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The problems

I P1. Given a hyperbolic group Γ given by its finite presentation
and a homomorphism ρ : Γ→ G to a semisimple Lie group,
determine if ρ is discrete and faithful.

I P2. Given A1, ...,An ∈ G determine if the subgroup
〈A1, ...,An〉 generated by these elements is discrete.

I I will discuss two geometric (semi) algorithms, one is based on
the Poincaré Fundamental Polyhedron Theorem,

I the the other based on ideas from Geometric Group Theory,
more precisely, Morse quasigeodesics.

I Since our time is limited, I will mostly restrict to the case
when G = SO(n, 1).

I In fact, both algorithms check if the subgroup of G is satisfies
a condition which is stronger than discreteness, namely, some
form of geometric finiteness.



Remarks
I My lectures aim for what works (potentially) in higher rank

Lie groups.
I There are other geometric algorithms for discreteness, such as

algorithms of Jane Gilman and Bernard Maskit, and Jane
Gilman, which are historically the first rigorous algorithms for
discreteness of subgroups of SL(2,R) with two generators.
Their algorithm is different from the ones I will discuss. Jane
Gilman also analyzed of the computational complexity (it’s
linear for their algorithm for subgroups of SL(2,Q) and
exponential for Riley’s).

I There is yet another certifying maximal representations, e.g.
discrete and faithful representations of surface groups to
SL(2,R); done by approximately computing the 1st Chern
class of a representation.

I The discreteness problem for 2-generated subgroups of
SL(2,C) is undecidable (in a suitable sense). A proof is based
on our extensive knowledge of discrete subgroups of SL(2,C).
Undecidability is unknown for subgroups of SL(3,R).



Geometrically finite subgroups of SO(n, 1)
I Definition. A subgroup Γ of SO(n, 1) is called geometrically

finite in the sense of Ahlfors if for some p ∈ Hn the Dirichlet
fundamental polyhedron DΓ,p in Hn has finitely many faces.

I Geometric finiteness implies discreteness.
I Dirichlet fundamental polyhedron:

D = DΓ,p = {x ∈ Hn : d(x , p) ≤ d(x , γp),∀γ ∈ Γ, γ 6= 1},
p not fixed by γ ∈ Γ \ {1}.

I Below is a simplified version of the Poincaré algorithm for
constructing D (Jorgensen; Riley;...).

I For each L ∈ N, enumerate elements w of Γ of word length
`(w) ≤ L.

I Compute DL := {x ∈ Hn : d(x , p) ≤ d(x , γp), `(w) ≤ L}.
Check if DL meets the conditions of Poincaré Fundamental
Polyhedron Theorem.

I Algorithm terminates if and only if Γ is geometrically finite.
I Question. How to generalize this to Lie groups of higher

rank, e.g. SL(n,R)?
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Convex-cocompact subgroups

I Definition. A subgroup Γ of G , a rank 1 Lie group (say,
G = PO(n, 1)) is called convex-cocompact if it is
geometrically finite and has no parabolic elements.

I A better definition is via Geometric Group Theory.

I Let Γ be a finitely-generated group, |γ| denotes the distance
to e ∈ Γ in the given Cayley graph.

I A representation ρ : Γ→ G is called undistorted if there exists
a constant L ≥ 1 such that

I for each γ ∈ Γ
L−1|γ| ≤ d(1G , ρ(γ))

I where d is a left-invariant metric on G .

I Note that such representation is automatically discrete and
has finite kernel.

I Fact of life: It is hard to construct discrete and faithful
representations of a finitely generated group whose image is
not geometrically finite.



Undistorted subgroups

I Theorem (Bowditch?). A finitely-generated subgroup Γ < G
(say, G = PO(n, 1)) is convex-cocompact if and only if the
inclusion map Γ→ G is undistorted.

I I will now describe a local-to-global test for non-distortion.

I Definition. Let c : [0,N]→ (X , d) (a metric space) be a
piecewise-geodesic path such that each c([i , i + 1]) is a
geodesic segment of length ≤ L. Then c is an L-quasigeodesic
if

I L−1|i − j | ≤ d(c(i), c(j)), i , j ∈ [0,N] ∩ Z.
I Let ρ : Γ→ G = Isom(X ) be a representation. Fix p ∈ X .

I Then we have the orbit map op : Γ→ X ,
op(γ) = ρ(γ)(p) ∈ X .

I Easy Observation. ρ is undistorted if and only if there exists
L such that op sends geodesics in the Cayley graph of Γ to
L-quasigeodesics in X .



Local-to-global test for quasigeodesics

I Theorem (Folklore?). Suppose that c is a piecewise-geodesic
path in Hn (or any rank 1 symmetric space X of curvature
≤ −1) whose angles at the vertices are ≥ α > 0 and whose
sides are longer than a, where α and a satisfy the inequality

(?) cosh(a/2) sin(α/2) ≥ ν

where ν > 1 is some fixed constant, say,
√

2. Then c is an
L-quasigeodesic. The constant L depends only on ν.

I Thus, if the orbit map sends geodesics in the Cayley graph of
Γ to paths c satisfying the condition (?), then ρ is undistorted.

I Note that we just need to test the above condition (?) only on
broken paths of the form

[ργ±1
i (p)p] ∪ [p, ργ±1

j (p)]

where [γ±1
i , e] ∪ [e, γ±1

j ] are geodesic in Γ and γi , γj are
generators.



Midpoint modification

I The good news: We got a truly local-to-global principle.

I The bad news: The chances that an undistorted
representation satisfies the condition (?) are quite slim.

I Hence, we will look for a modification procedure that converts
each quasigeodesic path to one satisfying (?).

I Consider a broken geodesic path in X which is the union of at
least three geodesic segments:

c = ...[x0x1] ∪ [x1x2] ∪ [x2x3]...

I Let mi denote the midpoint of [xi−1xi ].

I I’ll say that c satisfies the midpoint condition if the
associated midpoint path

...[m1m2] ∪ [m2m3]...

I satisfies the quasigeodesic condition (?) from the page before.
(As before, the condition is local.)
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The KLP algorithm
I Now, given a geodesic line σ in the Cayley graph of Γ

(containing e) and a natural number N,
I we define the N-skip biinfinite sequence σN by using the

sequence of vertices (wi ) in it such that w0 = e and
|wiw

−1
i+1| = N, i ∈ Z.

C

.ee#i....4-.y--
CN ,

N =3

I Fact. If a representation ρ is undistorted, then there exists N
(depending only on the qi constant L) such that for each
geodesic σ in Γ the N-skip path σN is mapped via the orbit
map op to a path satisfying the midpoint condition.

I Now, I can describe in the case of representations to
G = Isom(X ) (e.g. PO(n, 1)) the KLP algorithm
(Kapovich-Leeb-Porti, 2014) testing if the given representation
ρ is undistorted, assuming that Γ has generators A1, ...,Am.



The KLP algorithm

I For each natural number N, consider all geodesic
N-quadruples (1,w1,w2,w3) of (reduced) words in
A±1

1 , ...,A±1
m ,

dΓ(e,w1) = N, dΓ(w1,w2) = N, dΓ(w2,w3) = N.

Here, d(e,w2) = 2N, d(e,w3) = 3N.

I For every such N-quadruple, check if it’s image under the
orbit map satisfies the midpoint condition as defined above.
If all such N-quadruples pass the midpoint test, the algorithm
stops: This means that ρ is undistorted.

I If one of the N-quadruples (1,w1,w2,w3) fails the test, stop
the analysis of N-quadruples, increase N by 1 and repeat.

I As a bonus, we also get an estimate from above of the
quasiisometry constant of the orbit map op : γ → ρ(γ)p ⊂ X
(if the algorithm stops).

I Note: The algorithm stops if and only if ρ is undistorted.



Higher rank

I In fact, the KLP algorithm was designed to works for
representations to higher rank Lie groups and test for whether
the given representation ρ is Anosov, which is one of higher
rank notions replacing convex-cocompactness.

I I will not go into details, the algorithm follows the same idea
but is much more complex since the inequalities replacing (?)
are considerably more complicated.

I Explicit estimates for the replacement of the inequality (?)
were made by Max Riestenberg in his PhD thesis this/last
year.



Selberg’s higher rank generalization of Dirichlet domain

I From now on, I will consider subgroups of G = SL(n,R).

I The associated symmetric space X = G/K = SL(n,R)/SO(n)
can be identified with

I {M ∈ Symn×n(R) : M > 0, det(M) = 1}.
I The group G acts on matrices M by M 7→ gTMg .

I The trouble is that it’s hard to compute with the G -invariant
Riemannian distance function d on X .

I Also, bisectors Bisd(A,B) = {M : d(A,M) = d(B,M)} are
not totally geodesic.

I I will describe a 2-point invariant s(A,B) due to Selberg
(1960), which, while not a metric, can be used in lieu of one
to define Dirichlet domains in X , more precisely, in
Pn = {A ∈ Symn×n(R) : A > 0}, the convex cone of
positive-definite matrices in the space of symmetric matrices.

I The advantage of s(A,B) is that it’s easy to compute and the
corresponding bisectors are linear.
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The invariant

I For A,B ∈ Pn, s(A,B) := log( 1
n tr(A−1B)).

I Then s is G -invariant because trace is conjugacy-invariant.

I The normalization is chosen so that s(A,B) ≥ 0 with equality
if and only if A = B.

I However, s(A,B) 6= s(B,A) and s fails the triangle inequality.

I The s-bisectors:

Bis(A1,A2) = {B : tr(A−1
1 B) = tr(A−1

2 B)}

are defined by equation linear in the variable B. Hence,
s-bisectors are linear.

I Another useful property: The function B 7→ s(I ,B) is proper
when restricted to X , because of the ...

I comparison to the invariant Finsler metric dmax on X :
s(I ,A) ≤ dmax(I ,A) ≤ s(I ,A) + log(n).



Selberg-Dirichlet domain

I Selberg-Dirichlet domain for a discrete subgroup Γ < G such
that Γ ∩ O(n) = I .

I D(Γ, I ) = {M ∈ Pn : s(I ,M) ≤ s(γ,M) ∀γ ∈ Γ \ {I}}.
I This is indeed a fundamental domain of Γ if it is discrete.

I The key property to check (follows from properness of s(I ,M)
on X ):

lim
||A||→∞

d(I ,Bis(I ,A) ∩ X ) =∞,

I whenever A ∈ X = {det = 1} ∩ Pn, our symmetric space.

I Linearity of bisectors implies that D(Γ, I ) is a convex
polyhedral cone.



Questions
I The definition suggests a slew of questions, all open. For

instance:
I Which discrete subgroups admit finitely-sided

Selberg-Dirichlet domains?
I Uniform lattices do, but what about non-uniform ones?

Anosov subgroups?
I Is there a simple condition on matrices A,B ∈ X which is

necessary and sufficient for disjointness of the bisectors
Bis(I ,A),Bis(I ,B) in Pn?

I There is an analogue of the Poincaré Fundamental polyhedron
theorem for intersections of half-spaces defined by s(I , ·). But
the “ridge cycle condition” is more complex than the one for
the hyperbolic space. Is there an analogue of the angle
between bisectors so that one can formulate a replacement of
the condition ∑

∠i = 2π

for each ridge-cycle defined by face-pairing transformations?



Poincare Algorithm and faithfulness
I The/A Poincare algorithm is useful even if you dealing with a

subgroup which you already know is discrete, e.g. a subgroup
of GL(n,Z).

I Namely, a finite-sided fundamental domain gives you not only
generators but also relators.

I For instance, given two matrices A1,A2 ∈ GL(n,Z), the
algorithm gives you a new set of generators
B1 = w1(A1,A2), ...,Bk = wk(A1,A2) and defining relators
S1, ..,Sr in the new generators.

I Now, rewrite the relators Si in terms of A1,A2, we get
R1, ...,Rs .

I Then the homomorphism F (A1,A2)→ Γ = 〈A1,A2〉 is faithful
if and only if R1, ....,Rs are all trivial.

I Aparently, Igor Rivin tested a version of the Selberg-Poincare
Algorithm for subgroups of GL(n,Z), n = 3, 4.

I The only known to me implementations are for subgroups of
SL(2,C) (Snappy) and PU(2, 1) (Deraux; Cartwright–Steger).



Poincare Algorithm for finding a finite presentation of a
uniform lattice

I Let Γ < SL(n,R) be a uniform lattice given by its arithmetic
data.

I For each N ∈ N find the subset ΓN matrices A ∈ Γ such that
s(I ,A) ≤ N — a finite search.

I Compute the intersection CN of closed half-spaces
{s(I , x) ≤ s(A, x)} for A ∈ ΓN .

I Check if this intersection is contained in the cone Pn of
positive-definite matrices.

I If it is not, then increase N to N + 1 and repeat.

I If yes, then compute the Selberg-radius
δ = max{s(I , x) : x ∈ DN} of DN := CN ∩ X (imposing the
condition det = 1).

I Find all A ∈ Γ such that N ≤ s(I ,A) ≤ 2δ + 2 log(n).

I D2δ+2 log(n) will be the Selberg-Dirichlet domain of Γ.


