### Word problems and finite state automata

Susan Hermiller

University of Nebraska

15 June 2021

With M. Brittenham and T. Susse, D. Holt, S. Rees, and T. Susse

# Outline

(I) 3-manifolds and the word problem

(II) General: Word problem solutions by finite state automata

- Computational view: Regular convergent prefix-rewriting
  - Automatic
  - Autostackable
  - Finite rewrite system
- Geometric/topological views

### (III) Results

- 3-manifolds:
  - Word Problem solutions using FSA's
  - Computing rewriting systems
- General: Graph of groups closure for rewriting systems

3-manifolds and the Word Problem, I

Throughout the talk:

- M = compact, connected 3-dim. manifold with toral boundary
- $G = \pi_1(M) =$  fundamental group of M = 3-manifold group
- $\langle A \mid R \rangle$  = finite presentation for *G*, with  $A = A^{-1}$
- $A^* =$  set of all words over A

**Def. Word Problem (WP)** for G: Is there a computer program that, upon input of a word  $w \in A^*$ , decides whether w = 1 in G?

# 3-manifolds and the Word Problem, II

### History:

- (Dehn, 1911) states the WP, solves for surface groups
- (Thurston 1982; Perelman 2002-3; Hempel 1987) 3-manifold groups are residually finite, and hence have solvable WP.

Questions: Is there a WP solution...

- in polynomial time? in log space?
  - by a finite state automaton?

Goal: Find WP algorithms by FSA's for 3-manifold groups.

3-manifolds and the Word Problem, III

*G* residually finite  $\iff$  for all  $1 \neq g \in G$ , there is a finite group *H* and homomorphism  $\phi : G \to H$  such that  $\phi(g) \neq 1$ .

#### WP Algorithm

for  $G = \langle A \mid R \rangle$  finitely presented and residually finite:

Input  $w \in A^*$ . Run 2 processes in parallel:

(w = 1?) List all  $v \in \langle R \rangle^{normal}$ , check if w = v in FreeGroup(A). ( $w \neq 1$ ?) List all  $\phi : G \to H$ , check if  $\phi(w) \neq 1$ .

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

# Outline

#### (I) 3-manifolds and the word problem

(II) General: Word problem solutions by finite automata

- Computational view: Regular convergent prefix-rewriting
  - Automatic
  - Autostackable
  - Finite rewrite system
- Geometric/topological views

### (III) Results

- 3-manifolds:
  - Word Problem solutions using FSA's
  - Computing rewriting systems
- General: Graph of groups closure for rewriting systems

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Finite state automata and regular languages

(**Def.**) An **FSA** is a computer with finite memory, recognizing a subset of  $A^*$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

**Fact.**  $L \subseteq A^*$  is recognized by an FSA  $\iff L$  is regular.

**Def.** Regular languages are built from finite sets using  $\cap$ ,  $\cup$ ,  $A^* \setminus ()$ ,  $() \cdot ()$ ,  $()^*$ 

**Def.** 
$$L \cdot M = \{uv \mid u \in L, v \in M\},$$
  
 $L^* = \{1\} \cup (\bigcup_{i=1}^{\infty} L^k)$ 

### Normal forms and Cayley graphs

$$G = \langle A 
angle$$
 with  $A = A^{-1}$   $\pi: A^* \twoheadrightarrow G$ 

**Def.**  $N \subset A^*$  is a set of **normal forms** if *N* contains exactly one representative for each  $g \in G$ .



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Fact:** Prefix-closed normal forms  $\iff$  maximal tree in  $\Gamma$ 

# Solving the Word Problem using finite automata

**Def.** A regular convergent prefix-rewriting system (CP-RS) for G is a finite set A and subset  $R \subset A^* \times A^*$  such that

- $G = Mon\langle A \mid R \rangle$ .
- The rewritings  $uz \rightarrow vz$  for all  $(u, v) \in R$  and  $z \in A^*$  satisfy:
  - There is no infinite sequence  $x_1 \rightarrow x_2 \rightarrow \cdots$
  - *Irr*(*R*) := {irreducible words} = set of normal forms for *G*.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

•  $R \subset A^* \times A^*$  is regular.

**Idea:** Input word w, rewrite w to  $normal_form(w)$ .

### Solving the Word Problem using finite automata

**Def.** A regular convergent prefix-rewriting system (CP-RS) for G is a finite set A and subset  $R \subset A^* \times A^*$  such that

- $G = Mon\langle A \mid R \rangle$ .
- The rewritings  $uz \rightarrow vz$  for all  $(u, v) \in R$  and  $z \in A^*$  satisfy:
  - There is no infinite sequence  $x_1 \rightarrow x_2 \rightarrow \cdots$
  - *Irr*(*R*) := {irreducible words} = set of normal forms for *G*.
- $R \subset A^* \times A^*$  is regular.

**Ex.** 
$$\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$$
  $N = \{a^i b^j \mid i \ge 0\} \cup \{b^j a^i \mid i < 0\}$ 

$$R = \{x\ell\ell^{-1} \to x \mid x \in A^*, \ \ell \in A\} \\ \cup \{xa^{-1}b^{\nu} \to xb^{\nu}a^{-1} \mid x = b^ja^i, \ i \le 0, \ \nu = \pm 1\} \\ \cup \{xb^{\nu}a^{\sigma} \to xa^{\sigma}b^{\nu} \mid x = a^ib^j; \ \nu, \sigma \in \{\pm 1\}; \ \nu j, i, i + \sigma \ge 0\}$$

 $a^{-1}ba^2a^{-1} 
ightarrow ba^{-1}aaa^{-1} 
ightarrow baa^{-1} 
ightarrow aba^{-1} 
ightarrow aa^{-1}b 
ightarrow baa^{-1}$ 

#### ▲□▶▲□▶▲□▶▲□▶ = のへで

# Computational view, II

**Prop.** Regular CP-RS  $\Rightarrow$  word problem solution using a FSA, prefix-closed regular normal forms.

*Proof.*  $w =_G 1$  if and only if  $w \to \cdots \to 1$ .

### Special cases of regular CP-RS's:

(Prefix-closed) Automatic = Interreduced regular CP-RS: For all  $(u, v) \in R$ :  $u = \tilde{u}a$  with  $a \in A$ ,  $\tilde{u}, v \in Irr(R)$  (Otto 1999)

**Autostackable** = bounded regular CP-RS:

There is a k > 0 such that for all  $(u, v) \in R$ : (u, v) = (xu', xv') for some  $x, u', v' \in A^*$  with  $l(u') + l(v') \le k$ .

Finite rewrite system= prefix-free + bounded regular CP-RS:For all  $(xu, xv) \in R$ : $(wu, wv) \in R$  for all  $w \in A^*$ 

Computational view, III

**Thm.** (Brittenham, H, Holt, 2014) Prefix-closed automatic  $\Rightarrow$  autostackable.

**Note.** Finite rewrite system  $\Rightarrow$  autostackable.

**More specific goal:** Solve the WP for 3-manifold groups using FSA's by finding - and effectively computing - automatic or autostackable structures.

# Comparing the special cases

{P.c. automatic or finite rewrite}  $\subseteq$  { autostackable}

| Closure properties      | Automatic      | Finite rewrite | Autostackable |
|-------------------------|----------------|----------------|---------------|
| Fin. ind. supergroup    | $\checkmark$ 1 | $\sqrt{2}$     | $\sqrt{3}$    |
| Extension               | X 1            | $\sqrt{2}$     | $\sqrt{3}$    |
| Graph/free/dir. product | $\sqrt{4}$     | $\sqrt{4}$     | $\sqrt{3}$    |
| Amalg. prod., HNN,      |                |                |               |
| $\pi_1(graph  of gps)$  | some           | some           | some          |

(Epstein+ '92)<sup>1</sup>, (H,Meier '95)<sup>4</sup>

### Examples:

P.c. automatic: Word hyperbolic groups (ECHLPT 1992),

Relatively hyperbolic groups (rel  $\mathbb{Z}^n$ s) (Antolin, Ciobanu 2016) Finite rewrite system:

f.g. nilpotent, polycyclic groups (Groves, Smith 1993)<sup>2</sup> Autostackable:

Stallings' non- $FP_3$  group (Brittenham, H, Johnson 2016)<sup>3</sup> Thompson's group F (Corwin, Golan, H, Johnson, Šunić 2020)

### Automatic groups: Geometric view

$$G = \langle A \rangle$$
 with  $A = A^{-1}$  and  $|A| < \infty$ .  $\Gamma$  = Cayley graph

Thm. (ECHLPT, 1992) G is automatic iff there exist

•  $L \subset A^*$  a regular language of normal forms for G, and

• for all  $v, w \in L$  and  $a \in A$  with v = wa in G,

the paths from 1 labeled v and w k-fellow travel in  $\Gamma$ .

**Def.** Let  $v, w \in A^*$ . The paths from 1 labeled v and w k-fellow travel if for all  $t \in \mathbb{N}$  we have  $d_{\Gamma}(v(t), w(t)) \leq k$ .



# Autostackable groups: Topological view

$$G = \langle A \rangle$$
 with  $A = A^{-1}$  and  $|A| < \infty$ .  $\Gamma$  = Cayley graph  $\vec{E}$  = directed edges;  $\vec{P}$  = directed paths

**Thm.** (Brittenham, H, Holt, 2014) *G* is **autostackable** iff there is •  $L \subset A^*$  prefix-closed regular language of normal forms for *G*, and

- a partition  $L = \coprod_{j=1}^{n} L_j$  with  $L_j$  regular and  $a_j \in A$ ,  $v_j \in A^*$ , such that
- the function  $\Phi:\vec{E}\rightarrow\vec{P}$  defined by

 $[\Phi(\overset{a_{j}}{\bullet}\overset{a_{j}}{\bullet} ga_{j}) = \overset{g}{\bullet}\overset{v_{j}}{\bullet} ga_{j} \quad \text{if } \textit{normal\_form}(g) \in L_{j}]$ 

is a **flow function** to the maximal tree T (assoc. to L) of  $\Gamma$ :

- Φ fixes T and
- the extension of  $\Phi$  to  $\widehat{\Phi} : \overrightarrow{P} \to \overrightarrow{P}$  satisfies: For each  $p \in \overrightarrow{P}$  there is a  $n_p \in \mathbb{N}$  such that  $\widehat{\Phi}^{n_p}(p)$  is a path in T between the same endpoints.

Example

**Ex.**  $\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$   $N = \{a^i b^j \mid i \ge 0\} \cup \{b^j a^i \mid i < 0\}$ 

#### Automatic:

$$R_{1} = \{a^{i}b^{j}b^{\pm 1} \to a^{i}b^{j\pm 1} \mid i \geq 0\} \cup \{b^{j}a^{i}a^{\pm 1} \to b^{j}a^{i\pm 1} \mid i < 0\} \\ \cup \{a^{i}b^{j}a^{\pm 1} \to a^{i\pm 1}b^{j} \mid i, i \pm 1 \geq 0\} \cup \{b^{j}a^{i}b^{\pm 1} \to b^{j\pm 1}a^{i} \mid i < 0\}$$

Autostackable: 
$$R_2 = \{x\ell\ell^{-1} \rightarrow x \mid x \in A^*, \ \ell \in A\}$$
  
 $\cup \{xa^{-1}b^{\nu} \rightarrow xb^{\nu}a^{-1} \mid x = b^ja^i, \ i \le 0, \ \nu = \pm 1\}$   
 $\cup \{xb^{\nu}a^{\sigma} \rightarrow xa^{\sigma}b^{\nu} \mid x = a^ib^j; \ \nu, \sigma \in \{\pm 1\}; \ \nu j, i, i + \sigma \ge 0\}$ 



 $R_1$ : Normal forms 2-fellow travel.

 $R_2$ : Iterating the rewriting rules replaces nontree edges by a path in the tree between the same endpoints after finitely many steps.

# Outline

(I) 3-manifolds and the word problem

(II) General: Word problem solutions by finite automata

- Computational view: Regular convergent prefix-rewriting
  - Automatic
  - Autostackable
  - Finite rewrite system
- Geometric/topological views

(III) Results

- 3-manifolds:
  - Word Problem solutions using FSA's
  - Computing rewriting systems
- General: Graph of groups closure for rewriting systems

3-manifolds - solution to the Word Problem using FSA's Let *M* be a compact, connected 3-manifold with toral boundary.

**Thm.** (Epstein, Cannon, Holt, Levy, Paterson, Thurston 1992) If *M* has no Nil or Sol prime factors, then  $\pi_1(M)$  is automatic.

**Thm.** (Thurston 1992; N. Brady 2001) If M has Nil or Sol geometry, then  $\pi_1(M)$  is **not** automatic.

Thm. (Brittenham, H, Susse 2018)

Let M be a compact, connected 3-manifold with toral boundary. Then  $\pi_1(M)$  is autostackable.

Nil, Sol geometries: If M is a closed 3-manifold and its universal cover has Nil or Sol geometry, then  $\pi_1(M) =$  a finite index supergroup of an **extension** of groups built from  $\mathbb{Z}$ ,  $\mathbb{Z}^2$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

X automatic  $\checkmark$  autostackable

# Automatic 3-manifolds: Computing automaticity, I

**Goal:** Find/implement procedure to construct automatic structures for 3-manifolds with no Nil or Sol prime factors. And use normal forms that reflect the manifold structure.

|                | Automatic        | Finite rewrite | Autostackable |
|----------------|------------------|----------------|---------------|
| Procedure to   | KBMAG *          | Knuth-Bendix * | Limited *     |
| find structure |                  |                |               |
| Derivation fcn | $\leq$ quadratic | ?              | ?             |

\*: All packages restrict the ordering

Motivation: Quadratic time word problem algorithm using FSA's.

**Difficulty:** GAP/KBMAG software can fail to find automatic structures for automatic 3-manifolds:

- Software uses "wrong" normal forms
- Automaticity proof (ECHLPT) not amenable to implementation

# Decomposing *M*:

(1)  $\pi_1(M)$  = finite index supergroup of  $\pi_1(M_1) * \cdots * \pi_1(M_k)$ , where each  $M_i$  is an orientable prime manifold.

 $\checkmark$  automatic  $\checkmark$  autostackable

(2) **Geometrization and JSJ decomposition: Topology:** For prime 3-manifold *M<sub>i</sub>*, either:

- ▶ *M<sub>i</sub>* is geometric (admits one of Thurston's 8 geometries); or
- cut M<sub>i</sub> along embedded, incompressible tori; each resulting 3-manifold M<sub>i,j</sub> is either • Seifert fibered or • hyperbolic

**Group Theory:**  $\pi_1(M_i) =$  a fundamental group of a graph of groups, with • vertex groups:  $\pi_1(M_{i,j})$ , • edge groups:  $\mathbb{Z}^2$ 





# Automatic 3-manifolds: Computing automaticity, II

By finding new automaticity closure results, we obtained a new proof of automaticity - but with normal forms reflecting the JSJ decomposition and with implementable construction - for many 3-manifolds:

**Cor.** (H, Holt, Rees, Susse, 2019) Let M be an orientable, connected, compact 3-manifold with incompressible toral boundary whose prime factors have JSJ decompositions containing only hyperbolic pieces. Then  $\pi_1(M)$  is automatic with respect to Higgins' normal forms for graphs of groups.

# Automaticity and closure for graphs of groups, I

Idea: For graph of groups with

• vertex groups:  $\pi_1(M_{i,j})$ , • edge groups:  $\mathbb{Z}^2$  want automaticity closure.

**Thm.** (Epstein, Cannon, Holt, Levy, Paterson, Thurston, 1992) An amalgamated product or HNN extension of automatic groups along a finite edge subgroup is automatic.

**Thm.** (Baumslag, Gersten, Shapiro, Short, 1991) An amalgamated product of two finitely generated abelian vertex groups over any subgroup is automatic.

**Thm.** (Shapiro, 1992) A tree of negatively curved vertex groups with cyclic edge groups is automatic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Amalgamated product: 1 edge, 2 vertices; HNN extension: 1 edge, 1 vertex Automaticity and closure for graphs of groups, II

Obtained several new closure theorems...

Results: (H, Holt, Rees, Susse, 2019) Automaticity closure results for graphs of groups in which

• (Vertex group, edge group) pairs are either coset automatic pairs or automatic and admissible (geodesics concatenate).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Geometry is controlled across edges and between intersecting edge subgroups within the same vertex group.

- Construct software that upon input of the graph of groups decomposition for  $\pi_1(M)$  constructs an automatic or autostackable structure for the group.
- What bounds can be found for the time/space complexity of the word problem solution by FSA's from the autostackable structures for 3-manifold groups?

# Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●