Computing with finitely generated linear groups: foundations

Dane Flannery (NUI Galway, Ireland); joint work with Alla Detinko, Alexander Hulpke, Eamonn O'Brien

Computational Aspects of Discrete Subgroups of Lie Groups, June 2021

Computing with finitely generated linear groups: foundations

A *linear group* (aka *matrix group*) is a subgroup of some $GL(n, \mathbb{F})$, \mathbb{F} field. Linear groups are well suited to calculation and offer a concise way to work with (abstract) groups and related objects.

But there are serious obstacles to practical computing with linear groups over infinite \mathbb{F} :

- undecidability, or lack of knowledge of decidability
- computational complexity; e.g., uncontrollable growth of entries during matrix multiplication.

Also, formerly a dearth of methods.

Nonetheless, linear groups over infinite \mathbb{F} occur often in applications. We want to compute effectively (symbolically) with these groups. This talk is a brief look at foundations of an ongoing project to compute with *finitely generated* $G \leq GL(n, \mathbb{F})$.

Goals:

- (i) Practical methodology applicable to any \mathbb{F} and (finitely generated) input G.
- (ii) Use of (i) to design and implement effective algorithms.

Implementations are available as part of the systems $\rm MAGMA$ and GAP. Sometimes these prove decidability of problems, for the first time.

N.B.: computing with matrix groups over **finite fields** is very well-established: the 'Matrix Group Recognition Project'.

Finite approximation

Fix notation: $G = \langle S \rangle \leq \operatorname{GL}(n, \mathbb{F})$ finitely generated;

R is the subring of \mathbb{F} generated by the entries of all $g \in S \cup S^{-1}$.

R is a finitely generated integral domain and $G \leq GL(n, R)$.

Quotient fields of R are finite.

Lemma

For each non-zero element a of R, there exists a maximal ideal ρ of R such that $a \notin \rho$.

Thus R is 'approximated' by finite fields: R is residually a finite field. (If char R = 0 then char (R/ρ) runs over almost all primes.) If $\rho \subset R$ is an ideal, then φ_{ρ} denotes the reduction modulo ρ congruence homomorphism $R \to R/\rho$ on R, and (by entrywise extension) on subsets of Mat(n, R). Also $\varphi_{\rho} : GL(n, R) \to GL(n, R/\rho)$.

Mal'cev proved (uses lemma above):

Theorem (Mal'cev)

If $g_1, \ldots, g_r \in Mat(n, R)$ are pairwise distinct, then \exists maximal ideal ρ of R such that $\varphi_{\rho}(g_1), \ldots, \varphi_{\rho}(g_r) \in Mat(n, R/\rho)$ are pairwise distinct.

Therefore, finitely generated linear groups are residually finite.

Moreover, each finitely generated matrix group is *approximated by matrix* groups of the same degree over finite fields.

Computational finite approximation: setting the field

Theorem (Noether normalization)

Let \mathbb{F} be finitely generated as a field, and let \mathbb{E} be its prime subfield. There exist \mathbb{E} -algebraically independent elements ξ_1, \ldots, ξ_m of \mathbb{F} , $m \ge 0$, such that \mathbb{F} is a finite extension of the function field $\mathbb{E}(\xi_1, \ldots, \xi_m)$.

So 'any \mathbb{F} ' really means one of the following (determined by G):

- an algebraic number field P;
- an algebraic function field, i.e., finite extension of $\mathbb{E}(x_1, \ldots, x_m)$, $\mathbb{E} = \mathbb{F}_q$ or \mathbb{P} .

Such fields are supported by ${\rm MAGMA},$ GAP. Our algorithms have been designed for such fields.

Computational finite approximation: constructing congruence homomorphisms

After defining G over a field \mathbb{F} containing R that we can compute with, we apply congruence homomorphisms φ_{ρ} for (maximal) ideals $\rho \subseteq R$.

Our computational duties then split in two: computing with $\varphi_{\rho}(G) \leq$ GL $(n, R/\rho)$; computing with the *congruence subgroup* $G_{\rho} := G \cap \ker \varphi_{\rho}$.

 $\varphi_{\rho}(G)$ is a matrix group over a finite field. We hand it to MGRP.

Although G_{ρ} is finitely generated, computing a generating set of G_{ρ} is out. Instead, we only need to compute 'normal generators' for G_{ρ} . That is enough to find an enveloping algebra of G_{ρ} in $Mat(n, \mathbb{F})$, which is enough to detect properties of G_{ρ} of interest.

Normal subgroup generators

Lemma

Let H be finitely generated, say $H = \langle h_1, \ldots, h_s \rangle$, and let $f : H \to K$ be a homomorphism such that $f(H) \leq K$ has a presentation

$$\langle \overline{h}_1, \ldots, \overline{h}_s \, | \, \mathcal{R} \rangle$$

where $\overline{h}_i := f(h_i)$ and $\mathcal{R} = \{w_1(\overline{h}_1, \dots, \overline{h}_s), \dots, w_k(\overline{h}_1, \dots, \overline{h}_s)\}$. Then ker f is the normal closure

$$\langle w_1(h_1,\ldots,h_s),\ldots,w_k(h_1,\ldots,h_s)\rangle^H.$$

Note the required format of the image presentation.

So, to handle G_{ρ} , we want a presentation for $\varphi_{\rho}(G) = \langle \varphi_{\rho}(S) \rangle$, say in $\operatorname{GL}(n,q)$, of the required format.

Effecting congruence homomorphisms φ_ρ is straightforward in practice. The main operations are

- reduction modulo rational primes;
- substitution for indeterminates in function fields.

Several aspects enhance efficiency of our algorithms, e.g.:

- transferring matrix algebra as much as possible to congruence images (over a finite field—ameliorate entry explosion);
- use of 'short presentations' in GL(n,q);
- replacement of computation in the input group over infinite 𝔽 by computation in related matrix algebras over 𝔽.

Application I: deciding finiteness

In applications of computational finite approximation, we need to find special ideals ρ for congruence homomorphisms φ_{ρ} .

The kind of ρ sought is determined by the specific problem considered.

Theorem (Selberg–Wehrfritz)

Each finitely generated linear group G has a normal subgroup N of finite index whose finite order elements are all unipotent.

In particular, if char $\mathbb{F} = 0$, then G is (torsion-free)-by-finite.

When N is a congruence subgroup G_{ρ} for maximal ρ in R, we call φ_{ρ} an *SW-homomorphism*.

Proof of the Selberg–Wehrfritz theorem does not give N as a G_{ρ} .

Theorem

Let Δ be a Noetherian integral domain, and let ρ be a maximal ideal of Δ . If $g \in GL(n, \Delta) \cap \ker \varphi_{\rho}$ has finite order, then |g| is a power of $char(\Delta/\rho)$.

So, if char $\mathbb{F} > 0$ and ρ is any maximal ideal of R, then φ_{ρ} is an SW-homomorphism. For char $\mathbb{F} = 0$ we have other results, enabling construction of SW-homomorphisms for all types of \mathbb{F} . In summary:

Theorem (Finiteness Criteria)

Let φ_{ρ} be an SW-homomorphism on $G \leq \operatorname{GL}(n, R)$.

(i) Suppose that char R = 0. Then G is finite $\Leftrightarrow G_{\rho} = \{1_n\}$.

(ii) Suppose that char R = p > 0. Then G is finite $\Leftrightarrow G_{\rho}$ is a finite p-group (i.e., is unipotent).

 ${\tt IsFinite}(S)$

Input: a finite subset S of GL(n, R), char $R = p \ge 0$. Output: true if $G = \langle S \rangle$ is finite; false otherwise.

- 1. Select SW-homomorphism φ_{ρ} and compute $\varphi_{\rho}(G) \leq \operatorname{GL}(n,q)$, $|R/\rho| = q$. 2. $N := \operatorname{NormalGenerators}(S, \varphi_{\rho})$.
- 3. If p = 0 and $N = \{1_n\}$,

or p > 0 and $\langle N \rangle^G$ is unipotent,

then return true;

else return false.

Note: step 3 for p > 0 is a matrix algebra computation, using the output of step 2 (the full normal closure G_{ρ} of $\langle N \rangle$ cannot be computed directly by a standard recursion).

Application II: deciding virtual properties

To decide the Tits class of G, i.e., to test whether G is virtually solvable (solvable-by-finite, SF), we rely on a theorem by Mal'cev–Lie–Kolchin: an SF linear group has a unipotent-by-abelian (i.e., triangularizable) normal subgroup of finite index.

Recall that by Tits' theorem, if G is not SF then it contains a non-abelian free subgroup F; our algorithm doesn't produce such F.

Our approach is different to previous ones (over \mathbb{Q} , by Beals, Dixon, Assmann & Eick); again, uniform and works over any \mathbb{F} .

Relies on criteria by Wehrfritz for G_{ρ} to be unipotent-by-abelian if G is SF.

Theorem (Wehrfritz, 2010)

Let $G \leq GL(n, R)$ be solvable-by-finite, and let ρ an ideal of R. Then G_{ρ} is unipotent-by-abelian if

- (i) R/ρ has prime characteristic greater than n; or
- (ii) R is a Dedekind domain of characteristic zero, ρ is a maximal ideal of R, char $(R/\rho) = p > 2$, and $p \notin \rho^{p-1}$.
- G_{ρ} in (ii) is Zariski-connected.

If ρ is an ideal of R such that G_{ρ} is unipotent-by-abelian for SF $G \leq \operatorname{GL}(n, R)$, then we call φ_{ρ} a *W*-homomorphism. Just as for SW-homomorphisms, we can construct W-homomorphisms for all main types of \mathbb{F} . ${\tt IsSolvableByFinite}(S)$

Input: finite $S \subseteq GL(n, R)$. Output: true if $G = \langle S \rangle$ is solvable-by-finite; false otherwise.

1. Select $\rho \subseteq R$ such that φ_{ρ} is a W-homomorphism, and compute $\varphi_{\rho}(G)$. 2. $N := \text{NormalGenerators}(S, \varphi_{\rho})$.

3. Return true if $\langle N \rangle^G$ is unipotent-by-abelian; else return false.

Step 3 is again an enveloping algebra computation.

We test other virtual properties: roughly, G is X-by-finite (for $X \in \{nilpotent, abelian, central\}) \Leftrightarrow W$ -congruence subgroup G_{ρ} is X.

Software

Much of the preceding has been implemented; joint work with Eamonn O'Brien.

Procedures are available in releases of $\operatorname{Magma}\nolimits$. See

https://magma.maths.usyd.edu.au/magma/handbook/matrix_ groups_over_infinite_fields

From finite to strong approximation

To answer questions in the first Tits class, one maximal ideal suffices.

But 'most' linear groups are not solvable-by-finite.

The next phase is computing with dense subgroups of algebraic groups. Here, need more than one ideal & typically not maximal.

Ongoing work with Alla Detinko and Alexander Hulpke.

Much more detail in: Expositiones Mathematicae 37:4, 2019, 454-484. http://www.maths.nuigalway.ie/~dane/Expositiones.pdf