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3-manifolds and the Word Problem, I

Throughout the talk:

• M = compact, connected 3-dim. manifold with toral boundary

• G = π1(M) = fundamental group of M = 3-manifold group

• 〈A | R〉 = finite presentation for G , with A = A−1

A∗ = set of all words over A

Def. Word Problem (WP) for G : Is there a computer program
that, upon input of a word w ∈ A∗, decides whether w = 1 in G?



3-manifolds and the Word Problem, II

History:

• (Dehn, 1911) states the WP, solves for surface groups

• (Thurston 1982; Perelman 2002-3; Hempel 1987) 3-manifold
groups are residually finite, and hence have solvable WP.

Questions: Is there a WP solution...

• in polynomial time? • in log space?
• by a finite state automaton?

Goal: Find WP algorithms by FSA’s for 3-manifold groups.



3-manifolds and the Word Problem, III

G residually finite ⇐⇒ for all 1 6= g ∈ G , there is a finite group
H and homomorphism φ : G → H such that φ(g) 6= 1.

WP Algorithm
for G = 〈A | R〉 finitely presented and residually finite:

Input w ∈ A∗. Run 2 processes in parallel:

(w = 1?) List all v ∈ 〈R〉normal , check if w = v in FreeGroup(A).

(w 6= 1?) List all φ : G → H, check if φ(w) 6= 1.
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Finite state automata and regular languages

(Def.) An FSA is a computer with finite memory, recognizing a
subset of A∗.

Fact. L ⊆ A∗ is recognized by an FSA ⇐⇒ L is regular.

Def. Regular languages are built from finite sets using
∩, ∪, A∗ \ ( ), ( ) · ( ), ( )∗

Def. L ·M = {uv | u ∈ L, v ∈ M},

L∗ = {1} ∪ (∪∞

i=1L
k)



Normal forms and Cayley graphs

G = 〈A〉 with A = A−1 π : A∗ ։ G

Def. N ⊂ A∗ is a set of normal forms if N contains exactly one
representative for each g ∈ G .

Def. The Cayley graph Γ = Γ(G ,A) satisfies V (Γ) = G and

~E (Γ) := {
a

g •−−>−−•ga| g ∈ G , a ∈ A}

Ex. Z2 = 〈a, b | ab = ba〉
with
N = {aibj | i ≥ 0} ∪ {bjai | i < 0}

1
a

b

Fact: Prefix-closed normal forms ⇐⇒ maximal tree in Γ



Solving the Word Problem using finite automata
Def. A regular convergent prefix-rewriting system (CP-RS)
for G is a finite set A and subset R ⊂ A∗ × A∗ such that

• G = Mon〈A | R〉.

• The rewritings uz → vz for all (u, v) ∈ R and z ∈ A∗ satisfy:

• There is no infinite sequence x1 → x2 → · · ·
• Irr(R) := {irreducible words} = set of normal forms for G .

• R ⊂ A∗ × A∗ is regular.

Idea: Input word w , rewrite w to normal form(w).



Solving the Word Problem using finite automata
Def. A regular convergent prefix-rewriting system (CP-RS)
for G is a finite set A and subset R ⊂ A∗ × A∗ such that

• G = Mon〈A | R〉.

• The rewritings uz → vz for all (u, v) ∈ R and z ∈ A∗ satisfy:

• There is no infinite sequence x1 → x2 → · · ·
• Irr(R) := {irreducible words} = set of normal forms for G .

• R ⊂ A∗ × A∗ is regular.

Ex. Z2 = 〈a, b | ab = ba〉 N = {aibj | i ≥ 0} ∪ {bjai | i < 0}

R = {xℓℓ−1 → x | x ∈ A∗, ℓ ∈ A}
∪{xa−1bν → xbνa−1 | x = bjai , i ≤ 0, ν = ±1}
∪{xbνaσ → xaσbν | x = aibj ; ν, σ ∈ {±1}; νj , i , i + σ ≥ 0}

a−1ba2a−1 → ba−1aaa−1 → baa−1 → aba−1 → aa−1b → b



Computational view, II

Prop. Regular CP-RS ⇒ word problem solution using a FSA,
prefix-closed regular normal forms.

Proof. w =G 1 if and only if w → · · · → 1.

Special cases of regular CP-RS’s:

(Prefix-closed) Automatic = Interreduced regular CP-RS:

For all (u, v) ∈ R : u = ũa with a ∈ A, ũ, v ∈ Irr(R) (Otto 1999)

Autostackable = bounded regular CP-RS:

There is a k > 0 such that for all (u, v) ∈ R : (u, v) = (xu′, xv ′)
for some x , u′, v ′ ∈ A∗ with l(u′) + l(v ′) ≤ k .

Finite rewrite system = prefix-free + bounded regular CP-RS:
For all (xu, xv) ∈ R : (wu,wv) ∈ R for all w ∈ A∗



Computational view, III

Thm. (Brittenham, H, Holt, 2014) Prefix-closed automatic ⇒
autostackable.

Note. Finite rewrite system ⇒ autostackable.

More specific goal: Solve the WP for 3-manifold groups using
FSA’s by finding - and effectively computing - automatic or
autostackable structures.



Comparing the special cases
{P.c. automatic or finite rewrite} ( { autostackable}

Closure properties Automatic Finite rewrite Autostackable

Fin. ind. supergroup X 1 X 2 X 3

Extension X 1 X 2 X 3

Graph/free/dir. product X 4 X 4 X 3

Amalg. prod., HNN,
π1(graph of gps) some some some

(Epstein+ ’92)1, (H,Meier ’95)4

Examples:

P.c. automatic: Word hyperbolic groups (ECHLPT 1992),
Relatively hyperbolic groups (rel Zns) (Antolin, Ciobanu 2016)

Finite rewrite system:

f.g. nilpotent, polycyclic groups (Groves, Smith 1993)2

Autostackable:

Stallings’ non-FP3 group (Brittenham, H, Johnson 2016)3

Thompson’s group F (Corwin, Golan, H, Johnson, Šunić 2020)



Automatic groups: Geometric view

G = 〈A〉 with A = A−1 and |A| < ∞. Γ = Cayley graph

Thm. (ECHLPT, 1992) G is automatic iff there exist
• L ⊂ A∗ a regular language of normal forms for G , and
• a constant k > 0

such that
• for all v ,w ∈ L and a ∈ A with v = wa in G ,
the paths from 1 labeled v and w k-fellow travel in Γ.

Def. Let v ,w ∈ A∗. The paths from 1 labeled v and w k-fellow
travel if for all t ∈ N we have dΓ(v(t),w(t)) ≤ k .

a<_k<_k

v

w
1



Autostackable groups: Topological view

G = 〈A〉 with A = A−1 and |A| < ∞. Γ = Cayley graph

~E = directed edges; ~P = directed paths

Thm. (Brittenham, H, Holt, 2014) G is autostackable iff there is
• L ⊂ A∗ prefix-closed regular language of normal forms for G , and
• a partition L =

∐n
j=1 Lj with Lj regular and aj ∈ A, vj ∈ A∗,

such that
• the function Φ : ~E → ~P defined by

[Φ(
j

g
a

gaj ) =
j

g
v

gaj if normal form(g) ∈ Lj ]

is a flow function to the maximal tree T (assoc. to L) of Γ:
• Φ fixes T and

• the extension of Φ to Φ̂ : ~P → ~P satisfies:
For each p ∈ ~P there is a np ∈ N such that

Φ̂np(p) is a path in T between the same endpoints.



Example
Ex. Z2 = 〈a, b | ab = ba〉 N = {aibj | i ≥ 0}) ∪ {bjai | i < 0}

Automatic:
R1 = {aibjb±1 → aibj±1 | i ≥ 0} ∪ {bjaia±1 → bjai±1 | i < 0}

∪{aibja±1 → ai±1bj | i , i ± 1 ≥ 0} ∪ {bjaib±1 → bj±1ai | i < 0}

Autostackable: R2 = {xℓℓ−1 → x | x ∈ A∗, ℓ ∈ A}
∪{xa−1bν → xbνa−1 | x = bjai , i ≤ 0, ν = ±1}
∪{xbνaσ → xaσbν | x = aibj ; ν, σ ∈ {±1}; νj , i , i + σ ≥ 0}

1

R1: Normal forms 2-fellow
travel.

R2: Iterating the rewriting rules
replaces nontree edges
by a path in the tree
between the same endpoints
after finitely many steps.
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3-manifolds - solution to the Word Problem using FSA’s
Let M be a compact, connected 3-manifold with toral boundary.

Thm. (Epstein, Cannon, Holt, Levy, Paterson, Thurston 1992)
If M has no Nil or Sol prime factors, then π1(M) is automatic.

Thm. (Thurston 1992; N. Brady 2001)
If M has Nil or Sol geometry, then π1(M) is not automatic.

Thm. (Brittenham, H, Susse 2018)
Let M be a compact, connected 3-manifold with toral boundary.

Then π1(M) is autostackable.

Nil, Sol geometries: If M is a closed 3-manifold and its universal
cover has Nil or Sol geometry, then π1(M) = a finite index
supergroup of an extension of groups built from Z, Z2.

X automatic X autostackable



Automatic 3-manifolds: Computing automaticity, I

Goal: Find/implement procedure to construct automatic
structures for 3-manifolds with no Nil or Sol prime factors.
And use normal forms that reflect the manifold structure.

Automatic Finite rewrite Autostackable

Procedure to KBMAG ∗ Knuth-Bendix ∗ Limited... ∗

find structure

Derivation fcn ≤ quadratic ? ?
∗: All packages restrict the ordering

Motivation: Quadratic time word problem algorithm using FSA’s.

Difficulty: GAP/KBMAG software can fail to find automatic
structures for automatic 3-manifolds:
• Software uses “wrong” normal forms
• Automaticity proof (ECHLPT) not amenable to implementation



Decomposing M :
(1) π1(M) = finite index supergroup of π1(M1) ∗ · · · ∗ π1(Mk),
where each Mi is an orientable prime manifold.

X automatic X autostackable

(2) Geometrization and JSJ decomposition:
Topology: For prime 3-manifold Mi , either:
◮ Mi is geometric (admits one of Thurston’s 8 geometries); or
◮ cut Mi along embedded, incompressible tori; each resulting

3-manifold Mi ,j is either • Seifert fibered or • hyperbolic

Group Theory: π1(Mi ) = a fundamental group of a graph of
groups, with • vertex groups: π1(Mi ,j), • edge groups: Z2

Mi,1

M i,2

M i,3 M i,4

ZZ
2

p1(M  )

i,1

i,2

i,3

i,4

ZZ
2 ZZ

2

ZZ
2

p1(M  )

p1(M  )

p1(M  )



Automatic 3-manifolds: Computing automaticity, II

By finding new automaticity closure results, we obtained a new
proof of automaticity - but with normal forms reflecting the JSJ
decomposition and with implementable construction - for many
3-manifolds:

Cor. (H, Holt, Rees, Susse, 2019) Let M be an orientable,
connected, compact 3-manifold with incompressible toral boundary
whose prime factors have JSJ decompositions containing only
hyperbolic pieces. Then π1(M) is automatic with respect to
Higgins’ normal forms for graphs of groups.



Automaticity and closure for graphs of groups, I

Idea: For graph of groups with
• vertex groups: π1(Mi ,j), • edge groups: Z2

want automaticity closure.

Thm. (Epstein, Cannon, Holt, Levy, Paterson, Thurston, 1992)
An amalgamated product or HNN extension of automatic groups
along a finite edge subgroup is automatic.

Thm. (Baumslag, Gersten, Shapiro, Short, 1991) An
amalgamated product of two finitely generated
abelian vertex groups over any subgroup is automatic.

Thm. (Shapiro, 1992) A tree of negatively curved vertex groups
with cyclic edge groups is automatic.

Amalgamated product: 1 edge, 2 vertices;
HNN extension: 1 edge, 1 vertex



Automaticity and closure for graphs of groups, II

Obtained several new closure theorems...

Results:
(H, Holt, Rees, Susse, 2019)
Automaticity closure results for graphs of groups in which

• (Vertex group, edge group) pairs are either coset automatic pairs
or automatic and admissible (geodesics concatenate).

• Geometry is controlled across edges and between intersecting
edge subgroups within the same vertex group.



Open questions

• Construct software that upon input of the graph of groups
decomposition for π1(M) constructs an automatic or autostackable
structure for the group.

• What bounds can be found for the time/space complexity of the
word problem solution by FSA’s from the autostackable structures
for 3-manifold groups?



Thank you!


