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A hyperbolic 3-manifold M is a quotient of H3 by a discrete
group of �xed point free isometries of H3. This Kleinian group
is isomorphic to the fundamental group of the manifold π1(M).

This leads to a tiling of H3 by hyperbolic polyhedra. M is
obtained from a single tile by identifying pairs of faces. M
inherits hyperbolic metric and volume from this tile.

A hyperbolic knot is such a knot K that its complement in a
3-sphere S3 is a hyperbolic manifold. Mostow-Prasad Rigidity
Th.: for a �nite-volume manifold the hyperbolic metric is
unique as long as it is complete.



The set of all representations of π1(M) into PSL(2, C) is the
PSL(2,C)-representation variety R(Γ).

A banana is either a surface which consists of the points at a
�xed hyperbolic distance from a geodesic (axis of the banana)
in H3, or a horosphere. Bananas are invariant surfaces under
isometries of H3.

Pictures by Morwen Thislethwaite, Jim Belk, Henry Segerman

For many representations, the boundary torus of a knot lifts to
closed bananas in H3. W. Thurston called such representations
geometric. They correspond to incomplete hyperbolic
structures.



The unique complete hyperbolic structure of M corresponds to
the discrete faithful representation.

Conjugate representations correspond to the same structure.

For irreducible representations (not conjugate to an upper
triangular one), being conjugate is equivalent to having equal
traces. So character variety X (Γ), the set of all representations
up to trace equivalence, is useful.

A component of X (Γ) that contains such the unique faithful
representation is a canonical component. For a hyperbolic knot,
this is a complex curve.

For a hyperbolic knot, there are in�nitely many geometric
representations in any neighborhood of a discrete and faithful
representation on the canonical curve.

We obtain equations for geometric representations. The
equations de�ne any canonical component. Due to lifting, this
will determine SL2(C) representations as well.



"Heritage" project

2012: Thistlethwaite-T., An alternative approach to hyperbolic

structures on link complements. Algorithm for computing
parabolic representations from a link diagram.

2013: ICERM special program, M. Culler:
Can this be generalized beyond parabolic?

2021: preprint Petersen-T., prove that it can be generalized for
knots. Not yet links: to simplify, assume all meridianal curves
are homotopic.

Upcoming, by a team of postdocs and students: SnapPy-based
code that takes a knot and gives equations for canonical
component using this method.



Computing geometric representations: prior work

SnapPea: method for computing the complete hyperbolic
structure of 3�manifolds by Thurston, Weeks. SnapPy by
Culler, Dun�eld, Goerner. Generalized to compute geometric
representations: gluing variety. Also generalized to compute
boundary-unipotent representations into SL(n,C) by
Garoufalidis, D. Thurston, Zickert, project CURVE.

This relies on a suitable triangulation that is being found
heuristically using the software.

Our method only uses regions of a knot diagram D; no
triangulation or polyhedral decomposition is involved. Di�erent
equations with di�erent degrees are useful for investigating and
simplifying. Easy to use for in�nite families of knots with
similar diagrams.

Computing parabolic representations only: Riley (1972),
Thislethwaite-T.(2012) and Kim-Kim-Yoon (2018) with
similarities. Computations of varieties for families of knots that
admit nice representations: Macasieb-Peterson-Lujik, Chehn,
Tran, ...



A topological accidental parabolic is a curve that is not
boundary parallel in a manifold, but is homotopic to a peripheral
arc. We work with taut diagrams: each associated checkerboard
surface must be incompressible and boundary incompressible in
the link complement, and not contain any simple closed curve
representing a topological accidental parabolic.

Lemma. If D is taut, then for in�nitely many geometric
representations, the lift of a crossing arc in H3 is homotopic to
a unique geodesic.

Lemma. Consider two consecutive crossing arcs in a region of
a link diagram. Their preimages in H3 share an ideal point. I.e.
the situation on the right occurs. The situation on the left does
not occur.



A region of D is bounded by red arcs from an overpass to an
underpass, and green arcs on the boundary torus. Its preimage
in H3 for in�nitely many geometric representations is now
unique. It is a cyclic sequence of bananas in H3, connected by
geodesic arcs.

But a representation is naturally de�ned for all elements of
π1(M): loops. We prove that in�nitely many representations on
the canonical component extend to red and green arcs as well.

Hence we can assign an element of PSL(2,C) to every arc.
This corresponds to an isometry that �xes the geodesic as a set
in H3 and sends a lift of the base point to the next lift of this
point along the geodesic.

Finally we prove that any set-up of this form determines a
representation of the knot group to PSL(2,C).



A simple closed curve µ traveling once around the boundary
torus of a link is a meridian. Its preimage in H3 lies on a
banana. There is an isometry that corresponds traveling along a

meridian. Up to conjugation, it is ρ(µ) = M =

(
m 1
0 m−1

)
.

We then show that we can conjugate in�nitely many geometric
representations as follows. Green arcs correspond to an
edge matrix U . Red arcs correspond a crossing matrix W ,

where U = (±)

(
v u
0 v−1

)
, W = (±)

(
0 c
−c−1 0

)
.

The matrix entries have geometric meaning. Once the scale of
the bananas is �xed, the modulus of the complex number
captures hyperbolic distance, and argument captures the
dihedral angle between meridians on bananas.



Relations

Use symmetry of the diagram to assign matrices.

For bigons/twists, edge matrices are I , and crossing matrices
are identical.

Color the regions of the diagram as a checkerboard. Each edge
gives rise to two arcs: on the boundary of the black region,
labeled Uj , and of the white one, Ui . Traveling along one arc
and returning along another makes a meridian: UiU

−1
j = M .

Every region polygon closes up, so the composite of all the
corresponding isometries is I . Hence the product of the
respective matrices is a scalar multiple of I .

From the matrix entries read o� independent polynomial
relations for every region.



Example: character variety of an in�nite family of braids

(σ1(σ2)−1)n, n > 2

Region I: W1U2W2U
−1
3

W2U4 = k1I .
Region II: (W1U

−1
1

)n = k2I .
Region III: (W2M

−1U3)n = k3I .
Region IV: W1M

−1U1W1(M−1U4)−1W2(M−1U2)−1 = k4I .
Here I is the identity matrix and kj , j = 1, 2, 3, 4, is a scalar
multiple.

As a result, we obtain formulas for equations in terms of matrix
entries for an arbitrary n. These are equations for the character
variety of the canonical component.



The equations can be simpli�ed further. There is an isometry of
H3 which maps three consecutive banana endpoints
Pi−1,Pi ,Pi+1 to Pi ,Pi+1,Pi+2. It is z → −ξi

z−1, where

ξi = |Pi−1Pi ||Pi+1Pi+2|
|Pi−1Pi+1||PiPi+2| is the cross-ratio of distances between 4

points, called a shape parameter. One can write it in terms of
edge and crossing matrix entries.

Consider Xi = ξ
−1/2
i

(
0 −ξi
1 −1

)
. For a non-degenerate region S ,

which is not a bigon, with edges labeled from 1 to n, we have
n∏

i=1

Xi = ±I .

This leads to multiplying k matrices rather than 2k for a
k-sided region.


