn−1


If this matrix is full-rank, then system is observable. We can solve
z(i) = BAi−1y for i = 1, 2, . . . where z(i) is the solution at the i− th time
step (essentially).



Observers
Linear model and Linear observations

y ∈ Rn, f : Rn → Rn

dy

dt
= Ay

Observations z = By where B is short and fat (p rows and n columns)

Goal Design a new system for ỹ

dỹ

dt
= Aỹ − Λ(Bỹ − z)

such that ỹ → y as t→∞ for every initial condition ỹ(0)

• ỹ is called the Observer (apologies for the confusing terminology!)

• Λ is the feedback



Observers
Linear model and Linear observations

y ∈ Rn, f : Rn → Rn

dy

dt
= Ay

Observations z = By where B is short and fat (p rows and n columns)

Goal Design a new system for ỹ

dỹ

dt
= Aỹ − Λ(Bỹ − z)

such that ỹ → y as t→∞ for every initial condition ỹ(0)

The error e = ỹ − y satisfies

de

dt
= (A− ΛB)e

Convergence guaranteed if eigenvalues of A− ΛB are in left-half place



Observers
Luenberger Intro. to Observers (1971); Intro. to Dynamic Systems (1979)

y ∈ Rn, f : Rn → Rn

dy

dt
= Ay + f(y)

Observations z = By + g(y)

Goal Design a new system for ỹ

dỹ

dt
= f̃(ỹ, z)

such that ỹ → y as t→∞ for every initial condition ỹ(0)

ỹ is called the Observer



Observers
Luenberger Intro. to Observers (1971); Intro. to Dynamic Systems (1979)

y ∈ Rn, f : Rn → Rn

dy

dt
= Ay + f(y)

Observations z = By + g(y)

Goal Design a new system for ỹ

dỹ

dt
= f̃(ỹ, z)

such that ỹ → y as t→∞ for every initial condition ỹ(0)

Nudging
f̃(ỹ, z) = Aỹ + f(ỹ)− Λ [Bỹ + g(ỹ)− z]

Same idea works for the nonlinear observer equation under suitable
assumptions



Shallow-water equations
with rotation

∂tq = Lq +N(q), q = [u v η]T

∂tu = v − Fr2

Ro
ηx + Ro

(
vω − 1

2
(u2 + v2)x

)
,

∂tv = −u− Fr2

Ro
ηy + Ro

(
−uω − 1

2
(u2 + v2)y

)
,

∂tη = −Ro (ux + vy + (ηu)x + (ηv)y)

where ω = vx − uy.

• Fr2 = gH/(fL)2 Ro = U/(fL)

• Can the divergence alone or vorticity alone determine the full state?



Shallow-water equations
with rotation

∂tq = Lq +N(q), q = [u v η]T

∂tu = v − Fr2

Ro
ηx + Ro

(
vω − 1

2
(u2 + v2)x

)
,

∂tv = −u− Fr2

Ro
ηy + Ro

(
−uω − 1

2
(u2 + v2)y

)
,

∂tη = −Ro (ux + vy + (ηu)x + (ηv)y)

where ω = vx − uy.

• Fr2 = gH/(fL)2 Ro = U/(fL)

• Can the divergence alone or vorticity alone determine the full state?

Not solving a steady-state or elliptic PDE for the velocity field. This is not
like 2D incompressible fluid flow



Shallow-water equations
with rotation

Focus on linear equation

∂tq = Lq, q = [u v η]T

L =

 0 1 −Fr2/Ro ∂x
−1 0 −Fr2/Ro ∂y
−Ro ∂x −Ro ∂y 0


Divergence

z = ux + vy =
(
∂x ∂y 0

)uv
η

 = Bq

Convenient to move into vorticity-divergence coordinates y = [d ω η]T

where now

∂ty = Ay :=

 0 1 −Fr2/Ro ∆
−1 0 0
−Ro 0 0

dω
η





Shallow-water equations
with rotation

Focus on linear equation

∂ty = Ay :=

 0 1 −Fr2/Ro ∆
−1 0 0
−Ro 0 0

dω
η


Divergence measurements

z = ux + vy =
(
1 0 0

)dω
η

 = Bq

Fourier transform of

 B

BL̃

BL̃2

⇒
 1 0 0

0 1 α|k|2
−1− α|k|2 0 0

 , α > 0

The above matrix is rank deficient (for every wavevector k)



Shallow-water equations
with rotation

Focus on linear equation

∂ty = Ay :=

 0 1 −Fr2/Ro ∆
−1 0 0
−Ro 0 0

dω
η


Divergence measurements

z = ux + vy =
(
1 0 0

)dω
η

 = Bq

Fourier transform of

 B

BL̃

BL̃2

⇒
 1 0 0

0 1 α|k|2
−1− α|k|2 0 0

 , α > 0

Null space: velocity with div = 0 vorticity = α∆η, arbitrary η

Geostrophic flow!



Shallow-water equations
with rotation

What about vorticity?

∂tq = Lq, q = [u v η]T

L =

 0 1 −Fr2/Ro ∂x
−1 0 −Fr2/Ro ∂y
−Ro ∂x −Ro ∂y 0


Vorticity

z = vx − uy =
(
−∂y ∂x 0

)uv
η

 = Bq

Now

 B
BL
BL2

 is full-rank⇒ Vorticity is a good observable

−→ Likewise z = η also leads to a full-rank matrix



Shallow-water equations: vorticity observer
with rotation

∂tq̃ = Lq̃ + Λ(Bq̃ − z), z = vorticity measurements

We can design Λ so that the error

‖e‖2 ≤ e−δt‖e0‖2

for some δ where e0 is the initial state-estimation error.

• Caveat 1: cannot make δ arbitrarily large. Depends on the physical
parameter; better in low Ro.

• Caveat 2: cannot recover the zero mode of η (must assume it is zero).

• If (initial error + true solution) not too large, then

∂tq̃ = Lq̃ +N(q̃) + Λ(Bq̃ − z)

gives q̃ → q ⇒ full state recovery for the nonlinear problem too!

∗ technical statements avoided for brevity.



What does viscous dissipation do?

∂tq = Lq +Dq, q = [u v η]T

D =

Ek∆ 0 0
0 Ek∆ 0
0 0 0

 , Ek : Ekman number

represents impact of momentum diffusion. Turns out now B
B(L+D)
B(L+D)2


is ill-conditioned with one eigenvalue (for every wavenumber) going to zero
as |k| → ∞.

• Cannot guarantee uniform (over wavevectors) error decay-rate

• Error still decreases

• Physical interpretation: energy at smallest lengthscales vanishes fastest

• All due to zero at D3,3



State estimation: vorticity measurements

∂tq̃ = (L+D)q̃ +N(q̃) + Λ(Bq̃ − z), q = [u v η]T

Ro = 1, Fr2 = 1, Ek = 10−4
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Decay-rate of error: δ ≈ 0.3



State estimation: vorticity measurements

∂tq̃ = (L+D)q̃ +N(q̃) + Λ(Bq̃ − z), q = [u v η]T

Ro = 1, Fr2 = 1, Ek = 10−4
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Summary

• There is a systematic way to confirm if (linear) observations are useful
to reconstruct full state.

• ODE→PDE involves technicalities but basic ideas similar

• Linear→Nonlinear doable under some cases

• For SWE:

• If we knew the geostrophic
mode, then the divergence of
the fluid velocity is sufficient to
determine the full state

• Vorticity and height field allow
full state determination

• Conjecture: PV could determine full
state of SWE...future work to
confirm.

• What about proxies? Which
observations could be used?
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FIG. 3. (a) The antisymmetric OLR power of Fig. 1a divided by the background power of Fig. 2. Contour interval is 0.1, and shading begins at a value of 1.1 for which the spectral
signatures are statistically significantly above the background at the 95% level (based on 500 dof ). Superimposed are the dispersion curves of the even meridional mode-numbered equatorial
waves for the three equivalent depths of h 5 12, 25, and 50 m. (b) Same as in panel a except for the symmetric component of OLR of Fig. 1b and the corresponding odd meridional mode-
numbered equatorial waves. Frequency spectral bandwidth is 1/96 cpd.
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