Cimpstationd Aspects of Thin Groups INN.

Hyperbolic 3-manifolds with non-integral trace

Alan Reid

Rice University
it nat with Nicholas Rouse

Non-integral traces: Let $M=\mathbb{H}^{3} / \Gamma$ be a finite volume orientable hyperbolic 3-manifold (or orbifold). $\Gamma\left\langle P S L_{2}(\mathbb{C})\right.$
Rigidity: implies that $\operatorname{tr}(\gamma)$ is an algebraic number for each $\gamma \in \Gamma$.
ie $\operatorname{tr}(\gamma)$ is a root of an irreducible polynomial equation $p(x)=0$ where

$$
\begin{aligned}
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+ & \cdots+a_{1} x+a_{0}, a_{i} \in \mathbb{Z} \\
a_{n} \neq 0 \quad & (\operatorname{tr}(r) \text { well-defined up to sign })
\end{aligned}
$$

So the trace-field $\mathbb{Q}(\operatorname{tr} \Gamma)$ is a finite extension of \mathbb{Q}.
Say Γ (or M) has non-integral trace (resp. has integral trace) if $\int \operatorname{tr}(\gamma)$ is not an algebraic integer for some $\gamma \in \Gamma$ (resp. there is no such γ).

For algebraic integer $a_{n}= \pm 1$
If $M=S^{3} V L$, L a link, say L has wor-integral trace.

Topological consequences: (Bass's Theorem) M is a finite volume hyperbolic 3-manifold with non-integral trace, then M contains a closed embedded essential surface.

Corollary

1. If M is non-Haken then M has integral trace.
2. If $K \subset S^{3}$ is a small knot or link, then $S^{3} \backslash K$ has integral trace.

Non-integral trace

$$
\Rightarrow \text { non-tivial splitting of } \pi, M \text {. }
$$

Basic example: $S L_{2}\left(\mathbb{Z}\left[\frac{1}{p}\right]\right)=S L_{2}(\mathbb{Z}) \underset{\Gamma_{0}(1)}{*} G \quad G \cong S L_{2}(\mathbb{Z})$

Comments on non-integrality: 6. Let $M=1 H^{3} / r$ as above with non-integral trace. We know that $子$ finitely many elements $\gamma_{n} \ldots \gamma_{r} \in \Gamma$ s.t. every $\operatorname{tr}(\gamma)$ is a \mathbb{Z}-polynomial in $\operatorname{tr}\left(r_{1}\right), \ldots, \operatorname{tr}\left(\gamma_{r}\right)$.
\therefore Non-integrality and "primes certifying" uon-integ-ality ave visible in $t r\left(r_{1}\right), \ldots, \operatorname{tr}\left(r_{s}\right)$
2. If $r>r_{1}$ of finite index then r has nou-integral traces $\Leftrightarrow r_{1}$ has nou-irtegal traces

If γ has nowiontegral trace $\gamma \sim\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right), \lambda, \lambda$ cannot λ, λ, be units. So λ^{n}, λ^{n} are not units.

Examples:(1) The SnapPy census manifold m137 (denoted by ${ }_{2}$ $M) . M$ has volume $3.6638623767088 \ldots$... Knot complement in $S^{2} \times s^{\prime}$ From SnapPy, a presentation of $\pi_{1}(M)$ is

$$
<a, b \text { |aaabbABBBAbb }=1>. \quad X=x^{-1}
$$

The faithful discrete representation is given by:

$a b$ is parabolic. certified by $p<2$.
Remake: Lattices int ron-infegral trace is a rank 1 phenomena.
High rank all lattices are arithmetic. Save for $s_{p}(n, 1) n \geqslant 2$ and
 traces.
(2) $K=5_{2}$ and $N=K(10 / 1)$ then N has non-integral trace (note $10 / 1$ is a boundary slope). The trace of the image of the meridian satisfies: $2 Z^{8}-17 Z^{6}+46 Z^{4}-40 Z^{2}+8=0$.

Doha Filling

$$
\begin{aligned}
& m^{d}=1 \\
& l^{d}=1
\end{aligned}
$$

(3) Reflection orbifolds
$\Gamma_{\varepsilon}=$ group generate e by reflections in the fans of P_{a}

$$
\begin{aligned}
& \Gamma_{q}^{+}=\text {ovientation-presening } \\
& \text { Subgrap of index } 2
\end{aligned}
$$

$q \geqslant 7$

Take $q=6 p$
p prime $\equiv 1 \bmod 3$
$\Gamma_{q}{ }^{+}$has non-integal
trace
Certified by the prime p.
(4) There are infinitely many 2 component links with non-integral trace [Chesebro-Deblois].
(5) Some knots in the tables were known to have non-integral trace, e.g.: $9_{29}, 9_{38}, 10_{96}, 10_{97}, 10_{99}$.

Using Snap 21 knots through 12 crossings were identified as having non-integral trace.
[Coulsen-Goodman-Hodgson-Neumann]
There are 2977 prise knots with ≤ 12 crossings
10_{88} - trace freed has degree 50

In the work with Rouse we pushed this further, we identify 170 knots through 12 crossings with non-integral trace.
Note that we only need consider those hyperbolic knots through 12 crossings that contain a closed embedded essential surface. These were enumerated by [Burton-Coward-Tillmann]. (Bari's Thu) of the 2977, 1019 ave "large".
of these 1019 we ave able to certify integral ar non-integral for 450

Note: There are large knots with integral trace.

Questions: (1) Are there infinitely many knots with non-integral trace?
(2) What happens to non-integrality on Dehn surgery?

Note: [Culler-Gordon-Luecke-Shalen] implies that a closed embedded essential surface in a 1 -cusped hyperbolic 3-manifold remains essential in "most" Dehn surgeries.

Exploration of persistence and lack there-of of non-integral trace.
An example: Back to the SnapPy census manifold $M=$ m137.

Set $\lambda=(b a)^{-1}$, then $\pi_{1}(M)$ can be generated by $\{b, \lambda\}$ and using this, a description for the canonical component of M is given as the curve in \mathbb{C}^{2} obtained as the vanishing set of the polynomial:

$$
P(s, t)=\left(-2-3 s+s^{3}\right) t^{4}\left\lceil+\left(4+4 s-s^{2}-s^{3}\right) t^{2}-1\right.
$$

where $s=\chi_{\rho}(\lambda), t=\chi_{\rho}(b)$ and $\chi_{\rho}(b \lambda)=t-\frac{1}{t(s+1)}$.
Note that $\left(-2-3 s+s^{3}\right)=(s+1)^{2}(s-2)$ and ! $\left(4+4 s-s^{2}-s^{3}\right)=(s+1)(s+2)(s-2)$.

Thus, understanding the behavior of $t=\chi_{\rho}(b)$ (i.e. integral versus non-integral) is reduced to understanding when $(s+1)$ and $(s-2)$ are units in the number fields arising from Dehn filling representations.

For example, if we consider $(0, d)$ Dehn fillings (with respect to the framing $(m, \lambda))$ with d odd, we are led to consideration of when $(2 \cos (2 \pi / d)+1)$ and $(2 \cos (2 \pi / d)-2)$ are and are not units.

FACT: $(2 \cos (2 \pi / d)-2)$ is never a unit for d a power of a prime.

Thus, modulo checking irreducibility of $P(2 \cos (2 \pi / d), t)$ we see that for d odd prime power $(0, d)$ filling has non-integral trace.

Nas-integrality certified by the prime p if $d=p^{r}$.

Comments:

1. Experimenting it seems that for $d=10 k(0, d)$ filling is integral.
2. $(0,14)$ filling also has integral trace.
3. $(1, n)$ filling for $n \in[-7,-3] \cup[2,6]$ has integral trace.

Upshot: Challenge to understand eacicly what happens to won-integrality upon filling.

Theorem (R-Rouse)
There are infinitely many distinct knots with non-integral trace.
Basic idea: $L=$ JuG a 2 component hypentrdic link int $S^{3}, L=\mid H^{3} / \Gamma$. Assure J is an unknot and

Linking Number between J and $K= \pm 2$.
Junhuot $\Rightarrow d$-fold branched cyclic cover of S^{3} branded are J is s^{3}.
Linking number $= \pm 2 \Rightarrow$ preimage of K in the brancled cover is connected, ic a knot K_{d}
d large enough S^{3}, K_{d} is hupreulodic: Can think of S^{3}, K_{d} as α-fold uyclic cover of $(d, 0)$ filling on J. ($\left(\lambda_{d}\right)$ $\exists \alpha \in \Gamma$ with tr (α) algebraic non-iwteger. Control $x_{p}(\alpha)$ an canonical opt. Show Q_{d} has non-integral trace.
$\Rightarrow S^{3} 1 K_{d}$ has non-integsal trace.

The link: Let L be the 2 component link L11n106 from Thistlethwaite's table of 2 component links through 11 crossings shown below.

K is the knot 7_{6}
Where J goes under k

The volume of $S^{3} \backslash L$ is approximately 10.666979133796239 .

The knots K_{d} obtained as branched covers of J.

Perform isotopy of L Cut along seitut Surface F Glue a copies together.

$J^{\prime}=$ lift of J
Glue in solid tons to get K_{d}
[Goadon-lithellard: S^{3}, K_{d} contains a closed ecureelded essential suface]

From SnapPy a presentation for $\Gamma=\pi_{1}\left(S^{3} \backslash L\right)$ is given as follows. Generators are a and b with relation:
$a b b b a B A b a a b A B a B A b a a b A B a b b b a B A b a a b A B B B A b a B A A B a b$ $A b a B A A B a b A B B B A b a B A A B=1$

Also from SnapPy meridians for J and K are given by $J: b a a b A B a b b b a B A A B a b A B B B A b a B A A B a b b b a B A$ (call this m_{0}) $K: b a$

Using SnapPy (or Snap) it can be checked that the trace-field of Γ is $\mathbb{Q}(\sqrt{-7})$ and that $\operatorname{tr}(\mathrm{a})= \pm(13+7 \sqrt{-7}) / 8$ and $\operatorname{tr}(\mathrm{b})= \pm(17+3 \sqrt{-7}) / 8$ and so both are algebraic non-integers.

$$
\operatorname{tr}\left(b_{a}\right)=-2
$$

We will consider how $\chi_{\rho}(b)$ varies on that part of the canonical component X_{0} of $\pi_{1}\left(S^{3} \backslash L\right)$ where
$\| \chi_{\rho}(b a)=-2(\rho(b a)$ is kept parabolic $)$, and
$\| \chi_{\rho}\left(m_{0}\right)=2 \cos (2 \pi / d), d$ odd $\left(\rho\left(m_{0}\right)\right.$ is elliptic of order $\left.d\right)$.
Setting $X=\chi_{\rho}(a)$ and $Y=\chi_{\rho}(b)$ we find that X and Y Using satisfies $P(X, Y)=0$ where $P(X, Y)$ is given by:
$X^{8} Y+7 X^{7} Y^{2}-2 X^{7}+21 X^{6} Y^{3}-7 X^{6} Y+35 X^{5} Y^{4}-3 X^{5} Y^{2}-$ $8 X^{5}+35 X^{4} Y^{5}+20 X^{4} Y^{3}-29 X^{4} Y+21 X^{3} Y^{6}+40 X^{3} Y^{4}-$ $39 X^{3} Y^{2}-7 X^{3}+7 X^{2} Y^{7}+33 X^{2} Y^{5}-23 X^{2} Y^{3}-17 X^{2} Y+$ $X Y^{8}+13 X Y^{6}-5 X Y^{4}-14 X Y^{2}+X+2 Y^{7}-4 Y^{3}$
$P(X, Y)$ is irreducible over \mathbb{Q} (indeed over \mathbb{C}).
Using
matrematica
Set $t=\chi_{\rho}\left(m_{0}\right)$. Computing gives a polynomial $Q(t, X, Y)$ and eliminating X using $P(X, Y)$ results in the following polynomial $R(t, Y)$:
$669124 t-2 t^{7}-498002 t^{5}-5223073 t^{3}-16 t Y^{24}+$ $\left(120 t^{2}+176\right) Y^{23}+\left(-t^{5}-344 t^{3}-1595 t\right) Y^{22}+$ $\left(-t^{7}-265 t^{5}-8323 t^{3}-5017 t\right) Y^{20}+\left(31 t^{7}-820 t^{5}+45501 t^{3}+\right.$ $26034 t) Y^{18}+\left(-428 t^{7}+34065 t^{5}-60100 t^{3}-223825 t\right) Y^{16}+$ $\left(3393 t^{7}-229701 t^{5}-1671221 t^{3}-1389221 t\right) Y^{14}+$
$\left(-16709 t^{7}+392665 t^{5}+4196073 t^{3}+3978713 t\right) Y^{12}+$ $\left(51769 t^{7}+613384 t^{5}+1570051 t^{3}+257774 t\right) Y^{10}+(-$ $\left.97592 t^{7}-3180386 t^{5}-27592720 t^{3}-28733690 t\right) Y^{8}+$ $\left(102474 t^{7}+3256419 t^{5}+42551766 t^{3}+53431661 t\right) Y^{6}+$ $\left(-49677 t^{7}+1658479 t^{5}-6346815 t^{3}-21240713 t\right) Y^{4}+$ $\left(6945 t^{7}-5819870 t^{5}-50037327 t^{3}-50675755 t\right) Y^{2}+$ $\left(2 t^{6}+466 t^{4}+5400 t^{2}+1265\right) Y^{21}+\left(8 t^{6}+5340 t^{4}-4891 t^{2}-\right.$ 551) $Y^{19}+\left(246 t^{6}-65918 t^{4}-71499 t^{2}+10156\right) Y^{17}+(-$ $\left.8510 t^{6}+292550 t^{4}+1114568 t^{2}+263159\right) Y^{15}+$ $\left(62972 t^{6}+480016 t^{4}+532043 t^{2}-387\right) Y^{13}+\left(-184968 t^{6}-\right.$ $\left.4075296 t^{4}-11015955 t^{2}-1827985\right) Y^{11}+\left(148666 t^{6}+\right.$ $\left.7363350 t^{4}+27163139 t^{2}+4743016\right) Y^{9}+$ $\left(389244 t^{6}+2024132 t^{4}-5822600 t^{2}+2654010\right) Y^{7}+(-$ $\left.959338 t^{6}-19599946 t^{4}-57150066 t^{2}-22718115\right) Y^{5}+$ $\left(659693 t^{6}+19149660 t^{4}+77616992 t^{2}+31164769\right) Y^{3}+$

$$
\left(t^{8}+235110 t^{6}+11747029 t^{4}+26741431 t^{2}-669124\right) Y
$$

Note that the highest degree term as a polynomial in $\mathbb{Z}[t]$ is $16 t Y^{24}$

If at algebraic integer specializations of t, the polynomial $\underline{R(t, Y)}$ remains irreducible, then Y is an algebraic non-integer.

Remarks: (1) As a check, Mathematica shows that $R(-2,(17+3 \sqrt{-7}) / 8)=0$ (i.e. at the faithful discrete representation).
(2) $R(-2, Y)$ is reducible, factoring as
$R(-2, Y)=$
$\left(Y^{9}+15 Y^{8}+104 Y^{7}+435 Y^{6}+1205 Y^{5}+2285 Y^{4}+2956 Y^{3}+2506 Y^{2}\right.$ $+1257 Y+283)^{2}\left(2 Y^{2}-5 Y+4\right)\left(4 Y^{2}-17 Y+22\left(4 Y^{2}-11 Y+8\right)\right.$
with the factor corresponding to the complete structure being $4 Y^{2}-17 Y+22$.

For d odd, perform $(d, 0)$-Dehn filling on J, which amounts to setting $t=2 \cos (2 \pi / d)$ in $R(t, Y)$.
FACT: For d odd, $2 \cos (2 \pi / d)$ is a unit.
Result will now follow from:
Proposition: For infinitely many odd $d>1$, the polynomial $R(2 \cos (2 \pi / d), Y)$ is irreducible over $\mathbb{Q}(\cos (2 \pi / d))$.
\Rightarrow Specializing $t=2 \cos 2 \pi / d$, d odd Y is not an algebraic integer $\Rightarrow Q_{d}$ has non-integral trace.

Ideas in the proof:

It is convenient to change to the polynomial
$S(X, Y)=X^{8} R\left(X+X^{-1}, Y\right)$.
WHY: Let $\zeta_{d}=\exp (2 \pi i / d)$, and note that
$S\left(\zeta_{d}, Y\right)=\zeta_{d}^{8} R(2 \cos (2 \pi / d), Y)$, so $S\left(\zeta_{d}, Y\right)$ is irreducible in $\mathbb{Q}\left(\zeta_{d}\right)[Y]$ if and only if $R(2 \cos (2 \pi / d), Y)$ is. That $S\left(\zeta_{d}, Y\right)$ is irreducible in $\mathbb{Q}\left(\zeta_{d}\right)[Y]$ will be established using the following result.

Theorem (Dvornicich and Zannier)

Let k be a number field and k^{c} the field obtained by adjoining all roots of unity to k. If $f \in k^{c}[X, Y]$ and $f\left(X^{m}, Y\right)$ is irreducible in $k^{c}[X, Y]$ for all positive integers $m \leq \overline{d e g_{\nu} f, \text { then } f(\zeta, Y) \text { is }}$ irreducible in $k^{c}[Y]$ for all but finitely many roots of unity ζ. Thus need to check $S\left(X^{m}, Y\right)$ is irreducible over \mathbb{Q}^{c} for all $m \leq 24$. Indeed we prove it over $\overline{\mathbb{Q}}$.

Theorem (Bertone, Chéze, Galligo)
Let k be a field and $f(X, Y) \in k[X, Y]$ be an irreducible polynomial. Let $\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{l}, j_{l}\right)\right\} \subset \mathbb{Z}^{2}$ be the vertex set of its Newton polygon. If $\operatorname{gcd}\left(i_{1}, j_{1}, \ldots, i_{l}, j_{l}\right)=1$, then $f(X, Y)$ is irreducible over \bar{k}.

Need to check:

1. $S\left(X^{m}, Y\right)$ is irreducible over \mathbb{Q}; (using Matlematica)
2. the Newton polygon of $S\left(X^{m}, Y\right)$ satisfies the conditions of the Theorem.

Question: Is the figure-eight knot the only knot in S^{3} with quadratic imaginary invariant trace-field?

By arithmeticity, if there is such a knot it would have non-integral trace!

Conjecture: YES.

Question: Does there exist a closed hyruholic 2-, 3maritold H^{*} / r with all won-trivial elements of Γ having the property that $\operatorname{tr}(\gamma)$ is a alfebaric non-intoger.

THANK You

Non-integral kuot.
Last of the 12 crossing non-alternotis noots.

$$
\text { Volume } \approx 13.64075 \ldots
$$

Trace field gereazicl by a voit y

$$
x^{4}-x^{3}-2 x^{2}+3 x+1=0
$$

(Discrivat -2068).

Knotscape diagram: $12 \mathrm{n} _888$
Nou-integrality certificel by $p=2$

