
Computing with finitely presented groups

Sarah Rees

University of Newcastle

ICERM, 14-18 June 2021

Abstract

I’ll talk about computation with finitely presented groups. In particular:

(1) an introduction to the basic concepts and techniques, the
use of geometry via the Cayley graph, the fact that some
questions are not decidable in general, other calculations are
not practical,

(2) calculation with abelian and polyabelian groups, construction
of quotients of that type,

(3) techniques associated with coset enumeration and subgroup
presentations (incl. Todd-Coxeter, Reidemeister-Schreier),

(4) techniques associated with rewriting, including the
Knuth-Bendix process, and computation and use of
automatic structures,

(5) testing for hyperbolicity, conjugacy problem in hyperbolic
groups.

I’ll cover 1–3 in lecture 1, 4,5 in lecture 2.

Contents: Lecture 1

1 Introduction

Words, relations and group presentations

The Cayley graph of a group

Some problems are insoluble, others merely hard

2 Abelian and polyabelian groups and quotients

Computing the largest abelian quotient of G

Exponent-p abelian and p-quotients

3 Computing with finite index subgroups, finite quotients

Todd-Coxeter coset enumeration

Subgroup presentation

Word, relations and group presentations

Let X = {x1, x2, . . .}, X−1 = {x−11 , x−12 , . . .}, X± := X ∪ X−1. A word w
over X , of length n, is a string ai1 · · · ain of symbols from X±.
We delete all subwords xix

−1
i or x−1i xi from w to form its free reduction,

can abbreviate this as a product of powers ak1j1 · · · a
km
jm

; for words w ,w ′ we
write w ∼ w ′ if w ,w ′ have the same free reduction.

We define the free group F(X) on the set of ∼-equiv. classes of words:
•multiplication is defined by concatenation,
• the empty word ε represents the identity element,
• the word w−1 := a−1ik

· · · a−1i1
represents the inverse of w above.

Given a set R of eqns between words over X , we extend ∼ to equiv. rel. '
by additionally relating w ,w ′ if w = w1uw2, w ′ = w1vw2, where either
‘u = v ’ or ‘u−1 = v−1’ is in R. We call ‘u = v ’ a relation, uv−1 a relator.
Then we define the group G = 〈X | R〉, on the set of '-equiv. classes, just
as above. The presentation (X ,R) is called finite (and G fp) if X ,R are
both finite.

The Cayley graph G(G ,X) of a group G

The vertices of the graph correspond to the group elements. And for each
generator x there’s a (directed) edge from g to gx . When a product
represents an element g , it labels a path in the graph from vertex 1 to
vertex g , so when a product w represents 1, it labels a loop from 1 to 1.

E.g. S3 = 〈a, b | a3 = b2 = 1, ba = a3b〉

r r

r

-a J
J
J
J
J
J
J
J
J
J
J

]

a

�a

r r

r

-a J
J
J
J
JJ

]

a

�a

��
��
*�b

HH
HH
Yjb

?6b

1 a

a2

b ab

a2b

Cayley graphs for Z2 and the free group F2

* > > >
a

^

^

b

^

^

^

^

>>>

Some problems are insoluble, others merely hard

In 1908, Max Dehn defined his three famous decision problems for fg
groups G = 〈X | R〉 (|X | <∞).

• The word problem for G (WP(G)) asks whether or not a given input
word represents the identity; WP(G) is soluble if ∃ a terminating
algorithm that can decide on any input word w whether w =G 1.

• The conjugacy problem for G (CP(G)) asks whether or not two given
input words u1, u2 are conjugate in G (i.e. ∃g ∈ G , gu1 =G u2g).
• The isomorphism problem for a class of groups asks whether or not

two given groups within the class are isomorphic.

Of the three problems, WP(G) is the easiest. But (Novikov, Boone 1950s),
fp groups G exist for which WP(G) cannot be solved. Hence all three
problem are insoluble in general.

So there are some computational problems for which we cannot hope to
find solutions in all fp groups. There are others that are theoretically
solvable, but constraints of time and space limit what we can achieve.

Abelian groups are easy

If we know that a group G is abelian, calculation with it is easy. Then the
group has a decomposition as a direct product of cyclic groups,

〈x1〉 × 〈x2〉 × · · · × 〈xr 〉, |xi | = mi , m1 ≤ m2 · · ·mr ≤ ∞.

We can derive that decomposition from any presentation, using linear
algebra (we’ll come back to that), express every element in its normal form
x i11 · · · x irr .

Using the normal form,

• multiplication and inversion are easy,

• orders of elements are visible,

• calculation is efficient,

• solution of word and conjugacy problems are easy (and so is
isomorphism)

Computation with polycyclic groups is not much harder . . .

. . . once we have found power conjugate/power commutator presentations,
and corresponding normal forms.

A power-commutator presentation for a group is a presentation over
generators x1, . . . , xr in which every relation expresses either a power of a
generator xi or a commutator of two generators xj , xi or their inverses as a
word in lower numbered generators. Power-conjugate presentations are
defined similarly, with commutators of two generators (or their inverses)
replaced by conjugates. Clearly a presentation of either of these two types
can easily be transformed into one of the other two types.

Any fg polycyclic group possesses such a presentation.

Where a group is given in this form, there is a natural normal form,
consisting of elements of the form x i11 · · · x irr .

Hence, as in abelian groups, computation within polycyclic groups is
relatively straightforward.

Quotients of finitely presented groups

Given a finite presentation 〈X | R〉 for a group G , we can compute
(information about) various types of quotients of G , particularly quotients
that are abelian, poly-abelian, or of p-power order, and maximal quotients
of those type (with specified parameters), as well as finite permutation
groups.

We might use information about such quotients to investigate the
structure of G , its finiteness or otherwise, its isomorphism or otherwise
with another finitely presented group.

We’ll discuss just abelian and polyabelian quotients for now.

Computing the largest abelian quotient

Suppose that G = 〈X | R〉 is fp, with X = {x1, . . . , xn}, and |R| = m.
The largest abelian quotient Gab = G/[G ,G] of G has presentation

〈X | R ∪ {[x , y] : x , y ∈ X}〉.

For w = 1 in R, let ew be the vector of exponents of the elements of X
within the word w . Let ER be the m × n matrix whose rows are the ew .

Using additive notation, Gab
∼= the abelian gp on X subject to eqns

ERx = 0, where x = (x1, . . . , xn)T . Using linear alg. we change gen set to
Y = {y1, . . . , yn}, eqns to Dy = 0, D diagonal, diag. entries
d1, . . . , dm ≥ 0, di | di+1, those 6= 1 the abelian invariants for Gab. Then

Gab ∼= 〈y1〉 ⊕ · · · ⊕ 〈yn〉 ∼= Z/d1Z⊕ · · · ⊕ Z/dmZ⊕ Zn−m

We apply elementary row and column operations

ri → ri + λrj , ci → ci + µcj , ri ↔ rj , ci ↔ cj , λ, µ ∈ Z

to transform ER into D, its Smith Normal Form.

Computing the largest abelian quotient: example

G = 〈x1, x2, x3, x4 | x1(x2x
−1
4)3, (x2x3)3, x34x

−1
1 (x−12 x3)6

ER =

 1 3 0 −3
0 3 3 0
−1 −6 6 3

 −→
r3 → r3 + r1

 1 3 0 −3
0 3 3 0
0 −3 6 0


−→

r3 → r3 + r2

 1 3 0 −3
0 3 3 0
0 0 9 0

 c2 → c2 − 3c1
−→

c4 → c4 + 3c1

 1 0 0 0
0 3 3 0
0 0 9 0


−→

c3 → c3 − c2

 1 0 0 0
0 3 0 0
0 0 9 0


We’ve found a decomposition of Gab as a direct sum/product of cyclic
groups of orders 1, 3, 9,∞. Examining the column ops, we see that the
new gens are the images in G/[G ,G] of x1x

3
2x
−3
4 , x2x3, x3, x4.

Exponent-p abelian and p-quotients

If we add the equations pxi = 0 to our system of equations, we can use
linear algebra to find the largest exponent-p abelian quotient of G .

Then we can iterate, move down the lower exponent-p central series:

G = P0(G)B · · ·Pi−1(G)B Pi (G)B · · ·

where Pi (G) = [Pi−1(G),G]Pi−1(G)p for i ≥ 1, and hence compute finite
p-quotients G/Pi (G) of increasing (exponent-p) nilpotency classes.

A power-conjugate presentation is computed for each quotient, over a
generating set a1, . . . , an whose relations specify, for each ai , words in
a1, . . . , ai−1 that are equal either to some power of ai or to its conjugate
by some aj with j < i .

The original p-quotient algorithm was developed by I.D.Macdonald
(1974). The current version was introduced by Newman (1976), with
contributions from Havas, O’Brien, Vaughan-Lee. Implementations are
available in GAP and Magma.

Other polyabelian quotients

The same basic idea (building down a series with abelian quotients, using
linear algebra and other techniques) constructs

• nilpotent quotients (Nickel 95, Newman),

• polycyclic quotients (Baumslag 81, Lo 98, Sims),

• solvable quotients (Leedham-Green 84, Plesken 87, Brückner,
Niemeyer 93)

again finding power-conjugate presentations.

These are resource-expensive computations, needing sophisticated
optimisation techniques.

Finite quotients of a group

It is well known that, for any group G , there is a bijection between its set
of finite index subgroups H, and its set of transitive actions of G on
finite sets, represented by maps ϕ : G → Sn : n ∈ N.

Acting on the right (ω 7→g ωg),
H ↔ right coset action on {Hy : y ∈ G} =: H\G

defined by Hy 7→g Hyg .

We have

H = ϕ−1(stabSn(1))⋂
y∈G

Hy = ker(ϕ)

H = K y , y ∈ G ⇐⇒ actions on H\G andK\G are equivalent.

So the conjugacy classes of finite index subgroups correspond to the
equivalence classes of actions on finite sets.

Coset tables

We can describe the action of G on H\G , |G : H| <∞ using a coset
table. For example:

G = 〈c , d | c2 = 1 = d3 = (cd)7 = [c, d]4〉
∼= PSL2(7) ∼= 〈(1, 2)(4, 5), (2, 3, 4)(5, 6, 7)〉 ≤ S7

H = 〈d , cdcd−1c〉, |G : H| = 7.

Coset no. c c−1 d d−1

1 2 2 1 1
2 1 1 3 4
3 3 3 4 2
4 5 5 2 3
5 4 4 6 7
6 6 6 7 5
7 7 7 5 6

Todd-Coxeter coset enumeration

Let G = 〈X | R〉, and H = 〈h1, . . . , hk〉 ≤ G . The Todd-Coxeter coset
enumeration procedure constructs a coset table for the action of G on
H\G as follows:

each coset has a name, consisting of a number and a word
over X±,

we start with an empty table, create new names as we need
them, draw conclusions using the facts that

• all cosets are fixed by multipication by elements of R,
• the coset H is fixed by multiplication by any hi ,

and hope that the process completes with some finite
number of rows, which we then identify as |G : H|.

Todd-Coxeter enumeration: an example

G = 〈a, b | a3, b3, abab〉, H = 〈a〉. H is the first coset; we make the first
deductions.

No. Coset a a−1 b b−1

1 H 1 1
Events:

Ded: a ∈ H ⇒ 1a = 1,
(equivalently 1a−1 = 1).

We define the second coset Hb. 2 := 1b, equivalently 2b−1 = 1.

No. Coset a a−1 b b−1

1 H 1 1 2
2 Hb 1

Events:
Ded: a ∈ H ⇒ 1a = 1
Def: 2 := 1b, 1 = 2b−1

Todd-Coxeter enumeration: an example (2)

G = 〈a, b | a3, b3, abab〉, H = 〈a〉.
We make a new definition 3 := 2b = Hbb, equivalently 3b−1 = 2.

No. Coset a a−1 b b−1

1 H 1 1 2
2 Hb 3 1
3 Hbb 2

Events:
Ded: a ∈ H ⇒ 1a = 1
Def: 2 := 1b, 1 = 2b−1

Def: 3 := 2b

b3 ∈ R ⇒ Hb3 = H ⇒ 3b = 1, 1b−1 = 3.

No. Coset a a−1 b b−1

1 H 1 1 2 1
2 Hb 3 1
3 Hbb 1 2

Events:
Ded: a ∈ H ⇒ 1a = 1
Def: 2 := 1b, 1 = 2b−1

Def: 3 := 2b
Ded: b3 ∈ R ⇒ 1 = 3b

Todd-Coxeter enumeration: an example (3)

G = 〈a, b | a3, b3, abab〉, H = 〈a〉.
ababa ∈ R ⇒ 1abab = 1⇒ 2a = 1aba = 1b−1 = 3, 3a−1 = 2.

No. Coset a a−1 b b−1

1 H 1 1 2 3
2 Hb 3 3 1
3 Hbb 2 1 2

Ded: a ∈ H ⇒ 1a = 1
Def: 2 := 1b, 1 = 2b−1

Def: 3 := 2b
Ded: b3 ∈ R ⇒ 1 = 3b
Ded: abab ∈ R ⇒ 3 = 2a

Another new definition, 4 := 2a−1 = Hba−1, 4a = 2.

No. Coset a a−1 b b−1

1 H 1 1 2 3
2 Hb 3 4 3 1
3 Hbb 2 1 2
4 Hba−1 2

Ded: a ∈ H ⇒ 1a = 1
Def: 2 := 1b, 1 = 2b−1

Def: 3 := 2b
Ded: b3 ∈ R ⇒ 1 = 3b
Ded: abab ∈ R ⇒ 3 = 2a
Def: 4 := 2a−1

Todd-Coxeter enumeration: an example (4)

G = 〈a, b | a3, b3, abab〉, H = 〈a〉.
a3 ∈ R ⇒ 2a3 = 2⇒ 2a2 = 2a−1 ⇒ 3a = 4, 4a−1 = 3.

No. Coset a a−1 b b−1

1 H 1 1 2
2 Hb 3 3 1
3 Hbb 4 2 1 2
4 Hba−1 2 3

Ded: a ∈ H ⇒ 1a = 1
Def: 2 := 1b, 1 = 2b−1

Def: 3 := 2b
Ded: b3 ∈ R ⇒ 1 = 3b
Ded: abab ∈ R ⇒ 3 = 2a
Def: 4 := 2a−1

Ded: 2a3 = 2⇒ 4 = 3a

abab ∈ R ⇒ 3abab = 3⇒ 3ab = 3b−1a−1 ⇒ 4b = 4, 4b−1 = 4.

No. Coset a a−1 b b−1

1 H 1 1 2 3
2 Hb 3 4 3 1
3 Hbb 3 2 1 2
4 Hba−1 2 3 4 4

.
Ded: a ∈ H ⇒ 1a = 1
Def: 2 := 1b, 1 = 2b−1

Def: 3 := 2b
Ded: b3 ∈ R ⇒ 1 = 3b
Ded: abab ∈ R ⇒ 3 = 2a
Def: 4 := 2a−1

Ded: 2a3 = 2⇒ 4 = 3a

Todd-Coxeter enumeration: an example (5)

G = 〈a, b | a3, b3, abab〉, H = 〈a〉. Our coset table:

No. Coset a a−1 b b−1

1 H 1 1 2 3
2 Hb 3 4 3 1
3 Hbb 3 2 1 2
4 Hba−1 2 3 4 4

is now closed, with 4 rows. So we have found a permutation rep. on 4
points; the subgroup H fixes the first point. Since we have checked all the
relations, we have found a group homomorphism form G to S4.

Sometimes (not in this example) a deduction reveals a coincidence i = j
between two previously defined cosets. Two rows of the table are merged,
further deductions or coincidences may be revealed. This computation can
be huge, so the order in which info (deductions and concidences) is
processed is crucial to its success. Different published strategies (by
Felsch, or Haselgrove-Leech-Trotter) make different decisions here.

Low index subgroups

Coset enumeration can be used to enumerate representatives of the
conjugacy classes of all subgroups of G of index up to a specified positive
integer n. We simply build all coset tables with up to n rows. This is
known as the low index subgroups algorithm. Unlike coset enumeration
itself, where the index of the subgroup is not known at the start, and
indeed it is not known whether or not it is finite, the low index subgroups
algorithm is guaranteed to complete. However its complexity appears to be
worse than exponential in n.

Subgroup presentation: theory

We have G = 〈X | R〉 and so G ∼= F/N, where F = F (X) is free and
N = 〈〈R〉〉.

If H < G , then H ∼= E/N for some E , with N < E < F . We can write
H = ν(E), where ν : F → G , ν(g) = Ng .

If |G : H| <∞, then |F : E | = |G : H| <∞, and E = E (Y) for |Y | <∞.
So

F =
⋃
t∈T

Et, G =
⋃

t′∈T ′
Ht ′, |T | = |T ′|

We can choose the transversal T st 1 ∈ T . For w ∈ F , define w ∈ T to
be the coset representative of w in T , i.e. w ∈ Ew

Theorem (Nielsen-Schreier)

E = 〈Y 〉, whereY = {tx(tx)−1 : t ∈ T , x ∈ X , tx 6= tx}.

If T is prefix-closed, then Y freely generates E .

Subgroup presentation: Reidemeister-Schreier

Let w = x1 · · · xr . Then w ∈ Et for some t, and we can express it as a
product y1y2 · · · yr tr as follows. We apply rewrites of the form tx → ytx ,
t ∈ T , x ∈ X±, y ∈ Y , working from the left, through a sequence:

1x1 · · · xr → y1t1x2 · · · xr → y1y2t2x3 · · · xr → · · · → y1y2 · · · yr tr where

t1 = 1x1, y1 = 1x1t
−1
1 , t2 = t1x2, y2 = t1x2t

−1
2 , t3 = t2x3, y3 = t2x3t

−1
3 ,

. tr = tr−1xr , yr = tr−1xr t
−1
r .

Now denote each right hand side ytx by ρ(tx), each product y1y2 · · · yr
by ρ(wt−1r), and use the same notation for products over T ∪ X± that are
in E and can be similarly rewritten (from the left). In particular we can
rewrite conjugates of the elements of R, and we have:

Theorem (Reidemeister-Schreier)

H ∼= 〈Y | ρ(twt−1), ∀w ∈ R, t ∈ T 〉

the basis for the Reidemeister-Schreier algorithm.

The Reidemeister-Schreier algorithm: an example

If |G : H| <∞ and we have a coset table for H in G , then we can use the
Reidemeister-Schreier algorithm to compute the Schreier generators
and write down explicitly the presentation given by the R-S theorem.

For example: G = 〈x , y | x3, y4, (xy)2〉, H = 〈x , yx−1y−2〉, |G : H| = 4.

Coset no. x y x−1 y−1

1 1 2 1 3
2 3 4 4 1
3 4 1 2 4
4 2 3 3 2

The first occurrence of each coset number in the table is underlined, called
its definition. We use this info to choose T , here as {1, y , yx , y2}.

The Reidemeister-Schreier algorithm: an example (2)

The elements of Y correspond to the non-trival products tx(tx)−1. We
define them by inserting new symbols (and their inverses) into those cells
of the coset table that don’t contain definitions (or their inverses).

Coset no. x y x−1 y−1

1 a1 2 a−11 c−13
2 3 4 d−14 1
3 b4 c1 2 e−14
4 d2 e3 b−13 2

We’ve made some choices (e.g. which elements are in Y , which is Y−1),
and have chosen Y = {a, b, c , d , e} with

a = x , b = yx2y−2, c = yxy , d = y2xy−1, e = y3x−1y−1.

The Reidemeister-Schreier algorithm: an example (3)

We calculate the relators ρ(twt−1) of H by tracing out the image of t ∈ T
under each relator w ∈ R, using the modified coset table; we must have
tw = t. If w = um and we know that tj = tiu, then we don’t need to
apply w to tj as well as to ti , i.e. that gives nothing new. So, below we
only need to trace out 1x3 and 2x3, not 3x3 or 4x3.

x x x

1 a1 a21 a31
2 3 b4 bd2

y y y y

1 2 4 e3 ec1

x y x y

1 a1 a2 a3 ac1
3 b4 be3 beb4 (be)23
4 d2 d4 d22 d24

The Reidemeister-Schreier algorithm: an example (4)

We extract the relators from the right hand columns of those tables, and
so deduce

H ∼= a, b, c , d , e | a3, bd , ec , ac, (be)2, d2〉.

We apply Tietze transformations to eliminate the generators e (= c−1), d
(= b−1), and then c (= a−1), and derive

H ∼= 〈a, b, c , d , e | a3, (ab)2, b2〉;

we recognise that H ∼= S3.

The procedure can be modified to derive presentations on user supplied
generators. But in this case calculation of the presentation needs to be
performed during the coset enumeration; this can result in very long
relators.

Contents: Lecture 2

4 Rewriting to solve WP(G): Dehn, van Kampen, Knuth-Bendix

5 Introducing automatic, biautomatic and hyperbolic groups

6 Computation in automatic and biautomatic groups

Using the fsa for computation

Construction and verification of automatic structures

7 Computation in hyperbolic groups

Cone types and geodesics

Proving hyperbolicity

Conjugacy problem in hyperbolic groups

Dehn’s solution to WP(G) for a surface group G

Dehn described a solution to the word problem for

π1(Sg) = 〈a1, b1, a2, . . . , bg | r := a1b1a
−1
1 b−11 · · · agbga

−1
g b−1g = 1〉,

the fundamental group of an orientable surface of genus g .

We call a word that’s a cyclic permutation of r or its inverse r−1 a
symmetrised relator, R̂ the set of those.

For g > 1, any word that represents the identity in π1(Sg) must contain a
subword u that is more than half of a symmetrised relator.

Algorithm (Dehn’s solution for the word problem in surface groups)

While w contains a subword u that is more than half of a (symmetrised)
relator uv−1, replace u in w by v , and repeat.
If w → ε (the empty word), then return ‘w =G 1’; otherwise return
‘w 6=G 1’.

Applying Dehn’s algorithm in π1(S2)

In π1(S2),

where dcd−1c−1bab−1a−1 = 1 and b−1a−1dcd−1c−1ba = 1,

as conjugates of the inverse of aba−1b−1cdc−1d−1, the product
w1 = b−1a−1dccd−1c−1bab−1a−1c−1ba is proved trivial since

b−1a−1dccd−1c−1bab−1a−1c−1ba → b−1a−1dcd−1c−1ba→ ε,

But the product w2 = b−1a−1dccd−1c−1b is proved non-trivial, since it
does not reduce to ε; in fact it does not reduce at all. Dehn’s algorithm
works because the Cayley graph of the surface group inherits geometry
from the negatively curved Poincaré disc, in which it embeds.

The geometry of the Poincaré disc

The geometry behind Dehn’s algorithm

The diagram below shows the neighbourhood of 1 in G(π1(S2)). A word
w0 labels the outer boundary. Dehn’s algorithm reduces w0 to ε using 8
length reducing substitutions.

r r r
r urrr

�
�

r r
r urr

rr
rr r r r

@
@

rr
rrr r
r r rrrr

@
@r r r rr
r

rrr r r r
�
� rrrrr
r

�c
d

a b

a
b

c
d

a
b

ab

c

d

6
cb

-a
b ?a d

w0 = a−1b−1ca · · · ab,

length 48, u p p p p- p p p p u
We can also see the words:

w1 = b−1a−1dcc · · · ba,

length 14, u p p p p- p p p p u
w2 = b−1a−1dccd−1c−1b,

length 8, u p p p p- p p p p u
Each of those substitutions corresponds to peeling off a relation cell
from the loop enclosed by the current word w . The negative curvature of
the Cayley graph guarantees that we always have a cell with more than
half of its edges on the boundary of the current loop.

Dehn’s algorithm only works for ‘word hyperbolic’ groups G

Dehn’s algorithm solves WP(G) ⇐⇒ G(G) is a hyperbolic space ⇐⇒ G
is a word hyperbolic group. Otherwise we need a different strategy.

But more generally we can often use the geometry of G(G), or of other
spaces on which G acts, to help us answer various questions about G ,

• to solve decision problems such as the word problem, conjugacy
problem, or other equations,

• to answer some questions about finite order (of the group, or of its
elements),

• to understand the structure of geodesic words (shortest products
representing an element), or other normal forms.

Maybe we can prove the group automatic or biautomatic (in which case
it has a particularly well structured normal form); computation with
(bi)automatic groups is particularly straightforward.

Solving the word problem in abelian groups

E.g. Z2 = 〈a, b | ba = ab〉

* > > >
a

^

^

b

^

^

^

^

>>>

From the equation ba = ab, we can deduce 3 others:

ba−1 = a−1b, b−1a = ab−1, b−1a−1 = a−1b−1.

Now, given a product w of positive and negative powers
of a and b, we just keep applying rules:

ba→ ab, ba−1 → a−1b, b−1a→ ab−1, b−1a−1 → a−1b−1

until w has been transformed to the form aibj . The original product w
represents the identity iff we reach the empty word ε, with i = j = 0.

Geometrically, we’ve converted the path γ in the Cayley graph that’s
labelled by w and starts at 1 into a path γ′ between the same two vertices
as γ, but which does all its movement in the a direction before all its
movement in the b direction. Each reduction corresponds to pulling the
path across a square that contains two or more of its edges.

Solving the word problem in nilpotent groups

E.g. G = 〈a, b, c | ba = abc, ca = ac, cb = bc〉 (integer Heisenberg gp)

From the defining relations, we deduce additional equations

ba−1 = a−1bc−1, b−1a = ab−1c−1, b−1a−1 = a−1b−1c ,

c−1a = ac−1, c−1b = bc−1, c±1a−1 = a−1c±1, c±1b−1 = b−1c±1

Now, given any product of positive and negative powers of a, b and c , we
keep applying those equations (replacing left hand sides by right hand
sides) to the product to get it into the form a±ib±jc±k . A product
representing the identity element must rewrite to the empty word ε.

Application of these rules solves the word problem in this group in cubic
time, and a similar strategy solves WP(G) in any nilpotent group G in
polynomial time. But it’s harder in this example to see guidance from the
geometry of G(G).

Solving the word problem in Coxeter groups

A Coxeter group on x1, . . . , xn is presented by relations x2i = 1, ∀i ,
together with some braid relations xixjxi · · · = xjxixj · · · (relating two
words length mij),

E.g. 〈a, b, c | a2 = b2 = c2 = 1, aba = bab, bcb = cbc, aca = cac〉,
whose Cayley graph tesselates the plane with regular hexagons.

We can reduce any (positive) word w to a geodesic
rep. by some sequence of replacements of subwords
equal to one side of a braid relation by the other
side, combined with deletion of any subwords x2i ;
i.e. we shorten a word by pulling across hexagons
some sections of length ≥ 3 of the corresponding
path.

The same process gives an exponential time solution to the word problem
in any Coxeter group. It’s slow because it’s unclear which braid relations
to apply (we could apply any relation in either direction).

In general, solving WP(G) is not straightforward

The solutions we’ve seen so far use rewriting techniques, and the solutions
for hyperbolic, abelian and Coxeter groups are guided by the geometry of
the Cayley graph.

But in general solving the word problem is not easy, and may be
impossible.

E.g. so far as I know, no solution is known for the word problem of the
following Artin group:

〈a, b, c , d | aba = bab, bcb = cbc, aca = cac ,

cdc = dcd , dbd = bdb, ad = da〉.

However, rewriting systems for Artin groups of spherical and FC types, and
for those of sufficiently large type, are well known and well studied.

van Kampen diagrams

Let G = 〈X | R〉 and suppose that w ∈ (X±)∗ is freely reduced.
Then w ∈ WP(G ,X) ⇐⇒ w =F(X) u1ri1u

−1
1 · · · uk riku

−1
k , where

u1, . . . , uk ∈ (X±)∗, ri1 , . . . , rik are relators (or inverses of such) from R.

Within a plane, we draw k distinct paths labelled u1, . . . , uk from a
basepoint, and at the end of the j-th path we attach a loop labelled rij .
Working out from the basepoint, we identify any two edges with the same
source and same label that are adjacent within the plane. The resulting
planar diagram ∆ has boundary labelled by w , and decomposes into k
regions, each with boundary labelled by a relator. We call it a van
Kampen diagram of area k for w .

s&6
u1 ?

�
�
�
�

-ri1

&6
u2 ?

�
�
�
�

-ri2

%6uk−1�

�
�
�
�

-rik−1

-uk�

�
�
�
�

-rik

s&

�
�
�
�

- ri1 �
��

-

??
ri2

� $'
&
�
��

�
�
�

-rik−1

�
�

-rik

'

%�
66

--

66

??

w

��

�� 66

66
??

��--

The Dehn function of a group

Area(w) is defined to be the min. area of any van Kampen diag. ∆ for w .

We define the isoperimetric function, or Dehn function, fG (n) of G by

fG (n) := max{Area(w) : w ∈ WP(G ,X), |w | ≤ n}.

Given fG (n), we can decide in time ≤ exp (KfG (n)) if an input w is in
WP(G ,X), by enumerating and freely reducing all candidate factorisations
u1ri1u

−1
1 · · · uk riku

−1
k with |ui | ≤ (|w |+ i max{|r |; r ∈ R})/2, k ≤ fG (n).

Without fG (n) we can still enumerate all possible factorisations of w , but
may not know when to stop searching.

If H = 〈Y | S〉 ∼= G , or H ⊆ G with |G : H| <∞, then fG (n) ≈ fH(n), i.e.
∃C , fH(n) ≤ CfG (Cn+C)+Cn+C , ∃D, fG (n) ≤ DfH(Dn+D)+Dn+D,
We say that fG dominates fH (fH � fG) and fH dominates fG .

In this case, WP(G ,X) is soluble ⇐⇒ WP(H,Y) is soluble.

Rewrite systems

Some of the solutions we have described to WP(G ,X), e.g. those with G :
• a surface group or any word hyperbolic group (Dehn’s algorithm),
• Z2 = 〈a, b | ab = ba〉,
• the Heisenberg group 〈a, b, c | ba = abc, ca = ac, cb = bc〉.

use rewrite systems, that reduce an input word w to ε ⇐⇒ w =G 1.

We define a rewrite system (rws) R over an alphabet A to be a set of
substitution rules ρ : u → v , for u, v ∈ A∗ (plus instructions on any
restrictions on their application); if w is a string over A then an application
of ρ to w replaces a substring u of w by the string v , to derive a word w ′

We write w
R−→ w ′ or w −→ w ′, and if w −→ · · · −→ wn, we write w −→∗ wn.

For the three examples above we have:
• R = {u −→ v : (|u| > |v |, uv−1 ∈ R̂},
• R = {bηaε −→ aεbη : ε, η ∈ {±1}},
• R = {bηaε −→ aεbηcεη, cηaε −→ aεcη, cηbε −→ bεcη : ε, η ∈ {±1}}

In each case, there are no restrictions on application of rules.

Rewrite systems (2)

Let � be a partial order on the set A∗ of words over A, satisfying

∀w ∈ A∗, (v � u ⇒ (wv � wu) ∧ (vw � uw)).

We say that a rws R is compatible with � if

(u −→ v) ∈ R ⇒ v � u.

The three rws on the previous slide are compatible with (respectively):
• ordering by word length,
• the shortlex ordering over {a±, b±}, where v <slex u if |v | < |u| or if
|v | = |u| but v precedes u lexicographically (given a < a−1 < b < b−1),
• a wreath product of the shortlex orders over {a±, b±} and {c±}, for
which we order two words first via their projections onto {a±, b±} and
then via the sequences of words over c± between symbols from a±, b±.

The 2nd and 3rd of these are total orders.

Confluence and completeness

A rws R over an alphabet A is
Noetherian if all chains of strings w −→ w1 −→ . . . −→ wn −→ . . . are finite,
confluent if (w −→∗ w1) ∧ (w −→∗ w2)⇒ ∃w ′((w1 −→∗ w ′) ∧ (w2 −→∗ w ′)),
complete if Noetherian and confluent,
locally confluent if (w −→ w1) ∧ (w −→ w2) ⇒

∃w ′((w1 −→∗ w ′) ∧(w2 −→∗ w ′)).
In fact a rws is also complete if Noetherian and locally confluent.

We see that our rws for π1(S2) is Noetherian but not confluent, since
bab−1a−1dc−1d−1ab −→ either cdc−1c−1d−1ab or bab−1a−1c−1ba, but
then no further. Our other two examples are complete.

The Knuth-Bendix (KB) procedure takes as input a finite rws R
compatible with a total order � and attempts to build a finite complete

system R̂, for which (w
R−→∗ w ′)⇒ (w

R̂−→∗ w ′),
by adding rules w1 −→ w2 or w2 −→ w1 (compatible with �) when
confluence fails. It is not guaranteed to terminate.

Using a complete rws to solve WP(G)

Let G = 〈X | R〉, � be a total order st v � u ⇒ vw � uw , wv � wu, and
R = {u −→ v : v � u, uv−1 ∈ R̂} ∪ {aa−1 −→ ε : a ∈ X±}.

If KB derives a finite complete rws R̂ from R, then application of R̂
solves WP(G ,X) in time O(fG (n)).

Proof: If w 6= ε and w =G 1 then w =F(X) u1ri1u
−1
1 · · · uk riku

−1
k and we

can find w1, . . . ,wr (with r odd, but possibly w = w1,wr = ε) with

w
R̂−→∗ w1

∗ R̂←− · · · R̂−→∗ wi−1
∗ R̂←− wi

R̂−→∗ wi+1
∗ R̂←− · · · R̂−→∗ wr = ε.

If r ≥ 3, then completeness implies we can find such a sequence of length
r − 2, so ultimately one of length 1, and hence we find w ′1, . . . ,w

′
s st

w −→ w ′1 −→ · · · −→ w ′s = ε. The connection between the rewrite sequence
and the factorisation of w gives us a bound on the total number s of
rewrites from R̂, in terms of fG (n).

Rewriting to solve WP(G,X) when G is hyperbolic

In general, the rws for Dehn’s algorithm is not complete. But it solves
WP(G ,X) in linear time in any (word) hyperbolic group.

G is hyperbolic ⇐⇒ Dehn’s algorithm solves WP(G) ⇐⇒ fG (n) is linear.
Equivalently, G is (word) hyperbolic if its Cayley graph G(G ,X) is
δ-hyperbolic for some δ, ie any triangle of geodesics is δ-slim.

q

q

qqJJ
p1

∃q1

q

p2

∃q2
≤ δ ≤ δ

The definition formalises properties found in (hyperbolic) surface groups,
or in any π1(M), M compact hyperbolic.

Fn is hyperbolic; Zn is not, no hyperbolic group can even contain Z2.

Solving WP(G,X) when G is a Coxeter group

We’ve already described a straightforward algorithm that solves the word
problem in any Coxeter group.The algorithm is easy to describe but rather
slow (running in exponential time), since we have to apply all possible
sequences of braid relations to a word to be sure that it admits no
reduction.

But in fact every Coxeter group is automatic (Brink&Howlett,1993), and
hence its word problem can be solved in quadratic time (as we shall see
later).

And many (but not all) Coxeter groups are known to have finite, complete
rewrite systems (Hermiller,1994).

And all Coxeter groups have soluble conjugacy problem. But despite that
(see later), it’s not known whether they are all biautomatic.

Introducing hyperbolic, automatic and biautomatic groups

The features that Dehn identified in surface groups that made their word
problems easy to solve are found more generally in all word hyperbolic
groups.

p

p

ppJJp1
∃q1 p

p2

∃q2
≤ δ≤ δ

As well as allowing easy solution of the word problem,
the negative curvature of the Cayley graph of a hyper-
bolic group G allows various features of geodesic paths
within those graphs to be represented by fsa, which
then facilitate computation with the groups.

And the same methods can work more generally.

Automatic and biautomatic groups were introduced (by Thurston et al.)
as a generalisation of hyperbolic groups, with many of the same
algorithmic properties.

All hyperbolic groups are both automatic and biautomatic.

Defining automatic and biautomatic groups

G = 〈X 〉 is automatic if ∃ a set of paths from the vtx 1 in G(G ,X), a
corresponding set of words L� G labelling them, and a constant K , st

• L is a regular set (i.e. can be recognised by a finite state automaton
with alphabet X±)

• if v ,w ∈ L satisfy v =G w or vx =G w for x ∈ X , then the
corresponding paths γ1(w), γ1(v) K -fellow travel,

t�t��t t�
t!!t t�t��
t tHHt t�� t tHHt tHHt

HHt t��t tbt t!!?≤ K
6 t�t��t t�
t��t tHHt t

and is biautomatic if in addition

• the paths γ1(w) γx(v) traced out from 1 and x by words w and v
that satisfy xv =G w must K -fellow travel.

Without the restriction on regularity of L, G is (bi)combable.

F2 and Z2 are biautomatic, and F2 is hyperbolic.

q

In F2 we select all geodesic paths/words. But in Z2 we have to restrict to
a subset, such as {aibj : i , j ∈ Z} (the ‘shortlex’ language), in order to get
fellow travelling; note that geodesics aibi and biai diverge to distance i .
Similarly, geodesic triangles in G(F2) are 0-slim, but those in G(Z2) are fat.
In general, G (X) is shortlex automatic if the shortlex language is the
language of an automatic structure.

Word acceptor W for Z2, accepting {aibj}

rg@@Rrg rg

rg

rg

-a

����-a

�a

�����a
6

b

����6b

?b

����?b

'

&

$

%

6
b

6
b

?b?b

This fsa has six states, but we can
only see five. All transitions that
are not shown are to that sixth (non-
accepting) failure state, and all tran-
sitions from it return to it.
The other five states are all accepting
states (and so ringed).

What’s the use of hyperbolicity, (bi)automaticity?

• Hyperbolic groups are very easy to compute with. Dehn’s algorithm
solves the word problem in any hyperbolic group in linear time.

• Automatic groups are all fp, have word problem soluble in quadratic
time. Biautomatic groups have soluble conjugacy problem:
?∃g , ug1 =G u2.

• Use of the word acceptor fsa of an automatic group allows tests for
some basic properties (e.g. finiteness).

• The fellow traveller (ft) condition satisfied by an automatic group
can be expressed in terms of fsa called multiplier automata. Various
algorithms can de described in terms of computations with those fsa.

Examples: A group G is hyperbolic ⇐⇒ its set Geo(G) of all geodesics
gives (bi)automatic structure. Additionally, we have π1(X) for many
compact 3-manifolds X , all Coxeter groups, many Artin groups, mapping
class groups of all surfaces of finite type. And the class is closed under
various group operations (direct and free product, extensions by finite
groups (certain) HNN extensions.

Formulation of automaticity via 1- and 2-string fsa

G = 〈X 〉 is automatic if ∃:
a set L of words L containing at least one rep. of each group element,
an fsa W (the word acceptor) that reads strings over X±,
and fsaMg for each g ∈ X± ∪ {1} (the multiplier automaton), that
read strings over X± × X±(or equivalently pairs of words v ,w over X), st

• W recognises the set L,

• Mg recognises the set or pairs (v ,w) of words over X , for which
v ,w ∈ L and vg =G w .

We can construct a difference machine D that recognises pairs (v ,w) of
words over X that K -fellow travel. For each g we construct Mg to accept
(v ,w) iff v ,w ∈ L, (v ,w) ∈ L(D) and v−1w =G g .

Formulation of the fellow traveller property in terms of fsa can make
computations easier to describe. Some of what I’ll describe has been
programmed within kbmag (Holt), more could be programmed using it.

Building composite fsa

When G is an automatic group, standard operations on fsa build various
fsa from the fsa of the automatic structure for G , that can be used in
computation with G .

Given fsa M1,M2, it’s straightforward to build fsa M∧ and M∨ with
languages that are the intersection, union of the languages of M1,M2.

Similarly we can apply other combinations of boolean and logical operators
to fsa.

Then, given the multiplier automata Mg for an automatic group G (for
generators g) we can construct a multiplier automaton Mu, for a word
u over X , recognising pairs of words (v ,w) with w =G vu and (v ,w)
fellow travelling (at distance |u|K). If G is biautomatic, then we can
similarly define and construct left multipliers gM and uM.

Reduction to L, solution of WP(G) run in quadratic time

Given w = a1 · · · an, we can find a rep. u ∈ L of w in time Cn2, some C .

v ∈ L represents a1 · · · ak−1, (v , v ′) ∈ L(Mak) ⇒ v ′ ∈ L represents vak .
Given v , we can find v ′ of length at most |v |+ E in time at most D|v |,
where D,E are constants depending only on the fsaMak .
We find u by iterating this process n times; the k-th step produces a word
in L of length at most A + Bk representing a1 . . . ak , in time at most Ck
for some C . Hence we find a representative of u in time at most Cn2.

Given u0 ∈ L representing 1, we can use M1 to check in time O(|u|)
whether or not u =G u0, and hence

If G is automatic, WP(G) can be solved in quadratic time.

Where H < G , and the coset system (G ,H) is coset automatic
(∃ regular set of coset reps with similar ft propeties (Redfern;
Holt&Hurd)), we have an O(n2) algorithm for subgroup membership.

Using fsa to solve CP(G) for biautomatic G

When G is biautomatic then, for all u1, u2 ∈ (X±)∗ the set of conjugating
words

{w ∈ (X±)∗ : wu1 =G u2w}
is a regular set, the language of an fsa that can be built out of the fsa of
the biautomatic structure for G (Gersten&Short,1991).

Specifically, the method that constructs general multipliers allows us also
to construct an fsa accepting

{(v ,w) : v ,w ∈ L, vu1 =G u2w}.

It is now elementary to use the M∧ construction to construct from this
and the ‘diagonal’ of W, an fsa accepting the language of conjugators.

So CP(G) can be solved using a combination of operations on fsa.

NB: Short proved geometrically that any bicombable group G has soluble
CP(G), but we need regularity of L for this particular construction.

Construction of shortlex automatic structures

Starting point, a finite set of rewrite rules for G = G (X), derived from
presentation, compatible with shortlex (wrt some ordering of X).

• Run KB for a while to get a rws R and construct an associated word
difference machine D accepting pairs (u, v) for which (u → v) ∈ R

• Construct word acceptor W and multiplier automata Mg from D.
If preliminary checks on those automata fail, then restart KB and
rebuild D and other automata. Repeat as necessary until checks pass.

• Verify correctness using axiom checking: checks based on
construction of various automata using logical operations on W and
the multipliers Mg . If these checks fail, give up.

If procedure terminates, after successful axiom checking G is proved
shortlex automatic with word acceptor W and multipliers Mg , Otherwise
procedure may loop endlessly, or give up due to lack of time or space.

Hyperbolic G : Cone types and geodesics

G (X) is hyperbolic ⇐⇒ the set Geo(X) of geodesic words over X is the
language of an automatic structure ⇐⇒ · · · · · · a biautomatic structure.

In particular, in any hyperbolic group, and for some X , in some (not nec.
automatic) other groups, e.g. Zn, Coxeter groups, Geo(X) is regular;

equivalently G has finitely many cone
types, equiv. classes of ≈ on G , where
g ≈ h iff, for geodesic reps. wg ,wh,
∀w ∈ (X±)∗,

wgw is geodesic ⇐⇒ whw is geodesic.

We visualise the cone type of g as the
sector of G(G) containing those words
w that continue wg geodesically; in Z2

there are 9 (we show 3 of those):

gd-�6
?

&r
-

-

66

rr
r
r r rr
rr rr
r
rr
r

�� ��r? ?? ?�� ��r�� ��r�� ��r

Proving hyperbolicity

Recall: G (X) is hyperbolic ⇐⇒ ∃ automatic structure on Geo(X)
⇒ G (X) is shortlex automatic, wrt any ordering of X .

Suppose that G is hyperbolic, and that W,DW are the word acceptor, and
difference machine of a shortlex automatic structure over X .

Then ∃ a set of word differences, and associated difference machine DGeo

(probably bigger than DW) for which Geo(X) is equal to its (regular)
subset

FtGeo(W,D) := {v : ∃w ∈ L(W), (v ,w) ∈ L(Dε), |w | = |v |}.

We could verify that G is hyperbolic if we could find DGeo, construct the
set FtGeo := FtGeo(W,DGeo), and then prove that FtGeo = Geo(X).

We need our method to terminate with output (DGeo,FtGeo) when G is
hyperbolic, but to fail in some way when it is not.

Then we have a valid test for hyperbolicity.

A procedure to verify hyperbolicity

A looping procedure builds successive machines Di , i ≥ 0 from which we
construct fsa accepting the subsets FtGeoi := FtGeo(W,Di) of Geo(X).
We start with D0 = DW , and FtGeo0 = FtGeo(W,D0).

Hyperbolicity is verified if Di → DGeo, in which case FtGeoi → Geo(X).

At each stage i , we construct a test fsa that checks whether or not
Di = DGeo. If the test passes, we halt, have verified hyperbolicity, and
FtGeoi = Geo(X). Failure yields Di+1; we increment i and loop.

How do we construct the test fsa? The test should fail if for some
w ∈ L(W), ∃v , u with (u, v), (v ,w) ∈ Dεi , (u, v) ∈ Dεi , |u| = |v | = |w |,
but (u,w) 6∈ Dεi .

r r- u

- v

- w

Building a test fsa

Such a test was provided in Wakefield’s 1997 thesis, which contained a
procedure based on the construction of an fsa Ti with language{

u′ : ∃v ′,w ∈ L(W), x ∈ X±, |w | = |v ′|+ 1,
(v ′,w) ∈ L(Dx

W), (v ′, u′) ∈ L(Dεi), (w , u′x) 6∈ L(Dεi)

}

r r- u′

- v ′ @
@R
xr

- w

If L(Ti) = ∅, then hyperbolicity is verified, Di =
DGeo and FtGeoi = Geo(X); otherwise Dεi+1

must accept L(Dεi) ∪ {(u′x ,w)}.

A later procedure, described by Epstein&Holt (1998) is more efficient,
through its use of a two-string test fsa T ′ with language

{(u,w) : w ∈ W, ∃v , (u, v), (v ,w) ∈ L(Dεi), |u| = |v | = |w |, (u,w) 6∈ Dεi }

Hyperbolicity is verified if L(T ′i) = ∅; otherwise new word differences are
found.

Conjugacy problem in hyperbolic groups

O(n2) and O(n) solutions to CP(G) in hyperbolic G are described by
Bridson&Haefliger (1999) and Epstein&Holt (2006), but are impractical.
A practical O(n3) solution restricting to inf. order elements due to
Marshall (2008), uses ideas from Swenson, has been implemented in GAP.
We reduce to the question of conjugacy between straight elements:

Definition

A word w over X is straight if all powers wn with n ≥ 0 are geodesic. An
element g ∈ G is straight if represented by a straight word w .

If g ∈ G has inf. order, then, ∃h,m, s.t. hgmh−1 is straight.

Testing for conjugacy between ∞-order elts rep.by u1, u2.

Find c1, c2,m st elts (c1u1c
−1
1)m and (c2u2c

−1
2)m are straight, rep by

straight words w1,w2. if u1, u2 are conjugate, then ∃c , cwn
1 =G wn

2 c for
all n. The following picture shows us that c = dv , where d is a word
difference between the two (fellow travelling) infinite rays and w2 = v ′v :

r���
�

�
c

r rcw `+n
1 = w ′wn

1-
w `
1

r
wk+n
2 v ′

-
wk
2 v
′

r
*w
′

C
C
C
Cr
W

-w1 -wn−1
1

-(vv ′)n−1-vv ′

r
C
C
C
Cr
W

C
C
C
C

W
d

- vwk ′
2 r

w `+n
2

Q
Q

Q
Q
Q

Q
Q

k
c

So we check all pairs (d , v) st d is a word difference of a particular
difference machine D∞ and w2 = v ′v to see if dv conjugates w1 to w2

For each pair (d , v) for which dv conjugates w1 to w2, check to see if dv
conjugates c1u1c

−1
1 to c2u2c

−1
2 .

u1 and u2 are conjugate ⇐⇒ some such pair (d , v) can be found.

	Introduction
	Words, relations and group presentations
	The Cayley graph of a group
	Some problems are insoluble, others merely hard

	Abelian and polyabelian groups and quotients
	Computing the largest abelian quotient of G
	Exponent-p abelian and p-quotients

	Computing with finite index subgroups, finite quotients
	Todd-Coxeter coset enumeration
	Subgroup presentation

	Rewriting to solve WP(G): Dehn, van Kampen, Knuth-Bendix
	Introducing automatic, biautomatic and hyperbolic groups
	Computation in automatic and biautomatic groups
	Using the fsa for computation
	Construction and verification of automatic structures

	Computation in hyperbolic groups
	Cone types and geodesics
	Proving hyperbolicity
	Conjugacy problem in hyperbolic groups

