Computing with finitely presented groups

Sarah Rees

University of Newcastle
ICERM, 14-18 June 2021

Abstract

I'll talk about computation with finitely presented groups. In particular:
(1) an introduction to the basic concepts and techniques, the use of geometry via the Cayley graph, the fact that some questions are not decidable in general, other calculations are not practical,
(2) calculation with abelian and polyabelian groups, construction of quotients of that type,
(3) techniques associated with coset enumeration and subgroup presentations (incl. Todd-Coxeter, Reidemeister-Schreier),
(4) techniques associated with rewriting, including the Knuth-Bendix process, and computation and use of automatic structures,
(5) testing for hyperbolicity, conjugacy problem in hyperbolic groups.

I'll cover 1-3 in lecture 1, 4,5 in lecture 2.

Contents: Lecture 1

(1) Introduction

Words, relations and group presentations
The Cayley graph of a group
Some problems are insoluble, others merely hard
(2) Abelian and polyabelian groups and quotients

Computing the largest abelian quotient of G
Exponent- p abelian and p-quotients
(3) Computing with finite index subgroups, finite quotients

Todd-Coxeter coset enumeration
Subgroup presentation

Word, relations and group presentations

Let $X=\left\{x_{1}, x_{2}, \ldots\right\}, X^{-1}=\left\{x_{1}^{-1}, x_{2}^{-1}, \ldots\right\}, X^{ \pm}:=X \cup X^{-1}$. A word w over X, of length n, is a string $a_{i_{1}} \cdots a_{i_{n}}$ of symbols from $X^{ \pm}$.
We delete all subwords $x_{i} x_{i}^{-1}$ or $x_{i}^{-1} x_{i}$ from w to form its free reduction, can abbreviate this as a product of powers $a_{j_{1}}^{k_{1}} \cdots a_{j_{m}}^{k_{m}}$; for words w, w^{\prime} we write $w \sim w^{\prime}$ if w, w^{\prime} have the same free reduction.

We define the free group $\mathbb{F}(X)$ on the set of \sim-equiv. classes of words:

- multiplication is defined by concatenation,
- the empty word ϵ represents the identity element,
- the word $w^{-1}:=a_{i_{k}}^{-1} \cdots a_{i_{1}}^{-1}$ represents the inverse of w above.

Given a set R of eqns between words over X, we extend \sim to equiv. rel. \simeq by additionally relating w, w^{\prime} if $w=w_{1} u w_{2}, w^{\prime}=w_{1} v w_{2}$, where either ' $u=v^{\prime}$ or ' $u^{-1}=v^{-1}$ ' is in R. We call ' $u=v$ ' a relation, $u v^{-1}$ a relator. Then we define the group $G=\langle X \mid R\rangle$, on the set of \simeq-equiv. classes, just as above. The presentation (X, R) is called finite (and $G \mathrm{fp}$) if X, R are both finite.

The Cayley graph $\mathcal{G}(G, X)$ of a group G

The vertices of the graph correspond to the group elements. And for each generator x there's a (directed) edge from g to $g x$. When a product represents an element g, it labels a path in the graph from vertex 1 to vertex g, so when a product w represents 1 , it labels a loop from 1 to 1 .

$$
\text { E.g. } \mathcal{S}_{3}=\left\langle a, b \mid a^{3}=b^{2}=1, b a=a^{3} b\right\rangle
$$

Cayley graphs for \mathbb{Z}^{2} and the free group F_{2}

Some problems are insoluble, others merely hard

In 1908, Max Dehn defined his three famous decision problems for fg groups $G=\langle X \mid R\rangle(|X|<\infty)$.

- The word problem for $G(\mathrm{WP}(G))$ asks whether or not a given input word represents the identity; $\operatorname{WP}(G)$ is soluble if \exists a terminating algorithm that can decide on any input word w whether $w=_{G} 1$.
- The conjugacy problem for $G(\operatorname{CP}(G))$ asks whether or not two given input words u_{1}, u_{2} are conjugate in G (i.e. $\exists g \in G, g u_{1}={ }_{G} u_{2} g$).
- The isomorphism problem for a class of groups asks whether or not two given groups within the class are isomorphic.

Of the three problems, $\operatorname{WP}(G)$ is the easiest. But (Novikov, Boone 1950s), fp groups G exist for which $\operatorname{WP}(G)$ cannot be solved. Hence all three problem are insoluble in general.

So there are some computational problems for which we cannot hope to find solutions in all fp groups. There are others that are theoretically solvable, but constraints of time and space limit what we can achieve.

Abelian groups are easy

If we know that a group G is abelian, calculation with it is easy. Then the group has a decomposition as a direct product of cyclic groups,

$$
\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{r}\right\rangle, \quad\left|x_{i}\right|=m_{i}, m_{1} \leq m_{2} \cdots m_{r} \leq \infty .
$$

We can derive that decomposition from any presentation, using linear algebra (we'll come back to that), express every element in its normal form $x_{1}^{i_{1}} \cdots x_{r}^{i_{r}}$.

Using the normal form,

- multiplication and inversion are easy,
- orders of elements are visible,
- calculation is efficient,
- solution of word and conjugacy problems are easy (and so is isomorphism)

Computation with polycyclic groups is not much harder . . .

... once we have found power conjugate/power commutator presentations, and corresponding normal forms.

A power-commutator presentation for a group is a presentation over generators x_{1}, \ldots, x_{r} in which every relation expresses either a power of a generator x_{i} or a commutator of two generators x_{j}, x_{i} or their inverses as a word in lower numbered generators. Power-conjugate presentations are defined similarly, with commutators of two generators (or their inverses) replaced by conjugates. Clearly a presentation of either of these two types can easily be transformed into one of the other two types.

Any fg polycyclic group possesses such a presentation.
Where a group is given in this form, there is a natural normal form, consisting of elements of the form $x_{1}^{i_{1}} \cdots x_{r}^{i_{r}}$.

Hence, as in abelian groups, computation within polycyclic groups is relatively straightforward.

Quotients of finitely presented groups

Given a finite presentation $\langle X \mid R\rangle$ for a group G, we can compute (information about) various types of quotients of G, particularly quotients that are abelian, poly-abelian, or of p-power order, and maximal quotients of those type (with specified parameters), as well as finite permutation groups.

We might use information about such quotients to investigate the structure of G, its finiteness or otherwise, its isomorphism or otherwise with another finitely presented group.

We'll discuss just abelian and polyabelian quotients for now.

Computing the largest abelian quotient

Suppose that $G=\langle X \mid R\rangle$ is fp , with $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and $|R|=m$. The largest abelian quotient $G_{\mathrm{ab}}=G /[G, G]$ of G has presentation

$$
\langle X \mid R \cup\{[x, y]: x, y \in X\}\rangle .
$$

For $w=1$ in R, let e_{w} be the vector of exponents of the elements of X within the word w. Let E_{R} be the $m \times n$ matrix whose rows are the e_{w}.

Using additive notation, $G_{\mathrm{ab}} \cong$ the abelian gp on X subject to eqns $E_{R} \mathbf{x}=\mathbf{0}$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$. Using linear alg. we change gen set to $Y=\left\{y_{1}, \ldots, y_{n}\right\}$, eqns to $D \mathbf{y}=\mathbf{0}, D$ diagonal, diag. entries $d_{1}, \ldots, d_{m} \geq 0, d_{i} \mid d_{i+1}$, those $\neq 1$ the abelian invariants for G_{ab}. Then

$$
G \mathrm{ab} \cong\left\langle y_{1}\right\rangle \oplus \cdots \oplus\left\langle y_{n}\right\rangle \cong \mathbb{Z} / d_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{m} \mathbb{Z} \oplus \mathbb{Z}^{n-m}
$$

We apply elementary row and column operations

$$
r_{i} \rightarrow r_{i}+\lambda r_{j}, c_{i} \rightarrow c_{i}+\mu c_{j}, r_{i} \leftrightarrow r_{j}, c_{i} \leftrightarrow c_{j}, \quad \lambda, \mu \in \mathbb{Z}
$$

to transform E_{R} into D, its Smith Normal Form.

Computing the largest abelian quotient: example

$$
\begin{aligned}
& G=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right| x_{1}\left(x_{2} x_{4}^{-1}\right)^{3},\left(x_{2} x_{3}\right)^{3}, x_{4}^{3} x_{1}^{-1}\left(x_{2}^{-1} x_{3}\right)^{6} \\
& E_{R}=\left(\begin{array}{rrrr}
1 & 3 & 0 & -3 \\
0 & 3 & 3 & 0 \\
-1 & -6 & 6 & 3
\end{array}\right) \underset{r_{3} \rightarrow r_{3}+r_{1}}{\longrightarrow}\left(\begin{array}{rrrr}
1 & 3 & 0 & -3 \\
0 & 3 & 3 & 0 \\
0 & -3 & 6 & 0
\end{array}\right) \\
& \longrightarrow \\
& r_{3} \rightarrow r_{3}+r_{2}\left(\begin{array}{rrrr}
1 & 3 & 0 & -3 \\
0 & 3 & 3 & 0 \\
0 & 0 & 9 & 0
\end{array}\right) \xrightarrow[c_{2} \rightarrow c_{2}-3 c_{1}]{c_{4} \rightarrow c_{4}+3 c_{1}}\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 9 & 0
\end{array}\right) \\
& \longrightarrow \\
& c_{3} \rightarrow c_{3}-c_{2}\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 9 & 0
\end{array}\right)
\end{aligned}
$$

We've found a decomposition of G_{ab} as a direct sum/product of cyclic groups of orders $1,3,9, \infty$. Examining the column ops, we see that the new gens are the images in $G /[G, G]$ of $x_{1} x_{2}^{3} x_{4}^{-3}, x_{2} x_{3}, x_{3}, x_{4}$.

Exponent- p abelian and p-quotients

If we add the equations $p x_{i}=0$ to our system of equations, we can use linear algebra to find the largest exponent- p abelian quotient of G.

Then we can iterate, move down the lower exponent- p central series:

$$
G=P_{0}(G) \triangleright \cdots P_{i-1}(G) \triangleright P_{i}(G) \triangleright \cdots
$$

where $P_{i}(G)=\left[P_{i-1}(G), G\right] P_{i-1}(G)^{p}$ for $i \geq 1$, and hence compute finite p-quotients $G / P_{i}(G)$ of increasing (exponent-p) nilpotency classes.

A power-conjugate presentation is computed for each quotient, over a generating set a_{1}, \ldots, a_{n} whose relations specify, for each a_{i}, words in a_{1}, \ldots, a_{i-1} that are equal either to some power of a_{i} or to its conjugate by some a_{j} with $j<i$.

The original p-quotient algorithm was developed by I.D.Macdonald (1974). The current version was introduced by Newman (1976), with contributions from Havas, O'Brien, Vaughan-Lee. Implementations are available in GAP and MaGma.

Other polyabelian quotients

The same basic idea (building down a series with abelian quotients, using linear algebra and other techniques) constructs

- nilpotent quotients (Nickel 95, Newman),
- polycyclic quotients (Baumslag 81, Lo 98, Sims),
- solvable quotients (Leedham-Green 84, Plesken 87, Brückner, Niemeyer 93)
again finding power-conjugate presentations.
These are resource-expensive computations, needing sophisticated optimisation techniques.

Finite quotients of a group

It is well known that, for any group G, there is a bijection between its set of finite index subgroups H, and its set of transitive actions of G on finite sets, represented by maps $\varphi: G \rightarrow \mathcal{S}_{n}: n \in \mathbb{N}$.

Acting on the right ($\omega \mapsto^{g} \omega g$),
$H \leftrightarrow \quad$ right coset action on $\{H y: y \in G\}=: H \backslash G$ defined by $H y \mapsto^{g} H y g$.

We have

$$
\begin{aligned}
H & =\varphi^{-1}\left(\operatorname{stab}_{\mathcal{S}_{\mathrm{n}}}(1)\right) \\
\bigcap_{y \in G} H^{y} & =\operatorname{ker}(\varphi) \\
H=K^{y}, y \in G & \Longleftrightarrow \text { actions on } H \backslash G \text { and } K \backslash G \text { are equivalent. }
\end{aligned}
$$

So the conjugacy classes of finite index subgroups correspond to the equivalence classes of actions on finite sets.

Coset tables

We can describe the action of G on $H \backslash G,|G: H|<\infty$ using a coset table. For example:

$$
\begin{aligned}
G & =\left\langle c, d \mid c^{2}=1=d^{3}=(c d)^{7}=[c, d]^{4}\right\rangle \\
& \cong P S L_{2}(7) \cong\langle(1,2)(4,5),(2,3,4)(5,6,7)\rangle \leq \mathcal{S}_{7} \\
H & =\left\langle d, c d c d^{-1} c\right\rangle,|G: H|=7
\end{aligned}
$$

Coset no.	c	c^{-1}	d	d^{-1}
1	2	2	1	1
2	1	1	3	4
3	3	3	4	2
4	5	5	2	3
5	4	4	6	7
6	6	6	7	5
7	7	7	5	6

Todd-Coxeter coset enumeration

Let $G=\langle X \mid R\rangle$, and $H=\left\langle h_{1}, \ldots, h_{k}\right\rangle \leq G$. The Todd-Coxeter coset enumeration procedure constructs a coset table for the action of G on $H \backslash G$ as follows:
each coset has a name, consisting of a number and a word over $X^{ \pm}$,
we start with an empty table, create new names as we need them, draw conclusions using the facts that

- all cosets are fixed by multipication by elements of R,
- the coset H is fixed by multiplication by any h_{i}, and hope that the process completes with some finite number of rows, which we then identify as $|G: H|$.

Todd-Coxeter enumeration: an example

$G=\left\langle a, b \mid a^{3}, b^{3}, a b a b\right\rangle, \quad H=\langle a\rangle . H$ is the first coset; we make the first deductions.

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1		

Events:

Ded: $a \in H \Rightarrow 1 a=1$, (equivalently $1 a^{-1}=1$).

We define the second coset $H b .2:=1 b$, equivalently $2 b^{-1}=1$.

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1	2	
2	$H b$				1

Events:

Ded: $a \in H \Rightarrow 1 a=1$
Def: $2:=1 b, 1=2 b^{-1}$

Todd-Coxeter enumeration: an example (2)

$G=\left\langle a, b \mid a^{3}, b^{3}, a b a b\right\rangle, \quad H=\langle a\rangle$.
We make a new definition $3:=2 b=H b b$, equivalently $3 b^{-1}=2$.

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1	2	
2	$H b$			3	1
3	$H b b$				2
			Events: Ded: $a \in H \Rightarrow 1 a=1$ Def: $2:=1 b, 1=2 b^{-1}$ Def: $3:=2 b$		
$b^{3} \in R \Rightarrow H b^{3}=H \Rightarrow 3 b=1,1 b^{-1}=3$.					

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1	2	1
2	$H b$			3	1
3	$H b b$			1	2

Events:

Ded: $a \in H \Rightarrow 1 a=1$
Def: $2:=1 b, 1=2 b^{-1}$
Def: $3:=2 b$
Ded: $b^{3} \in R \Rightarrow 1=3 b$

Todd-Coxeter enumeration: an example (3)

$G=\left\langle a, b \mid a^{3}, b^{3}, a b a b\right\rangle, \quad H=\langle a\rangle$.
$a b a b a \in R \Rightarrow 1 a b a b=1 \Rightarrow 2 a=1 a b a=1 b^{-1}=3,3 a^{-1}=2$.

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1	2	3
2	$H b$	3		3	1
3	$H b b$		2	1	2

Ded: $a \in H \Rightarrow 1 a=1$
Def: $2:=1 b, 1=2 b^{-1}$
Def: $3:=2 b$
Ded: $b^{3} \in R \Rightarrow 1=3 b$
Ded: $a b a b \in R \Rightarrow 3=2 a$
Another new definition, $4:=2 a^{-1}=H b a^{-1}, 4 a=2$.

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1	2	3
2	$H b$	3	4	3	1
3	$H b b$		2	1	2
4	$H b a^{-1}$	2			

Ded: $a \in H \Rightarrow 1 a=1$
Def: $2:=1 b, 1=2 b^{-1}$
Def: $3:=2 b$
Ded: $b^{3} \in R \Rightarrow 1=3 b$
Ded: $a b a b \in R \Rightarrow 3=2 a$
Def: $4:=2 a^{-1}$

Todd-Coxeter enumeration: an example (4)

$$
\begin{aligned}
& G=\left\langle a, b \mid a^{3}, b^{3}, a b a b\right\rangle, \quad H=\langle a\rangle . \\
& a^{3} \in R \Rightarrow 2 a^{3}=2 \Rightarrow 2 a^{2}=2 a^{-1} \Rightarrow 3 a=4,4 a^{-1}=3 .
\end{aligned}
$$

Ded: $a \in H \Rightarrow 1 a=1$

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1	2	
2	$H b$	3		3	1
3	$H b b$	4	2	1	2
4	$H b a^{-1}$	2	3		

Def: $2:=1 b, 1=2 b^{-1}$
Def: $3:=2 b$
Ded: $b^{3} \in R \Rightarrow 1=3 b$
Ded: $a b a b \in R \Rightarrow 3=2 a$
Def: $4:=2 a^{-1}$
Ded: $2 a^{3}=2 \Rightarrow 4=3 a$
$a b a b \in R \Rightarrow 3 a b a b=3 \Rightarrow 3 a b=3 b^{-1} a^{-1} \Rightarrow 4 b=4,4 b^{-1}=4$.

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1	2	3
2	$H b$	3	4	3	1
3	$H b b$	3	2	1	2
4	$H b a^{-1}$	2	3	4	4

Ded: $a \in H \Rightarrow 1 a=1$
Def: $2:=1 b, 1=2 b^{-1}$
Def: $3:=2 b$
Ded: $b^{3} \in R \Rightarrow 1=3 b$
Ded: $a b a b \in R \Rightarrow 3=2 a$
Def: $4:=2 a^{-1}$
Ded: $2 a^{3}=2 \Rightarrow 4=3 a$

Todd-Coxeter enumeration: an example (5)

$G=\left\langle a, b \mid a^{3}, b^{3}, a b a b\right\rangle, \quad H=\langle a\rangle$. Our coset table:

No.	Coset	a	a^{-1}	b	b^{-1}
1	H	1	1	2	3
2	$H b$	3	4	3	1
3	$H b b$	3	2	1	2
4	$H b a^{-1}$	2	3	4	4

is now closed, with 4 rows. So we have found a permutation rep. on 4 points; the subgroup H fixes the first point. Since we have checked all the relations, we have found a group homomorphism form G to \mathcal{S}_{4}.

Sometimes (not in this example) a deduction reveals a coincidence $i=j$ between two previously defined cosets. Two rows of the table are merged, further deductions or coincidences may be revealed. This computation can be huge, so the order in which info (deductions and concidences) is processed is crucial to its success. Different published strategies (by Felsch, or Haselgrove-Leech-Trotter) make different decisions here.

Low index subgroups

Coset enumeration can be used to enumerate representatives of the conjugacy classes of all subgroups of G of index up to a specified positive integer n. We simply build all coset tables with up to n rows. This is known as the low index subgroups algorithm. Unlike coset enumeration itself, where the index of the subgroup is not known at the start, and indeed it is not known whether or not it is finite, the low index subgroups algorithm is guaranteed to complete. However its complexity appears to be worse than exponential in n.

Subgroup presentation: theory

We have $G=\langle X \mid R\rangle$ and so $G \cong F / N$, where $F=F(X)$ is free and $N=\langle\langle R\rangle\rangle$.

If $H<G$, then $H \cong E / N$ for some E, with $N<E<F$. We can write $H=\nu(E)$, where $\nu: F \rightarrow G, \nu(g)=N g$.

If $|G: H|<\infty$, then $|F: E|=|G: H|<\infty$, and $E=E(Y)$ for $|Y|<\infty$.
So

$$
F=\bigcup_{t \in T} E t, \quad G=\bigcup_{t^{\prime} \in T^{\prime}} H t^{\prime}, \quad|T|=\left|T^{\prime}\right|
$$

We can choose the transversal T st $1 \in T$. For $w \in F$, define $\bar{w} \in T$ to be the coset representative of w in T, i.e. $w \in E \bar{w}$

Theorem (Nielsen-Schreier)
$E=\langle Y\rangle$, where $Y=\left\{t x(\overline{t x})^{-1}: t \in T, x \in X, t x \neq \overline{t x}\right\}$.
If T is prefix-closed, then Y freely generates E.

Subgroup presentation: Reidemeister-Schreier

Let $w=x_{1} \cdots x_{r}$. Then $w \in E t$ for some t, and we can express it as a product $y_{1} y_{2} \cdots y_{r} t_{r}$ as follows. We apply rewrites of the form $t x \rightarrow y \overline{t x}$, $t \in T, x \in X^{ \pm}, y \in Y$, working from the left, through a sequence:
$1 x_{1} \cdots x_{r} \rightarrow y_{1} t_{1} x_{2} \cdots x_{r} \rightarrow y_{1} y_{2} t_{2} x_{3} \cdots x_{r} \rightarrow \cdots \quad \rightarrow y_{1} y_{2} \cdots y_{r} t_{r} \quad$ where

$$
\begin{array}{ccl}
t_{1}=\overline{1 x_{1}}, y_{1}=1 x_{1} t_{1}^{-1}, & t_{2}=\overline{t_{1} x_{2}}, y_{2}=t_{1} x_{2} t_{2}^{-1}, & t_{3}=\overline{t_{2} x_{3}}, y_{3}=t_{2} x_{3} t_{3}^{-1}, \\
\ldots \ldots \ldots \ldots \ldots . & t_{r}=\overline{t_{r-1} x_{r}}, & y_{r}=t_{r-1} x_{r} t_{r}^{-1} .
\end{array}
$$

Now denote each right hand side $y \overline{t x}$ by $\rho(t x)$, each product $y_{1} y_{2} \cdots y_{r}$ by $\rho\left(w t_{r}^{-1}\right)$, and use the same notation for products over $T \cup X^{ \pm}$that are in E and can be similarly rewritten (from the left). In particular we can rewrite conjugates of the elements of R, and we have:

Theorem (Reidemeister-Schreier)

$$
H \cong\left\langle Y \mid \rho\left(t w t^{-1}\right), \forall w \in R, t \in T\right\rangle
$$

the basis for the Reidemeister-Schreier algorithm.

The Reidemeister-Schreier algorithm: an example

If $|G: H|<\infty$ and we have a coset table for H in G, then we can use the Reidemeister-Schreier algorithm to compute the Schreier generators and write down explicitly the presentation given by the R-S theorem.

For example: $G=\left\langle x, y \mid x^{3}, y^{4},(x y)^{2}\right\rangle, H=\left\langle x, y x^{-1} y^{-2}\right\rangle,|G: H|=4$.

Coset no.	x	y	x^{-1}	y^{-1}
1	1	$\underline{2}$	1	3
2	3	4	4	1
3	4	1	2	4
4	2	3	3	2

The first occurrence of each coset number in the table is underlined, called its definition. We use this info to choose T, here as $\left\{1, y, y x, y^{2}\right\}$.

The Reidemeister-Schreier algorithm: an example (2)

The elements of Y correspond to the non-trival products $t x(\overline{t x})^{-1}$. We define them by inserting new symbols (and their inverses) into those cells of the coset table that don't contain definitions (or their inverses).

Coset no.	x	y	x^{-1}	y^{-1}
1	$a 1$	$\underline{2}$	$a^{-1} 1$	$c^{-1} 3$
2	$\underline{3}$	$\underline{4}$	$d^{-1} 4$	1
3	$b 4$	$c 1$	2	$e^{-1} 4$
4	$d 2$	$e 3$	$b^{-1} 3$	2

We've made some choices (e.g. which elements are in Y, which is Y^{-1}), and have chosen $Y=\{a, b, c, d, e\}$ with

$$
a=x, b=y x^{2} y^{-2}, c=y x y, d=y^{2} x y^{-1}, e=y^{3} x^{-1} y^{-1} .
$$

The Reidemeister-Schreier algorithm: an example (3)

We calculate the relators $\rho\left(t w t^{-1}\right)$ of H by tracing out the image of $t \in T$ under each relator $w \in R$, using the modified coset table; we must have $t w=t$. If $w=u^{m}$ and we know that $t_{j}=t_{i} u$, then we don't need to apply w to t_{j} as well as to t_{i}, i.e. that gives nothing new. So, below we only need to trace out $1 x^{3}$ and $2 x^{3}$, not $3 x^{3}$ or $4 x^{3}$.

	x		x		x	
1		$a 1$		$a^{2} 1$		$a^{3} 1$
2		3		$b 4$		$b d 2$

	y		y		y		y	
1		2		4		$e 3$		$e c 1$

	x		y		x		y	
1		$a 1$		$a 2$		$a 3$		$a c 1$
3		$b 4$		$b e 3$		$b e b 4$		$(b e)^{2} 3$
4		$d 2$		$d 4$		$d^{2} 2$		$d^{2} 4$

The Reidemeister-Schreier algorithm: an example (4)

We extract the relators from the right hand columns of those tables, and so deduce

$$
H \cong a, b, c, d, e\left|a^{3}, b d, e c, a c,(b e)^{2}, d^{2}\right\rangle .
$$

We apply Tietze transformations to eliminate the generators $e\left(=c^{-1}\right), d$ $\left(=b^{-1}\right)$, and then $c\left(=a^{-1}\right)$, and derive

$$
H \cong\left\langle a, b, c, d, e \mid a^{3},(a b)^{2}, b^{2}\right\rangle ;
$$

we recognise that $H \cong \mathcal{S}_{3}$.
The procedure can be modified to derive presentations on user supplied generators. But in this case calculation of the presentation needs to be performed during the coset enumeration; this can result in very long relators.

Contents: Lecture 2

(4) Rewriting to solve $\mathrm{WP}(\mathrm{G})$: Dehn, van Kampen, Knuth-Bendix
(5) Introducing automatic, biautomatic and hyperbolic groups
(6) Computation in automatic and biautomatic groups

Using the FSA for computation
Construction and verification of automatic structures
(7) Computation in hyperbolic groups

Cone types and geodesics
Proving hyperbolicity
Conjugacy problem in hyperbolic groups

Dehn's solution to $\mathrm{WP}(G)$ for a surface group G

Dehn described a solution to the word problem for

$$
\pi_{1}\left(S_{g}\right)=\left\langle a_{1}, b_{1}, a_{2}, \ldots, b_{g} \mid r:=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1\right\rangle
$$

the fundamental group of an orientable surface of genus g.
We call a word that's a cyclic permutation of r or its inverse r^{-1} a symmetrised relator, \hat{R} the set of those.

For $g>1$, any word that represents the identity in $\pi_{1}\left(S_{g}\right)$ must contain a subword u that is more than half of a symmetrised relator.

Algorithm (Dehn's solution for the word problem in surface groups)

While w contains a subword u that is more than half of a (symmetrised) relator $u v^{-1}$, replace u in w by v, and repeat.
If $w \rightarrow \epsilon$ (the empty word), then return ' $w={ }_{G} 1$ '; otherwise return ' $w \neq G 1$ '.

Applying Dehn's algorithm in $\pi_{1}\left(S_{2}\right)$

$\ln \pi_{1}\left(S_{2}\right)$,
where $\quad d c d^{-1} c^{-1} b a b^{-1} a^{-1}=1 \quad$ and $\quad b^{-1} a^{-1} d c d^{-1} c^{-1} b a=1$,
as conjugates of the inverse of $a b a^{-1} b^{-1} c d c^{-1} d^{-1}$, the product $w_{1}=b^{-1} a^{-1} d c c d^{-1} c^{-1} b a b^{-1} a^{-1} c^{-1} b a$ is proved trivial since

$$
b^{-1} a^{-1} d c c d^{-1} c^{-1} b a b^{-1} a^{-1} c^{-1} b a \rightarrow b^{-1} a^{-1} d c d^{-1} c^{-1} b a \rightarrow \epsilon,
$$

But the product $w_{2}=b^{-1} a^{-1} d c c d^{-1} c^{-1} b$ is proved non-trivial, since it does not reduce to ϵ; in fact it does not reduce at all. Dehn's algorithm works because the Cayley graph of the surface group inherits geometry from the negatively curved Poincaré disc, in which it embeds.

The geometry of the Poincaré disc

The geometry behind Dehn's algorithm

The diagram below shows the neighbourhood of 1 in $\mathcal{G}\left(\pi_{1}\left(S_{2}\right)\right)$. A word w_{0} labels the outer boundary. Dehn's algorithm reduces w_{0} to ϵ using 8 length reducing substitutions.

$$
\begin{array}{r}
w_{0}=a^{-1} b^{-1} c a \cdots a b, \\
\quad \text { length } 48,
\end{array} \cdots \cdots \cdots .
$$

We can also see the words:

$$
\begin{aligned}
& w_{1}=b^{-1} a^{-1} d c c \cdots b a, \\
& \text { length } 14, \cdots \cdots \cdots \\
& w_{2}=b^{-1} a^{-1} d c c d^{-1} c^{-1} b, \\
& \text { length } 8,
\end{aligned}
$$

Each of those substitutions corresponds to peeling off a relation cell from the loop enclosed by the current word w. The negative curvature of the Cayley graph guarantees that we always have a cell with more than half of its edges on the boundary of the current loop.

Dehn's algorithm only works for 'word hyperbolic' groups G

Dehn's algorithm solves $\operatorname{WP}(G) \Longleftrightarrow \mathcal{G}(G)$ is a hyperbolic space $\Longleftrightarrow G$ is a word hyperbolic group. Otherwise we need a different strategy.

But more generally we can often use the geometry of $\mathcal{G}(G)$, or of other spaces on which G acts, to help us answer various questions about G,

- to solve decision problems such as the word problem, conjugacy problem, or other equations,
- to answer some questions about finite order (of the group, or of its elements),
- to understand the structure of geodesic words (shortest products representing an element), or other normal forms.

Maybe we can prove the group automatic or biautomatic (in which case it has a particularly well structured normal form); computation with (bi)automatic groups is particularly straightforward.

Solving the word problem in abelian groups

$$
\text { E.g. } \quad \mathbb{Z}^{2}=\langle a, b \mid b a=a b\rangle
$$

From the equation $b a=a b$, we can deduce 3 others:

$$
b a^{-1}=a^{-1} b, \quad b^{-1} a=a b^{-1}, \quad b^{-1} a^{-1}=a^{-1} b^{-1} .
$$

Now, given a product w of positive and negative powers of a and b, we just keep applying rules:

$$
b a \rightarrow a b, \quad b a^{-1} \rightarrow a^{-1} b, \quad b^{-1} a \rightarrow a b^{-1}, \quad b^{-1} a^{-1} \rightarrow a^{-1} b^{-1}
$$

until w has been transformed to the form $a^{i} b^{j}$. The original product w represents the identity iff we reach the empty word ϵ, with $i=j=0$.

Geometrically, we've converted the path γ in the Cayley graph that's labelled by w and starts at 1 into a path γ^{\prime} between the same two vertices as γ, but which does all its movement in the a direction before all its movement in the b direction. Each reduction corresponds to pulling the path across a square that contains two or more of its edges.

Solving the word problem in nilpotent groups

E.g. $\quad G=\langle a, b, c \mid b a=a b c, c a=a c, c b=b c\rangle \quad$ (integer Heisenberg gp)

From the defining relations, we deduce additional equations

$$
\begin{aligned}
& b a^{-1}=a^{-1} b c^{-1}, \quad b^{-1} a=a b^{-1} c^{-1}, \quad b^{-1} a^{-1}=a^{-1} b^{-1} c \\
& c^{-1} a=a c^{-1}, c^{-1} b=b c^{-1}, c^{ \pm 1} a^{-1}=a^{-1} c^{ \pm 1}, c^{ \pm 1} b^{-1}=b^{-1} c^{ \pm 1}
\end{aligned}
$$

Now, given any product of positive and negative powers of a, b and c, we keep applying those equations (replacing left hand sides by right hand sides) to the product to get it into the form $a^{ \pm i} b^{ \pm j} c^{ \pm k}$. A product representing the identity element must rewrite to the empty word ϵ.

Application of these rules solves the word problem in this group in cubic time, and a similar strategy solves $\operatorname{WP}(G)$ in any nilpotent group G in polynomial time. But it's harder in this example to see guidance from the geometry of $\mathcal{G}(G)$.

Solving the word problem in Coxeter groups

A Coxeter group on x_{1}, \ldots, x_{n} is presented by relations $x_{i}^{2}=1, \forall i$, together with some braid relations $x_{i} x_{j} x_{i} \cdots=x_{j} x_{i} x_{j} \cdots$ (relating two words length $m_{i j}$),

$$
\text { E.g. }\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1, a b a=b a b, b c b=c b c, a c a=c a c\right\rangle,
$$

whose Cayley graph tesselates the plane with regular hexagons.
We can reduce any (positive) word w to a geodesic rep. by some sequence of replacements of subwords equal to one side of a braid relation by the other side, combined with deletion of any subwords x_{i}^{2}; i.e. we shorten a word by pulling across hexagons some sections of length ≥ 3 of the corresponding path.

The same process gives an exponential time solution to the word problem in any Coxeter group. It's slow because it's unclear which braid relations to apply (we could apply any relation in either direction).

In general, solving $\mathrm{WP}(G)$ is not straightforward

The solutions we've seen so far use rewriting techniques, and the solutions for hyperbolic, abelian and Coxeter groups are guided by the geometry of the Cayley graph.

But in general solving the word problem is not easy, and may be impossible.
E.g. so far as I know, no solution is known for the word problem of the following Artin group:

$$
\begin{aligned}
\langle a, b, c, d \quad| \quad a b a & =b a b, b c b=c b c, a c a=c a c \\
c d c & =d c d, d b d=b d b, a d=d a\rangle .
\end{aligned}
$$

However, rewriting systems for Artin groups of spherical and FC types, and for those of sufficiently large type, are well known and well studied.

van Kampen diagrams

Let $G=\langle X \mid R\rangle$ and suppose that $w \in\left(X^{ \pm}\right)^{*}$ is freely reduced.
Then $w \in \operatorname{WP}(G, X) \Longleftrightarrow w=_{F}(X) u_{1} r_{i_{1}} u_{1}^{-1} \cdots u_{k} r_{i_{k}} u_{k}^{-1}$, where $u_{1}, \ldots, u_{k} \in\left(X^{ \pm}\right)^{*}, r_{i_{1}}, \ldots, r_{i_{k}}$ are relators (or inverses of such) from R.

Within a plane, we draw k distinct paths labelled u_{1}, \ldots, u_{k} from a basepoint, and at the end of the j-th path we attach a loop labelled $r_{i j}$. Working out from the basepoint, we identify any two edges with the same source and same label that are adjacent within the plane. The resulting planar diagram Δ has boundary labelled by w, and decomposes into k regions, each with boundary labelled by a relator. We call it a van Kampen diagram of area k for w.

The Dehn function of a group

Area(w) is defined to be the min. area of any van Kampen diag. Δ for w. We define the isoperimetric function, or Dehn function, $f_{G}(n)$ of G by

$$
f_{G}(n):=\max \{\operatorname{Area}(w): w \in \operatorname{WP}(G, X),|w| \leq n\} .
$$

Given $f_{G}(n)$, we can decide in time $\leq \exp \left(K f_{G}(n)\right)$ if an input w is in $\mathrm{WP}(G, X)$, by enumerating and freely reducing all candidate factorisations $u_{1} r_{i_{1}} u_{1}^{-1} \cdots u_{k} r_{i_{k}} u_{k}^{-1}$ with $\left|u_{i}\right| \leq(|w|+i \max \{|r| ; r \in R\}) / 2, \quad k \leq f_{G}(n)$.

Without $f_{G}(n)$ we can still enumerate all possible factorisations of w, but may not know when to stop searching.

If $H=\langle Y \mid S\rangle \cong G$, or $H \subseteq G$ with $|G: H|<\infty$, then $f_{G}(n) \approx f_{H}(n)$, i.e. $\exists C, f_{H}(n) \leq C f_{G}(C n+C)+C n+C, \quad \exists D, f_{G}(n) \leq D f_{H}(D n+D)+D n+D$, We say that f_{G} dominates $f_{H}\left(f_{H} \preceq f_{G}\right)$ and f_{H} dominates f_{G}. In this case, $\operatorname{WP}(G, X)$ is soluble $\Longleftrightarrow \mathrm{WP}(H, Y)$ is soluble.

Rewrite systems

Some of the solutions we have described to $\operatorname{WP}(G, X)$, e.g. those with G :

- a surface group or any word hyperbolic group (Dehn's algorithm), $\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$,
the Heisenberg group $\langle a, b, c \mid b a=a b c, c a=a c, c b=b c\rangle$.
use rewrite systems, that reduce an input word w to $\epsilon \Longleftrightarrow w={ }_{G} 1$.
We define a rewrite system (RWS) \mathcal{R} over an alphabet A to be a set of substitution rules $\rho: u \rightarrow v$, for $u, v \in A^{*}$ (plus instructions on any restrictions on their application); if w is a string over A then an application of ρ to w replaces a substring u of w by the string v, to derive a word w^{\prime} We write $w \xrightarrow{\mathcal{R}} w^{\prime}$ or $w \rightarrow w^{\prime}$, and if $w \rightarrow \cdots \rightarrow w_{n}$, we write $w \rightarrow^{*} w_{n}$.

For the three examples above we have:

$$
\begin{aligned}
& \mathcal{R}=\left\{u \rightarrow v:\left(|u|>|v|, u v^{-1} \in \hat{R}\right\},\right. \\
- & \mathcal{R}=\left\{b^{\eta} a^{\epsilon} \rightarrow a^{\epsilon} b^{\eta}: \epsilon, \eta \in\{ \pm 1\}\right\}, \\
- & \mathcal{R}=\left\{b^{\eta} a^{\epsilon} \rightarrow a^{\epsilon} b^{\eta} c^{\epsilon \eta}, c^{\eta} a^{\epsilon} \rightarrow a^{\epsilon} c^{\eta}, c^{\eta} b^{\epsilon} \rightarrow b^{\epsilon} c^{\eta}: \epsilon, \eta \in\{ \pm 1\}\right\}
\end{aligned}
$$

In each case, there are no restrictions on application of rules.

Rewrite systems (2)

Let \preceq be a partial order on the set A^{*} of words over A, satisfying

$$
\forall w \in A^{*}, \quad(v \preceq u \Rightarrow(w v \preceq w u) \wedge(v w \preceq u w)) .
$$

We say that a RWS \mathcal{R} is compatible with \preceq if

$$
(u \rightarrow v) \in \mathcal{R} \Rightarrow v \preceq u .
$$

The three RWS on the previous slide are compatible with (respectively):

- ordering by word length,
- the shortlex ordering over $\left\{a^{ \pm}, b^{ \pm}\right\}$, where $v<_{\text {slex }} u$ if $|v|<|u|$ or if $|v|=|u|$ but v precedes u lexicographically (given $a<a^{-1}<b<b^{-1}$), - a wreath product of the shortlex orders over $\left\{a^{ \pm}, b^{ \pm}\right\}$and $\left\{c^{ \pm}\right\}$, for which we order two words first via their projections onto $\left\{a^{ \pm}, b^{ \pm}\right\}$and then via the sequences of words over $c^{ \pm}$between symbols from $a^{ \pm}, b^{ \pm}$.

The 2nd and 3rd of these are total orders.

Confluence and completeness

A RWs \mathcal{R} over an alphabet A is
Noetherian if all chains of strings $w \rightarrow w_{1} \rightarrow \ldots \rightarrow w_{n} \rightarrow \ldots$ are finite, confluent if $\left(w \rightarrow^{*} w_{1}\right) \wedge\left(w \rightarrow^{*} w_{2}\right) \Rightarrow \exists w^{\prime}\left(\left(w_{1} \rightarrow^{*} w^{\prime}\right) \wedge\left(w_{2} \rightarrow^{*} w^{\prime}\right)\right)$, complete if Noetherian and confluent, locally confluent if $\left(w \rightarrow w_{1}\right) \wedge\left(w \rightarrow w_{2}\right) \Rightarrow$

$$
\exists w^{\prime}\left(\left(w_{1} \rightarrow^{*} w^{\prime}\right) \wedge\left(w_{2} \rightarrow^{*} w^{\prime}\right)\right) .
$$

In fact a RWS is also complete if Noetherian and locally confluent.
We see that our RWS for $\pi_{1}\left(S_{2}\right)$ is Noetherian but not confluent, since $b a b^{-1} a^{-1} d c^{-1} d^{-1} a b \rightarrow$ either $c d c^{-1} c^{-1} d^{-1} a b$ or $b a b^{-1} a^{-1} c^{-1} b a$, but then no further. Our other two examples are complete.

The Knuth-Bendix (KB) procedure takes as input a finite RWS \mathcal{R} compatible with a total order \preceq and attempts to build a finite complete system $\hat{\mathcal{R}}$, for which $\left(w \xrightarrow{\mathcal{R}}{ }^{*} w^{\prime}\right) \Rightarrow\left(w \xrightarrow{\hat{\mathcal{R}}^{*}} w^{\prime}\right)$, by adding rules $w_{1} \rightarrow w_{2}$ or $w_{2} \rightarrow w_{1}$ (compatible with \preceq) when confluence fails. It is not guaranteed to terminate.

Using a complete RWS to solve WP(G)

Let $G=\langle X \mid R\rangle, \preceq$ be a total order st $v \preceq u \Rightarrow v w \preceq u w, w v \preceq w u$, and $\mathcal{R}=\left\{u \rightarrow v: v \preceq u, u v^{-1} \in \hat{R}\right\} \cup\left\{a a^{-1} \rightarrow \epsilon: a \in X^{ \pm}\right\}$.

If KB derives a finite complete RWs $\hat{\mathcal{R}}$ from \mathcal{R}, then application of $\hat{\mathcal{R}}$ solves $\operatorname{WP}(G, X)$ in time $O\left(f_{G}(n)\right)$.

Proof: If $w \neq \epsilon$ and $w={ }_{G} 1$ then $w={ }_{\mathbb{F}(X)} u_{1} r_{i_{1}} u_{1}^{-1} \cdots u_{k} r_{r_{k}} u_{k}^{-1}$ and we can find w_{1}, \ldots, w_{r} (with r odd, but possibly $w=w_{1}, w_{r}=\epsilon$) with

$$
w \xrightarrow{\hat{\mathcal{R}}_{\longrightarrow}} w_{1} *{\stackrel{\hat{\mathcal{R}}}{\mathscr{\mathcal { R }}} \ldots \xrightarrow{\hat{\mathcal{R}}_{\longrightarrow}^{*}} w_{i-1} \stackrel{\hat{\mathcal{R}}}{\leftarrow} w_{i} \xrightarrow{\hat{\mathcal{R}}_{\longrightarrow}} w_{i+1} * * \hat{\mathcal{R}}}_{\leftarrow} w_{r}=\epsilon .
$$

If $r \geq 3$, then completeness implies we can find such a sequence of length $r-2$, so ultimately one of length 1 , and hence we find $w_{1}^{\prime}, \ldots, w_{s}^{\prime}$ st $w \rightarrow w_{1}^{\prime} \rightarrow \cdots \rightarrow w_{s}^{\prime}=\epsilon$. The connection between the rewrite sequence and the factorisation of w gives us a bound on the total number s of rewrites from \hat{R}, in terms of $f_{G}(n)$.

Rewriting to solve $\mathrm{WP}(\mathrm{G}, \mathrm{X})$ when G is hyperbolic

In general, the RWS for Dehn's algorithm is not complete. But it solves WP (G, X) in linear time in any (word) hyperbolic group.
G is hyperbolic \Longleftrightarrow Dehn's algorithm solves $W P(G) \Longleftrightarrow f_{G}(n)$ is linear. Equivalently, G is (word) hyperbolic if its Cayley graph $\mathcal{G}(G, X)$ is δ-hyperbolic for some δ, ie any triangle of geodesics is δ-slim.

The definition formalises properties found in (hyperbolic) surface groups, or in any $\pi_{1}(M), M$ compact hyperbolic.
\mathbb{F}_{n} is hyperbolic; \mathbb{Z}^{n} is not, no hyperbolic group can even contain \mathbb{Z}^{2}.

Solving $\mathrm{WP}(\mathrm{G}, \mathrm{X})$ when G is a Coxeter group

We've already described a straightforward algorithm that solves the word problem in any Coxeter group. The algorithm is easy to describe but rather slow (running in exponential time), since we have to apply all possible sequences of braid relations to a word to be sure that it admits no reduction.

But in fact every Coxeter group is automatic (Brink\&Howlett,1993), and hence its word problem can be solved in quadratic time (as we shall see later).

And many (but not all) Coxeter groups are known to have finite, complete rewrite systems (Hermiller,1994).

And all Coxeter groups have soluble conjugacy problem. But despite that (see later), it's not known whether they are all biautomatic.

Introducing hyperbolic, automatic and biautomatic groups

The features that Dehn identified in surface groups that made their word problems easy to solve are found more generally in all word hyperbolic groups.

As well as allowing easy solution of the word problem, the negative curvature of the Cayley graph of a hyperbolic group G allows various features of geodesic paths within those graphs to be represented by FSA, which then facilitate computation with the groups.

And the same methods can work more generally.
Automatic and biautomatic groups were introduced (by Thurston et al.) as a generalisation of hyperbolic groups, with many of the same algorithmic properties.

All hyperbolic groups are both automatic and biautomatic.

Defining automatic and biautomatic groups

$G=\langle X\rangle$ is automatic if \exists a set of paths from the vtx 1 in $\mathcal{G}(G, X)$, a corresponding set of words $L \rightarrow G$ labelling them, and a constant K, st

- L is a regular set (i.e. can be recognised by a finite state automaton with alphabet $X^{ \pm}$)
- if $v, w \in L$ satisfy $v={ }_{G} w$ or $v x={ }_{G} w$ for $x \in X$, then the corresponding paths $\gamma_{1}(w), \gamma_{1}(v) K$-fellow travel,

and is biautomatic if in addition
- the paths $\gamma_{1}(w) \gamma_{x}(v)$ traced out from 1 and x by words w and v that satisfy $x v=G W$ must K-fellow travel.

Without the restriction on regularity of L, G is (bi)combable.

F_{2} and \mathbb{Z}^{2} are biautomatic, and F_{2} is hyperbolic.

In F_{2} we select all geodesic paths/words. But in \mathbb{Z}_{2} we have to restrict to a subset, such as $\left\{a^{i} b^{j}: i, j \in \mathbb{Z}\right\}$ (the 'shortlex' language), in order to get fellow travelling; note that geodesics $a^{i} b^{i}$ and $b^{i} a^{i}$ diverge to distance i. Similarly, geodesic triangles in $\mathcal{G}\left(F_{2}\right)$ are 0 -slim, but those in $\mathcal{G}\left(\mathbb{Z}^{2}\right)$ are fat. In general, $G(X)$ is shortlex automatic if the shortlex language is the language of an automatic structure.

Word acceptor \mathcal{W} for \mathbb{Z}^{2}, accepting $\left\{a^{i} b^{j}\right\}$

This FSA has six states, but we can only see five. All transitions that are not shown are to that sixth (nonaccepting) failure state, and all transitions from it return to it.
The other five states are all accepting states (and so ringed).

What's the use of hyperbolicity, (bi)automaticity?

- Hyperbolic groups are very easy to compute with. Dehn's algorithm solves the word problem in any hyperbolic group in linear time.
- Automatic groups are all fp , have word problem soluble in quadratic time. Biautomatic groups have soluble conjugacy problem:
$? \exists g, u_{1}^{g}=G u_{2}$.
- Use of the word acceptor FSA of an automatic group allows tests for some basic properties (e.g. finiteness).
- The fellow traveller (ft) condition satisfied by an automatic group can be expressed in terms of FSA called multiplier automata. Various algorithms can de described in terms of computations with those FSA.

Examples: A group G is hyperbolic \Longleftrightarrow its set $\operatorname{Geo}(G)$ of all geodesics gives (bi)automatic structure. Additionally, we have $\pi_{1}(\mathcal{X})$ for many compact 3 -manifolds \mathcal{X}, all Coxeter groups, many Artin groups, mapping class groups of all surfaces of finite type. And the class is closed under various group operations (direct and free product, extensions by finite groups (certain) HNN extensions.

Formulation of automaticity via 1- and 2-string FSA

$G=\langle X\rangle$ is automatic if \exists :
a set L of words L containing at least one rep. of each group element, an FSA \mathcal{W} (the word acceptor) that reads strings over $X^{ \pm}$, and FSA \mathcal{M}_{g} for each $g \in X^{ \pm} \cup\{1\}$ (the multiplier automaton), that read strings over $X^{ \pm} \times X^{ \pm}$(or equivalently pairs of words v, w over X), st

- \mathcal{W} recognises the set L,
- \mathcal{M}_{g} recognises the set or pairs (v, w) of words over X, for which $v, w \in L$ and $v g={ }_{G} w$.

We can construct a difference machine \mathcal{D} that recognises pairs (v, w) of words over X that K-fellow travel. For each g we construct \mathcal{M}_{g} to accept (v, w) iff $v, w \in L,(v, w) \in L(\mathcal{D})$ and $v^{-1} w=G g$.

Formulation of the fellow traveller property in terms of FSA can make computations easier to describe. Some of what I'll describe has been programmed within kbmag (Holt), more could be programmed using it.

Building composite FSA

When G is an automatic group, standard operations on FSA build various FSA from the FSA of the automatic structure for G, that can be used in computation with G.

Given FSA M_{1}, M_{2}, it's straightforward to build FSA M^{\wedge} and M^{\vee} with languages that are the intersection, union of the languages of M_{1}, M_{2}.

Similarly we can apply other combinations of boolean and logical operators to FSA.

Then, given the multiplier automata \mathcal{M}_{g} for an automatic group G (for generators g) we can construct a multiplier automaton \mathcal{M}_{u}, for a word u over X, recognising pairs of words (v, w) with $w=G v u$ and (v, w) fellow travelling (at distance $|u| K$). If G is biautomatic, then we can similarly define and construct left multipliers ${ }_{g} \mathcal{M}$ and ${ }_{u} \mathcal{M}$.

Reduction to L, solution of $\mathrm{WP}(G)$ run in quadratic time

Given $w=a_{1} \cdots a_{n}$, we can find a rep. $u \in L$ of w in time $C n^{2}$, some C.
$v \in L$ represents $a_{1} \cdots a_{k-1},\left(v, v^{\prime}\right) \in L\left(\mathcal{M}_{a_{k}}\right) \Rightarrow v^{\prime} \in L$ represents $v a_{k}$. Given v, we can find v^{\prime} of length at most $|v|+E$ in time at most $D|v|$, where D, E are constants depending only on the FSA $\mathcal{M}_{a_{k}}$.
We find u by iterating this process n times; the k-th step produces a word in L of length at most $A+B k$ representing $a_{1} \ldots a_{k}$, in time at most $C k$ for some C. Hence we find a representative of u in time at most C^{2}.

Given $u_{0} \in L$ representing 1 , we can use \mathcal{M}_{1} to check in time $O(|u|)$ whether or not $u=_{G} u_{0}$, and hence

If G is automatic, $\operatorname{WP}(G)$ can be solved in quadratic time.

Where $H<G$, and the coset system (G, H) is coset automatic (\exists regular set of coset reps with similar ft propeties (Redfern; Holt\&Hurd)), we have an $O\left(n^{2}\right)$ algorithm for subgroup membership.

Using FSA to solve $\mathrm{CP}(G)$ for biautomatic G

When G is biautomatic then, for all $u_{1}, u_{2} \in(X \pm)^{*}$ the set of conjugating words

$$
\left\{w \in\left(X^{ \pm}\right)^{*}: w u_{1}={ }_{G} u_{2} w\right\}
$$

is a regular set, the language of an FSA that can be built out of the FSA of the biautomatic structure for G (Gersten\&Short,1991).

Specifically, the method that constructs general multipliers allows us also to construct an FSA accepting

$$
\left\{(v, w): v, w \in L, v u_{1}=G u_{2} w\right\} .
$$

It is now elementary to use the \mathcal{M}^{\wedge} construction to construct from this and the 'diagonal' of \mathcal{W}, an FSA accepting the language of conjugators.

So $\operatorname{CP}(G)$ can be solved using a combination of operations on FSA.
NB: Short proved geometrically that any bicombable group G has soluble $\mathrm{CP}(G)$, but we need regularity of L for this particular construction.

Construction of shortlex automatic structures

Starting point, a finite set of rewrite rules for $G=G(X)$, derived from presentation, compatible with shortlex (wrt some ordering of X).

- Run KB for a while to get a RWs \mathcal{R} and construct an associated word difference machine \mathcal{D} accepting pairs (u, v) for which $(u \rightarrow v) \in \mathcal{R}$
- Construct word acceptor \mathcal{W} and multiplier automata \mathcal{M}_{g} from \mathcal{D}. If preliminary checks on those automata fail, then restart KB and rebuild \mathcal{D} and other automata. Repeat as necessary until checks pass.
- Verify correctness using axiom checking: checks based on construction of various automata using logical operations on W and the multipliers \mathcal{M}_{g}. If these checks fail, give up.

If procedure terminates, after successful axiom checking G is proved shortlex automatic with word acceptor \mathcal{W} and multipliers \mathcal{M}_{g}, Otherwise procedure may loop endlessly, or give up due to lack of time or space.

Hyperbolic G: Cone types and geodesics

$G(X)$ is hyperbolic \Longleftrightarrow the set $G e o(X)$ of geodesic words over X is the language of an automatic structure $\Longleftrightarrow \cdots \cdots$ a biautomatic structure.

In particular, in any hyperbolic group, and for some X, in some (not nec. automatic) other groups, e.g. \mathbb{Z}^{n}, Coxeter groups, $\operatorname{Geo}(X)$ is regular; equivalently G has finitely many cone types, equiv. classes of \approx on G, where $g \approx h$ iff, for geodesic reps. w_{g}, w_{h}, $\forall w \in\left(X^{ \pm}\right)^{*}$,
$w_{g} w$ is geodesic $\Longleftrightarrow w_{h} w$ is geodesic.
We visualise the cone type of g as the sector of $\mathcal{G}(G)$ containing those words w that continue w_{g} geodesically; in \mathbb{Z}^{2} there are 9 (we show 3 of those):

Proving hyperbolicity

Recall: $G(X)$ is hyperbolic $\Longleftrightarrow \exists$ automatic structure on $\mathrm{Geo}(X)$
$\Rightarrow G(X)$ is shortlex automatic, wrt any ordering of X.
Suppose that G is hyperbolic, and that $\mathcal{W}, \mathcal{D}_{\mathcal{W}}$ are the word acceptor, and difference machine of a shortlex automatic structure over X.

Then \exists a set of word differences, and associated difference machine $\mathcal{D}_{\text {Geo }}$ (probably bigger than $\mathcal{D}_{\mathcal{W}}$) for which $\operatorname{Geo}(X)$ is equal to its (regular) subset

$$
\operatorname{FtGeo}(\mathcal{W}, \mathcal{D}):=\left\{v: \exists w \in L(\mathcal{W}),(v, w) \in L\left(\mathcal{D}^{\epsilon}\right),|w|=|v|\right\}
$$

We could verify that G is hyperbolic if we could find $\mathcal{D}^{\text {Geo }}$, construct the set $\operatorname{FtGeo}:=\operatorname{FtGeo}\left(\mathcal{W}, \mathcal{D}^{\mathrm{Geo}}\right)$, and then prove that $\mathrm{FtGeo}=\mathrm{Geo}(X)$.

We need our method to terminate with output ($\mathcal{D}^{\mathrm{Geo}}, \mathrm{FtGeo}$) when G is hyperbolic, but to fail in some way when it is not.

Then we have a valid test for hyperbolicity.

A procedure to verify hyperbolicity

A looping procedure builds successive machines $\mathcal{D}_{i}, i \geq 0$ from which we construct FSA accepting the subsets $\mathrm{FtGeo}_{i}:=\mathrm{FtGeo}\left(\mathcal{W}, \mathcal{D}_{i}\right)$ of $\mathrm{Geo}(X)$. We start with $\mathcal{D}_{0}=\mathcal{D}_{\mathcal{W}}$, and $\mathrm{FtGeo}_{0}=\mathrm{FtGeo}\left(\mathcal{W}, \mathcal{D}_{0}\right)$.

Hyperbolicity is verified if $\mathcal{D}_{i} \rightarrow \mathcal{D}_{\mathrm{Geo}}$, in which case $\mathrm{FtGeo}_{i} \rightarrow \operatorname{Geo}(X)$.
At each stage i, we construct a test FSA that checks whether or not $\mathcal{D}_{i}=\mathcal{D}_{\text {Geoo }}$. If the test passes, we halt, have verified hyperbolicity, and $\mathrm{FtGeo}_{i}=\mathrm{Geo}(X)$. Failure yields \mathcal{D}_{i+1}; we increment i and loop.

How do we construct the test FSA? The test should fail if for some $w \in L(\mathcal{W}), \exists v, u$ with $(u, v),(v, w) \in \mathcal{D}_{i}^{\epsilon},(u, v) \in \mathcal{D}_{i}^{\epsilon},|u|=|v|=|w|$, but $(u, w) \notin \mathcal{D}_{i}^{\epsilon}$.

Building a test FSA

Such a test was provided in Wakefield's 1997 thesis, which contained a procedure based on the construction of an FSA \mathcal{T}_{i} with language

$$
\left\{\begin{aligned}
u^{\prime}: & \exists v^{\prime}, w \in L(\mathcal{W}), x \in X^{ \pm},|w|=\left|v^{\prime}\right|+1 \\
& \left(v^{\prime}, w\right) \in L\left(\mathcal{D}_{\mathcal{W}}^{\times}\right),\left(v^{\prime}, u^{\prime}\right) \in L\left(\mathcal{D}_{i}^{\epsilon}\right),\left(w, u^{\prime} x\right) \notin L\left(\mathcal{D}_{i}^{\epsilon}\right)
\end{aligned}\right\}
$$

If $L\left(\mathcal{T}_{i}\right)=\emptyset$, then hyperbolicity is verified, $\mathcal{D}_{i}=$
$\mathcal{D}_{\text {Geo }}$ and $\mathrm{FtGeo}_{i}=\mathrm{Geo}(X)$; otherwise $\mathcal{D}_{i+1}^{\epsilon}$ must accept $L\left(\mathcal{D}_{i}^{\epsilon}\right) \cup\left\{\left(u^{\prime} x, w\right)\right\}$.

A later procedure, described by Epstein\&Holt (1998) is more efficient, through its use of a two-string test FSA \mathcal{T}^{\prime} with language
$\left\{(u, w): w \in \mathcal{W}, \exists v,(u, v),(v, w) \in L\left(\mathcal{D}_{i}^{\epsilon}\right),|u|=|v|=|w|,(u, w) \notin \mathcal{D}_{i}^{\epsilon}\right\}$
Hyperbolicity is verified if $L\left(\mathcal{T}_{i}^{\prime}\right)=\emptyset$; otherwise new word differences are found.

Conjugacy problem in hyperbolic groups

$O\left(n^{2}\right)$ and $O(n)$ solutions to $\mathrm{CP}(G)$ in hyperbolic G are described by Bridson\&Haefliger (1999) and Epstein\&Holt (2006), but are impractical. A practical $O\left(n^{3}\right)$ solution restricting to inf. order elements due to Marshall (2008), uses ideas from Swenson, has been implemented in GAP. We reduce to the question of conjugacy between straight elements:

Definition

A word w over X is straight if all powers w^{n} with $n \geq 0$ are geodesic. An element $g \in G$ is straight if represented by a straight word w.

If $g \in G$ has inf. order, then, $\exists h, m$, s.t. $h g^{m} h^{-1}$ is straight.

Testing for conjugacy between ∞-order elts rep. by u_{1}, u_{2}.

Find c_{1}, c_{2}, m st elts $\left(c_{1} u_{1} c_{1}^{-1}\right)^{m}$ and $\left(c_{2} u_{2} c_{2}^{-1}\right)^{m}$ are straight, rep by straight words w_{1}, w_{2}. if u_{1}, u_{2} are conjugate, then $\exists c, c w_{1}^{n}=G w_{2}^{n} c$ for all n. The following picture shows us that $c=d v$, where d is a word difference between the two (fellow travelling) infinite rays and $w_{2}=v^{\prime} v$:

So we check all pairs (d, v) st d is a word difference of a particular difference machine \mathcal{D}_{∞} and $w_{2}=v^{\prime} v$ to see if $d v$ conjugates w_{1} to w_{2}

For each pair (d, v) for which $d v$ conjugates w_{1} to w_{2}, check to see if $d v$ conjugates $c_{1} u_{1} c_{1}^{-1}$ to $c_{2} u_{2} c_{2}^{-1}$.
u_{1} and u_{2} are conjugate \Longleftrightarrow some such pair (d, v) can be found.

