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A linear group (aka matrix group) is a subgroup of some GL(n,F), F field.

Linear groups are well suited to calculation and offer a concise way to work

with (abstract) groups and related objects.

But there are serious obstacles to practical computing with linear groups

over infinite F:

• undecidability, or lack of knowledge of decidability

• computational complexity; e.g., uncontrollable growth of entries

during matrix multiplication.

Also, formerly a dearth of methods.

Nonetheless, linear groups over infinite F occur often in applications.

We want to compute effectively (symbolically) with these groups.
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This talk is a brief look at foundations of an ongoing project to compute

with finitely generated G ≤ GL(n,F).

Goals:

(i) Practical methodology applicable to any F and (finitely generated)

input G.

(ii) Use of (i) to design and implement effective algorithms.

Implementations are available as part of the systems Magma and GAP.

Sometimes these prove decidability of problems, for the first time.

N.B.: computing with matrix groups over finite fields is very

well-established: the ‘Matrix Group Recognition Project’.
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Finite approximation

Fix notation: G = 〈S〉 ≤ GL(n,F) finitely generated;

R is the subring of F generated by the entries of all g ∈ S ∪ S−1.

R is a finitely generated integral domain and G ≤ GL(n,R).

Quotient fields of R are finite.

Lemma

For each non-zero element a of R, there exists a maximal ideal ρ of R

such that a 6∈ ρ.

Thus R is ‘approximated’ by finite fields: R is residually a finite field.

(If charR = 0 then char(R/ρ) runs over almost all primes.)

Computing with finitely generated linear groups: foundations



If ρ ⊂ R is an ideal, then ϕρ denotes the reduction modulo ρ congruence

homomorphism R→ R/ρ on R, and (by entrywise extension) on subsets

of Mat(n,R). Also ϕρ : GL(n,R)→ GL(n,R/ρ).

Mal’cev proved (uses lemma above):

Theorem (Mal’cev)

If g1, . . . , gr ∈ Mat(n,R) are pairwise distinct, then ∃ maximal ideal ρ of

R such that ϕρ(g1), . . . , ϕρ(gr) ∈ Mat(n,R/ρ) are pairwise distinct.

Therefore, finitely generated linear groups are residually finite.

Moreover, each finitely generated matrix group is approximated by matrix

groups of the same degree over finite fields.
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Computational finite approximation: setting the field

Theorem (Noether normalization)

Let F be finitely generated as a field, and let E be its prime subfield.

There exist E-algebraically independent elements ξ1, . . . , ξm of F, m ≥ 0,

such that F is a finite extension of the function field E(ξ1, . . . , ξm).

So ‘any F’ really means one of the following (determined by G):

an algebraic number field P;

an algebraic function field, i.e., finite extension of E(x1, . . . , xm),

E = Fq or P.

Such fields are supported by Magma, GAP. Our algorithms have been

designed for such fields.
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Computational finite approximation: constructing congruence

homomorphisms

After defining G over a field F containing R that we can compute with, we

apply congruence homomorphisms ϕρ for (maximal) ideals ρ ⊆ R.

Our computational duties then split in two: computing with ϕρ(G) ≤
GL(n,R/ρ); computing with the congruence subgroup Gρ := G ∩ kerϕρ.

ϕρ(G) is a matrix group over a finite field. We hand it to MGRP.

Although Gρ is finitely generated, computing a generating set of Gρ is out.

Instead, we only need to compute ‘normal generators’ for Gρ.

That is enough to find an enveloping algebra of Gρ in Mat(n,F), which is

enough to detect properties of Gρ of interest.
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Normal subgroup generators

Lemma

Let H be finitely generated, say H = 〈h1, . . . , hs〉, and let f : H → K be

a homomorphism such that f(H) ≤ K has a presentation

〈h1, . . . , hs | R〉

where hi := f(hi) and R = {w1(h1, . . . , hs), . . . , wk(h1, . . . , hs)}. Then

ker f is the normal closure

〈w1(h1, . . . , hs), . . . , wk(h1, . . . , hs)〉H .

Note the required format of the image presentation.
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So, to handle Gρ, we want a presentation for ϕρ(G) = 〈ϕρ(S)〉, say in

GL(n, q), of the required format.

Effecting congruence homomorphisms ϕρ is straightforward in practice.

The main operations are

reduction modulo rational primes;

substitution for indeterminates in function fields.
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Several aspects enhance efficiency of our algorithms, e.g.:

transferring matrix algebra as much as possible to congruence images

(over a finite field—ameliorate entry explosion);

use of ‘short presentations’ in GL(n, q);

replacement of computation in the input group over infinite F by

computation in related matrix algebras over F.
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Application I: deciding finiteness

In applications of computational finite approximation, we need to find

special ideals ρ for congruence homomorphisms ϕρ.

The kind of ρ sought is determined by the specific problem considered.

Theorem (Selberg–Wehrfritz)

Each finitely generated linear group G has a normal subgroup N of finite

index whose finite order elements are all unipotent.

In particular, if char F = 0, then G is (torsion-free)-by-finite.

When N is a congruence subgroup Gρ for maximal ρ in R, we call ϕρ an

SW-homomorphism.

Proof of the Selberg–Wehrfritz theorem does not give N as a Gρ.
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Theorem

Let ∆ be a Noetherian integral domain, and let ρ be a maximal ideal of ∆.

If g ∈ GL(n,∆)∩ kerϕρ has finite order, then |g| is a power of char(∆/ρ).

So, if char F > 0 and ρ is any maximal ideal of R, then ϕρ is an

SW-homomorphism. For char F = 0 we have other results, enabling

construction of SW-homomorphisms for all types of F.

In summary:

Theorem (Finiteness Criteria)

Let ϕρ be an SW-homomorphism on G ≤ GL(n,R).

(i) Suppose that charR = 0. Then G is finite ⇔ Gρ = {1n}.
(ii) Suppose that charR = p > 0. Then G is finite ⇔ Gρ is a finite

p-group (i.e., is unipotent).
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IsFinite(S)

Input: a finite subset S of GL(n,R), charR = p ≥ 0.

Output: true if G = 〈S〉 is finite; false otherwise.

1. Select SW-homomorphism ϕρ and compute ϕρ(G) ≤ GL(n, q), |R/ρ| = q.

2. N := NormalGenerators(S, ϕρ).

3. If p = 0 and N = {1n},
or p > 0 and 〈N〉G is unipotent,

then return true;

else return false.

Note: step 3 for p > 0 is a matrix algebra computation, using the output

of step 2 (the full normal closure Gρ of 〈N〉 cannot be computed directly

by a standard recursion).
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Application II: deciding virtual properties

To decide the Tits class of G, i.e., to test whether G is virtually solvable

(solvable-by-finite, SF), we rely on a theorem by Mal’cev–Lie–Kolchin: an

SF linear group has a unipotent-by-abelian (i.e., triangularizable) normal

subgroup of finite index.

Recall that by Tits’ theorem, if G is not SF then it contains a non-abelian

free subgroup F ; our algorithm doesn’t produce such F .

Our approach is different to previous ones (over Q, by Beals, Dixon,

Assmann & Eick); again, uniform and works over any F.

Relies on criteria by Wehrfritz for Gρ to be unipotent-by-abelian if G is SF.
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Theorem (Wehrfritz, 2010)

Let G ≤ GL(n,R) be solvable-by-finite, and let ρ an ideal of R.

Then Gρ is unipotent-by-abelian if

(i) R/ρ has prime characteristic greater than n; or

(ii) R is a Dedekind domain of characteristic zero, ρ is a maximal ideal

of R, char(R/ρ) = p > 2, and p 6∈ ρp−1.

Gρ in (ii) is Zariski-connected.

If ρ is an ideal of R such that Gρ is unipotent-by-abelian for SF

G ≤ GL(n,R), then we call ϕρ a W-homomorphism.

Just as for SW-homomorphisms, we can construct W-homomorphisms

for all main types of F.
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IsSolvableByFinite(S)

Input: finite S ⊆ GL(n,R).

Output: true if G = 〈S〉 is solvable-by-finite; false otherwise.

1. Select ρ ⊆ R such that ϕρ is a W-homomorphism, and compute ϕρ(G).

2. N := NormalGenerators(S, ϕρ).

3. Return true if 〈N〉G is unipotent-by-abelian; else return false.

Step 3 is again an enveloping algebra computation.

We test other virtual properties: roughly, G is X-by-finite (for X ∈
{nilpotent, abelian, central}) ⇔ W-congruence subgroup Gρ is X.
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Software

Much of the preceding has been implemented; joint work with Eamonn

O’Brien.

Procedures are available in releases of Magma. See

https://magma.maths.usyd.edu.au/magma/handbook/matrix_

groups_over_infinite_fields
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From finite to strong approximation

To answer questions in the first Tits class, one maximal ideal suffices.

But ‘most’ linear groups are not solvable-by-finite.

The next phase is computing with dense subgroups of algebraic groups.

Here, need more than one ideal & typically not maximal.

Ongoing work with Alla Detinko and Alexander Hulpke.

Much more detail in: Expositiones Mathematicae 37:4, 2019, 454–484.

http://www.maths.nuigalway.ie/~dane/Expositiones.pdf
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