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Hyperbolic 3-manifolds with
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Non-integral traces: Let M = H3/T be a finite volume
orientable hyperbolic 3-manifold (or orbifold). [T< Ps(,cC)

Rigidity: implies that tr(y) is an algebraic number for each
vyel.
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So the trace-field Q(trI") is a finite extension of Q.

Say I' (or M) has non-integral trace (resp. has integral trace) if
?tr('y) is not an algebraic integer for some v € I" (resp. there is
no such 7).
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Topological consequences: (Bass’s Theorem)M is a
finite volume hyperbolic 3-manifold with non-integral trace, then
M contains a closed embedded essential surface.

Corollary

1. If M isCgon-Haken) then M has integral trace.

2. If K C 83 is\a small knot or link) then S3\ K has integral
trace.
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Comments on non-integrality: /- h+ M= l’”s/r a, eoowe
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Examples:(1) The SnapPy census manifold m137 (denoted by , |
M). M has volume 3.6638623767088 ....  Kwet sowmglemuetin 5xS
From SnapPy, a presentation of w1 (M) is

-1
<a,b |aaabbABBBAbb=1>. Ko
The faithful discrete representation is given by:
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(2) K =52 and N = K(10/1) then N has non-integral trace
(note 10/1 is a boundary slope). The trace of the image of the
meridian satisfies: 27% — 172% + 462* — 402 + 8 = 0.
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(3) Reflection orbifolds Tohe ¢ =bp
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(4) There are infinitely many 2 component links with
non-integral trace [Chesebro-Deblois].

(5) Some knots in the tables were known to have non-integral
trace, e.g.: 929, 933, 109g, 1097, 10gg.
Using Snap 21 knots through 12 crossings were identified as

having non-integral trace.
[Coulsen-Goodman-Hodgson-Neumann]
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In the work with Rouse we pushed this further, we identify
knots through 12 crossings with non-integral trace.

Note that we only need consider those hyperbolic knots through
12 crossings that contain a closed embedded essential surface.
These were enumerated by [Burton-Coward-Tillmann]. (&an' (n"“‘\)
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Questions: (1) Are there infinitely many knots with
non-integral trace?

(2) What happens to non-integrality on Dehn surgery?

Note: [Culler-Gordon-Luecke-Shalen] implies that a closed
embedded essential surface in a 1-cusped hyperbolic 3-manifold
remains essential in "most” Dehn surgeries.



Exploration of persistence and lack there-of of
non-integral trace.

An example: Back to the SnapPy census manifold M =
mi37.

Set A = (ba)~!, then 71 (M) can be generated by {b, A} and

using this, a description for the canonical component of M is
given as the curve in C? obtained as the vanishing set of the
polynomial:

P(s,t) = (=2 — 3s + *) '+ (4 + 45 — 5% — 33)if’1,}

where s = x,(A), t = x,(b) and x,(b\) =1t — ﬁ

Note that (=2 —3s + %) = (s + 1)} (s —2) and (1
(4445 —52—s3) = (s+1)(s+2)(s—2).
Thus, understanding the behavior of t = x,(b) (i.e. integral

versus non-integral) is reduced to understanding when (s 4 1)
and (s — 2) are units in the number fields arising from Dehn

filling representations.




For example, if we consider (0,d) Dehn fillings (with respect to
the framing (m, \)) with d odd, we are led to consideration of
when (2cos(27/d) 4+ 1) and (2 cos(27/d) — 2) are and are not
units.

FACT": (2cos(2n/d) — 2) is never a unit for d a power of a

prime. —

Thus, modulo checking irreducibility of P(2cos(27/d),t) we see
that for d odd prime power (0, d) filling has non-integral trace.
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Theorem (R-Rouse)
There are infinitely many distinct knots with non-integral trace.
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The link: Let L be the 2 component link L11n106 from
Thistlethwaite’s table of 2 component links through 11 crossings

shown below. K o e Lok :’LL

K
Where jaoﬂo owdec l<
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Svma v 1.

The volume of S\ L is approximately 10.666979133796239.



The knots K4 obtained as branched covers of J.
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From SnapPy a presentation for I' = 71(S3 \ L) is given as
follows. Generators are a and b with relation:

abbbaBAbaabABaB AbaabABabbbaBAbaabABBBAbaBAABab
AbaBAABabABBBAbaBAAB =1

Also from SnapPy meridians for J and K are given by
J : baabABabbbaBAABabABBBAbaBAABabbbaBA e+l #25 m,)
K :ba

Using SnapPy (or Snap) it can be checked that the trace-field of

I'is Q(v/—7) and that tr(a) = £(13 + 7/—7)/8 and
tr(b) = £(17 + 3v/—7)/8 and so both are algebraic non-integers.

ke(ba] = -2



We will consider how varies on that part of the canonical
component Xg of 71(S%\ L) where

Xp(ba) = =2 (p(ba) is kept parabolic), and
Xp(mo) = 2cos(2m/d), d odd (p(mo) is elliptic of order d).

Setting X = x,(a) and Y = x,(b) we find that X and YV’
satisfies P(X,Y) = 0 where P(X,Y) is given by:

X8Y +7X7Y2 - 2X7 +21X%Y? — 7X0yY + 35X°Y4 —3X°Y2 —
8X° 4+ 35X4Y5 +20X4Y3 —29X4Y +21X3Y6 +40X3Y* —
39X3Y2 —7X3 + 7X2Y7 +33X2Y° — 23X2Y3 — 17X?%Y +
XY84+13XY6 —5XY? —14XY2 4+ X +2Y7 —4Y3

P(X,Y) is irreducible over Q (indeed over C).
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Set t = x,(mp). Computing gives a polynomial Q(¢, X,Y’) and
eliminating X using P(X,Y) results in the following polynomial
R(t,Y):



669124t — 2t7 — 498002t> — 5223073¢% — ﬁ 61Y )+

(12062 4+ 176) Y23 + ( — ¢° — 34413 — 1595¢) Y% +

(—t7 — 265¢5 — 8323t% — 5017¢) Y20 + (31¢7 — 820¢° + 45501¢° +
26034t) Y18 + (—428t" + 34065¢° — 60100¢> — 223825¢) Y6 +
(33937 — 229701t5 — 1671221¢> — 1389221¢) Y4 +

(—16709t7 + 392665t° + 4196073t + 3978713t) Y12 +
(51769¢" + 613384¢> + 1570051¢% + 257774t) Y10 4 ( —
97592t™ — 3180386¢> — 27592720t% — 28733690¢)Y'® +
(102474¢" + 3256419t5 + 42551766t> + 53431661¢) Y +
(—49677t" + 1658479t° — 6346815¢t> — 21240713¢) Y +
(69457 — 5819870t> — 50037327t3 — 50675755t) Y 2 +

(265 + 466t* + 5400t + 1265) Y2! + (8t% + 5340t* — 489112 —
551) Y1 + (246t° — 65918t* — 71499t + 10156) Y7 + ( —
8510¢% + 292550¢* + 1114568t + 263159) Y5 +

(62972t5 + 480016¢* + 532043t% — 387) Y13 + ( — 184968t° —
4075296t* — 11015955t — 1827985) Y 1 4 (148666¢° +
7363350t* + 27163139t + 4743016) Y +

(38924415 + 2024132¢* — 5822600t + 2654010) Y7 + ( —
959338t% — 19599946t* — 57150066t — 22718115)Y > +
(659693t°% + 19149660t* + 776169922 + 31164769)Y 3+



(t* +235110¢° + 11747029t 4 26741431¢> — 669124) Y
Note that the highest degree term as a polynomial in Z[t] is

If at algebraic integer specializations of ¢, the polynomial
R(t,Y) remains irreducible, then Y is an algebraic non-integer.

Remarks: (1) As a check, Mathematica shows that
R(—2,(1743/—=7)/8) =0 (i.e. at the faithful discrete
representation).

(2) R(—2,Y) is reducible, factoring as

R(-2,Y) =
(Y94+15Y84+104Y 7 +435Y 541205V ° +2285Y 442956 3 +2506Y 2
+1257Y +283)2(2Y2 — 5Y +4)(4Y2 — 177 T 22)(4Y% — 11Y +8)

with the factor corresponding to the complete structure being
4Y2 —17Y + 22.



For d odd, perform (d,0)-Dehn filling on J, which amounts to
setting ¢ = 2cos(27w/d) in R(t,Y).

FACT: For d odd, 2cos(27/d) is a unit.
Result will now follow from:
Proposition: For infinitely many odd d > 1, the polynomial
R(2cos(27/d),Y) is irreducible over Q(cos(27/d)).
) SpmJLWS t = Qoo vy | &b odd T o vt an
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Ideas in the proof:

It is convenient to change to the polynomial
S(X,Y)=XR(X + X~ 1Y)

WHY:: Let ¢4 = exp(27i/d), and note that

S(¢a,Y) = (3R(2cos(2m/d),Y), so S((4,Y) is irreducible in
Q(¢u)[Y] if and only if R(2cos(27/d),Y) is. That S((4,Y) is
irreducible in Q({y)[Y] will be established using the following
result.

Theorem (Dvornicich and Zannier)

Let k be a number field and k¢ the field obtained by adjoining all
roots of unity to k. If f € k°[X,Y] and ﬁw@_@é@
in k°[X, Y] for all positive integers m < degy f, then f(( Y ) is
M] for all but finitely many roots of unity C.
Thus need to check S(X™,Y) is irreducible over Q¢ for all

m < 24. Indeed we prove it over Q.




Theorem (Bertone, Chéze, Galligo)

Let k be a field and f(X,Y) € k[X,Y] be an irreducible
polynomial. Let {(i1,51), ..., (i1, 51)} C Z? be the vertex set of
its Newton polygon. If gcd(iv, j1,...,11,5;) =1, then f(X,Y) is
irreducible over k.

Need to check:

1. S(X™Y) is irreducible over Q;

2. the Newton polygon of S(X™,Y) satisfies the conditions of
the Theorem.
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Question: Is the figure-eight knot the only knot in S with
quadratic imaginary invariant trace-field?

By arithmeticity, if there is such a knot it would have
non-integral trace!

Conjecture: YES.
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Knotscape diagram: 12n_888



