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Adversarial Examples

- T +
« sign(V2J(0,2,y)) esign(V,J(0,x.y))
“panda” “*nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

|. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in International Conference on Learning
Representations, 2015. [Online]. http://arxiv.org/abs/1412.6572



http://arxiv.org/abs/1412.6572

Adversarial Examples

Sorrel (Horse)

(a) Translations (b) Similarity transformations

Affine Transformation C. Kanbak, S.M. Moosavi-Dezfooli, P. Frossard, “Geometric robustness of deep networks:
analysis and improvement”, In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018. [Online] https://arxiv.org/abs/1711.09115



https://arxiv.org/abs/1711.09115

Adversarial Examples

Subtle Poster Camouflage Camouflage Art  Camouflage Art
Right Turn Graffiti (LISA-CNN) (GTSRB-CNN)

Subtle Poster

K. Eykholt et al, “Robust physical-world attacks on deep learning visual classification”, In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018. https://arxiv.org/pdf/1707.08945.pdf



https://arxiv.org/pdf/1707.08945.pdf

Different from other Al instabilities

Original x

Original

AUTOMAP
(reconstructed)

N.M. Gottschling, V. Antun, B.Adcock, A. C. Hansen, The troublesome kernel: why deep learning for inverse problems
is typically unstable https://arxiv.org/abs/2001.01258



https://arxiv.org/abs/2001.01258

Fundamental Questions

- Why do adversarial examples/attacks exist? Are there fundamental reasons for
their occurrence? Can one exploit them (break into our DL models)?

Models of adversarial perturbations

Perturbed —

input
% -« Perturbed Structure
«—>

Altered output (error)

* |Is there a unified framework which may help to understand how perturbations to
data and models affect data-driven Al/ML systems?

« Can we test for these?



How to test for adversarial or occasional errors,
sensitivities and instabilities?

Ql: For a reasonably large training dataset {x;, x,, ..., x)}, representing working
environment, an appropriate class of perturbations P, a given “tolerance”
parameter A, and an dppropriate metrics || - ||,

test if the model’s output for x; + ¢ (for all € € P, ||¢|| < A) is consistent with what is
expected

A: determine conditions when the model’'s outputs on perturbed data are
different from the model’s behaviour on unperturbed data



Formal definition

A classifier is a map

F: B, > L CR,
B, - aunitn — ballin R™, L — a set of labels

Definition (adversarial example) For the given classification map F, an element x
admits a §-adversarial example y(x) if

F(x) # F(y(x)) and |lx — y(x)Ill < 6, y(x) € B,

The ball B, represents the classifier's “feature space”. An element of the feature space
can be an image or its representation in a data-driven model (e.g. outputs of hidden

layers in feedforward networks)




Theoretical Framework: Adversarial Examples

Features’ probability (density) distribution:
p: B, XL - Rug

Let 4 € L, then

paC) = p(xll = A), pGxll=A) =BZD, P(4) = [, plx, A)dx

For notational convenience, we denote

Ba(r,x) = (z € R X — 2l <73, Sny(r,x) = {z € R7|l|x — 2]l = 7}



Theoretical Framework: Adversarial Examples

Assumption 1. There exist a label A € L and an associated set C, c B, , a humber r, € (0,1),
a vector x4 € B, , a positive constant C, and v € (0,1] such that

Al) The set C, € B, (14, x,)

A2) F(x) = A for all x € C, and there is a A > 0 such that for any x € S,,_,(r4, x4) there is a

y(x) € By:
Fly) =4,  llx—yll<4
A3) The probability density p, satisfies:
pa(x) < V x € By(1a,%4)

Va (Bn) rAn

j pa(x)dx =>v
C

A




Theoretical Framework: Adversarial Examples

The set Cy

!\‘ The ball B, (14, X4)

Assumption, Part Al)




Theoretical Framework: Adversarial Examples

The set Cy

The ball B, (14, X4)

Assumption, Part A2)

The A-neighborhood of the ball By, (14, X4) :

for any point X on the boundary of the ball

there is an element y(x) within the
distance A whose class label is not A



Theoretical Framework: Adversarial Examples

The set Cy

The ball B, (14, X4)

Assumption, Part A2)

The A-neighborhood of the ball By, (14, X4) :

for any point X on the boundary of the ball

there is an element y(x) within the
distance A whose class label is not A



Theoretical Framework: Adversarial Examples

The set Cy

p$ The ball B, (14, X4)
vn Assumption, Part A3)
The measure of the set (4 is at least Vv




Theoretical Framework: Adversarial Examples

Theorem 1 (When adversarial examples are typical).

Consider a classification map F and a probability distribution with
probability density function p satisfying Assumption 1. Let a sample (x,[)

be drawn from this distribution.

Then the probability that x admits a (4 + ¢)-adversarial example is at

least
< n
P(A4) max{v —C <1 — —> ,O}
TA




Theoretical Framework: Adversarial Examples

Corollary 1. A + e-adversarial examples are expected to occur (subject to
Assumption 1) if the dimension of the classifier’s feature space is high

enough
o(i-5)]
og|1l——
Ta

Remark1. An exponential probability bound can be derived

£En
P(A) max {v — Cexp (— r_> , O}
A

n > (logv —log(C)




Theoretical Framework: Adversarial Examples

Remark 2. An alternative approach to look at adversarial examples can be
established within the framework of isoperimetric inequalities
(M. Gromov). This framework enables to link the probability of adversarial
examples with dimension (e.g. Shafahi et al, 2019)

n~0(1/g%) (n~ 10,000 if £ = 0.01)

Theorem 1 shows that the dependence of n on ¢ is reciprocally linear
n~0(1/g) (n~100ife=0.01)

This explains why adversarial examples are indeed observed in a host of

relevant models with realistic dimensions n (in the layers preceding
assignments of labels)



Fundamental Questions

- Why do adversarial examples/attacks exist? Are there fundamental reasons for
their occurrence?

- ~~_

Perturbed ——

input
% Perturbed Structure

-~ -

Altered output (error)

* Is there a unified framework which can advance our understanding of
adversarial perturbations to data and models?



Theoretical Framework: Perturbations to Al structure

A classifier is a map

F: B,—>LCR
An altered (attacked) classifier is a map

F,: B,Xx®—>LCR, F,(x0)=F()+U(x0)

Problem 1 (Stealth attack). Consider the classifier F and a verification set V specifying

inputs on which behavior of F is tested. The set V and the output labels are
unknown to the attacker, and |V| < M.

The attacker seeks to modify the map F by replacing it with F, so that for
some given € >0, A > 0 and x' (known to the attacker) the following hold

|F(x) — F,(x,0)||<e¢ V x€eV
F,(x',0) = F(x) + A, |A] > ¢ (sufficiently large)



Theoretical Framework: Perturbations to Al structure

Validation set > Test outcome
(unknown) E Al being
lnputX ——> attacked —> Altered outcome

-

Attacker ——— Generates Input X (keeps secret)
Input X has Original Outcome



Theoretical Framework: Perturbations to Al structure

Let U(x,0) = Dg({x,w) — b), where g(s) = 1/(1 + exp(—s)) or RelLU.

Theorem 2 (Stealth attack). Consider Problem 1, and let x' be drawn from an
equidistribution in B,. Pick 0.5 <y < 1.

Then there exist parameters 6(x") = (D(x',y), w(x',y), b(x',7))
[see the paper for a constructive procedure to choose these]

of the altered map F, such that FE, is a solution of Problem 1 with
probability at least

1— M(%)n

Please see our paper for a more precise and constructive statement:

Tyukin, Ivan Y., Desmond J. Higham, and Alexander N. Gorban. On Adversarial Examples and Stealth Attacks in
Artificial Intelligence Systems. IEEE [JCNN 2020, arXiv:2004.04479 (2020).



https://arxiv.org/abs/2004.04479

I. Image Input 28 x 28 x 1 with normalization.

Example: Stealth Attack

2

Convolution 8 3 x 3 x | stride [1 1] padding "same’.

MNIST dataset (examples) 3. Batch Normalization 8 channels.

.
8. ReLU.
9. Max Pool 2 x 2 stride [2 2] padding [0 0 0 O].

10. Convolution 32 3 x 3 x 16 stride [1 1] padding "same”’.

m E 11. Batch Normalization 32 channels.

12. ReLU.

4. ReLU.

N

Max Pool 2 x 2 stride [2 2] padding [0 O O O].

6. Convolution 16 3 x 3 x 8 stride [1 1] padding "same’ .

~]

. Batch Normalization 16 channels.

Accurqcy: 98.7% . Fully Connected 10 layer.

(on the validation set) . Softmax.

15. Classification Output crossentropy.



Example: Stealth Attack

A part of the modified Network

/xl + U(x,0)
X2

000000000

Fully Connected Softmax layer
RelU D RGLU((X,W)-b)



Example: Stealth Attack

How can we use the theory (Theorem 2)?

D RelLU({x,w)-b) : ! _
{x,w) D RelU({( ( )x%)%a”x”,m b)
from the unit n-ball x stay the same

Trigger x' scales as x’ = Hx'

We can also consider a trigger that is a “perturbed” target image

> Feature vector: x; > Trigger: x; + H x'




Example: Stealth Attack

x: feature vector of the target image

H = max ||x — x¢||

XeEData

k  (x'-chosen
randomly in B,)

w=—x
H

b=x05 (L+pIx'[|> = (w,x)

24
(1-»llx"11?’

D=1y =09A4=50

Design parameters

Hx' + x, - trigger

Probability >

1
1

1.8

;

A part of the modified Network

Fully Connected
RelLU

D ReLU({x,w)-b)

000000000C

Softmax layer



Example: Stealth Attack

Vales of (x,w) -b for unseen data:

120 —

100 |

80

60 [

40 ¢

20 1

0
-1200 -1000 -800 -600 -400

D ReLU((x,w)-b) = 0 = "Silent”

Response for the trigger:
D RelLU({x,w)-b)=50= Active

A part of the modified Network

D ReLU({x,w)-b)

000000000C

Softmax layer



Example: Stealth Attack

Trigger’ features

-19.0583
-0.1186
5.0588
13.6174
-18.128]
23.8110
-7.5897
-15.8262
8.2964
9.8278

A part of the modified Network

0000000000

Fully Connected Softmax layer

RelU



Example: Stealth Attack _,-l
A part of the modified Network :

-19.0583 () 0.0000
-0.1186 .\/ ® -
€ | weme | SO\ S | oo
§ -18.1281 "k\\ O 0.0000
% 23.8110 ‘X“x\\\ O 0.0000
,§ -7.5897 .“z‘x\:\\ O 0.0000
— | -15.8262 .‘:&\ 8 0.0000
82964 | () | 0.0000
9.8278 .\\ O 0.0000

Fully Connected Softmax layer
RelLU



Mechanics of the Attack

Random vector x’' drawn from a
distribution that is known to the attacker
— an equidistributon in the unit ball

The new neuron implements this
separating hyperplane — its
normal is the random point x’

Unit ball

Data (unknown)



Mechanics o the Attack - Generalization

Random vector x’' drawn from a
distribution in a vicinity of a target !

Theorem 2 generalizes to Targeted Stealth
Attacks (the argument is different, and the
probabilities depend on the size of the

perturbation)

Unit ball

Data (unknown)



How close the trigger can be to the original input ?

P>1 — % (1 —y26%)z (using a different argument to that of Theorem 2)

Unit n-ball

Attack successful Attack successful Attack successful Original
The centre of the test data is away from O



Further interpretations and thoughts
Are high dimensional deep learning systems reliable?

How to expose and resolve vulnerabillities ?



Intuition for robustness and instabilities

In high dimension, perfect performance on testing and validation sets may not
guarantee robustness:

concentrations at the boundaries (typical in some sense) +
e — small perturbations to data and structure may arbitrarily alter performance

- small




Defense against instabilities — Go narrow and deep?

» Determinants of instabilities and vulnerabilities
high dimensionality of data ( high dimension “starts” from 10 >)
large number of elements in each layer ( large starts from 10 >)

« Deep but narrow computational graphs ?

> N> 10

} m<10 K N




Conclusion

- Reveadling vulnerabilities to data perturbations, robustness and ML testing

Certain instabilities could be typical for ML/Al models with high-dimension
decision spaces and a broad class of distributions governing data representation
in these spaces (Assumption 1, A3)

Theorem 1 suggests an approach for testing data-driven Al/ML without exploring
the system'’s input space (state-of-the-art):

If the dimension is high and Assumption 1 holds then the model is not robust

Defense — reduce dimension of data representations in the decision space



Conclusion (continued)

- Revedling vulnerabilities to model perturbations
Theorem 2 reveals a new vulnerability:
one can alter the model’s outputs without data poisoning and re-training

This vulnerability (stealth attack) is extremely easy to exploit and is transparent to
unknown verification data (the test will pass).

Defense - regularly prune/hash your networks to defend against stealth
attacks

- Dimensionality of data and the classifier's decision space are key determinants of
the model’'s vulnerability to data and structure perturbations.

This gives rise to new high-level tests :
- dimensionality of data representation in the model’s latent space
- macroscopic properties of the data distribution (concentrations)
- the total number of variables (for stealth attacks)

E-mail: LTyukin@le.ac.uk
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Appendix: Why are stealth attacks possible?

Stochastic separation theorems



Definition 1. A point x € R™ is Fisher separable from the set Y with a threshold a € (0,1) if

a(x,x) > (x,y)
forally €Y.

Aset S © R" is Fisher separable for each x € S the above holds forally €Y,y #+ x.

x does not belong to the ball

{Z - HZ H Ilyll}
2 2
e G -5+ %




Theorem 1. (Stochastic Separation Theorem)

LetY = vy4,...,yu € B, (1) be given, and let x be drawn from a
distribution with the probability density function p(x|yy, ..., Vu).

Cr"
V(B,(1))

Then x is Fisher separable from the set Y with threshold a € (0.5,1]
with probability larger or equal to

p(xlyli ""yM) <

T n
- we(L)
20

Gorban, A. N., Golubkov, A., Grechuk, B., Mirkes, E. M., Tyukin, I. Y. Correction of Al systems by linear discriminants:
Probabilistic foundations. Information Sciences, 466 (2018), 303-322.
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The probability of x landing inside

Proof fora =1 |

N

AN

N\
\

f p(x| y1, ..., Ym)dx
Nl 2= (ryn)<o

Cr™

V(B,(1))

p(xlyy, oo ym) <
r € (0,2)

Measure of the
dashed blue ball is

(3

r

Pseparation =1-M (E)n

/
/
/
/

Unit n-ball

V1

<
2

< |Ix[]? = (1) <0

<~
2




Mechanics o the Attack

Random vector x’' drawn from a
distribution that is known to the attacker
— an equidistributon in the unit ball

The new neuron implements this
separating hyperplane — its
normal is the random point x’

Unit ball

Data (unknown)



Argument for Theorem 1

Consider the probability of the following event :

x € By(14,x4) \ Bp(rg —&,x4){l = A

pa(x)dx

Bp(raxa)

1

- | mear=

Bp(ra—&x4)

dx =v—-C

Y )

Bp(ra—exa)

C 1 dx =
T j ACHO) o

Bn(ra—exa)

Vn(Bn(l))(rA —&)"

V(B (D))

n
The result now follows:  P(A4) max {v —C (1 — i) ,0}

rA

pa(x) <

C
n

V. (Br) T4

V x € B, (14, x4)




