Arithmetic and rigidity beyond lattices:

Examples from hyperbolic geometry

Curtis McMullen

Harvard University

I. Rigidity in flexible 3-manifolds

(with Amir Mohammadi, Hee Oh and Yongquan Zhang)

Planes in 3-manifolds

Hyperbolic plane $\mathbb{H}^2 \rightarrow M = \mathbb{H}^3/\Gamma$ image = immersed plane $P \subset M$

Shah, Ratner

M is compact \Rightarrow P is dense (typical) or

P is a closed surface (miracle)

3-manifolds with geodesic boundary

3-manifolds with geodesic boundary

Rigidity holds for planes in 3-manifolds with geodesic boundary....

... and without geodesic boundary.

Any plane in core(M) is either closed or dense.

M - Mohammadi - Oh 2015

(purely topological assumption: acylindrical)

M - Mohammadi - Oh 2017

 $\pi/3$

Theorem (Zhang, 2020)

There exists an acylindrical M and a plane P in M that is neither closed nor dense.

Cor

Ratner's theorem fails to generalize (without some qualification).

Figure 3.1: Combinatorial data and visualization of the polyhedron

Methods and the frontier

what happens for planes in the Apollonian manifold?

(a) The limit set Λ and an exotic circle C

(b) The orbit $\Gamma \cdot C$

Triangle groups

 $\Delta(p,q,\infty)$ is arithmetic \Leftrightarrow $K_{pq} = \mathbb{Q}$

Ι. The arithmetic of non-arithmetic groups

Non-arithmetic case

$\Delta(p,q,\infty)$

is more mysterious!

matrix entries = ?

columns (a,b) ?

cusps =
$$? \cup \{\infty\}$$

Theorem

The cusps of $\Delta(p,q,\infty)$ coincide with $K_{pq} \cup \{\infty\}$, and satisfy quadratic height bounds, whenever $\deg(K_{pq}/\mathbb{Q}) = 2$.

Golden Continued Fractions

Cor Every x in $\mathbb{Q}(\sqrt{5})$ can be expressed as a finite golden continued fraction:

$$x - [a_1, a_2, a_3, ..., a_N] - \frac{1}{a_2 \gamma + \frac{1}{a_3 \gamma + \cdots + \frac{1}{a_N \gamma}}},$$

with a_i in \mathbb{Z} .

Quadratic height bounds: N, max $\log |a_i| = O(1+h(x))$.

What about matrix entries in $\Delta(2,5,\infty)$?

M = all nonzero matrix entries

 $\delta M = \{m'/m : m \text{ is in } M\}$

 $R = -\gamma^{-2} \cdot \delta M.$

Theorem The closure of R is a countable semigroup in [-1,1], homeomorphic to $\omega^{\omega} + 1$.

(Reveals hidden multiplicative structure.)

method: nonabelian modular symbols

Golden Fractions

Cor Every x in K= $\mathbb{Q}(\sqrt{5})$ can be written uniquely as a `golden fraction' x = a/c, up to sign.

a, c in $\mathbb{O} = \mathbb{Z}[\gamma] \subset K$ relatively prime (a,c) column of a matrix in Γ

Quadratic height bounds: $h(a)+h(c) = O(1+h(x)^2)$.

Image of M under (m'/m, H(m))

V-4

Thin group perspective

Compare to ω^{ω} in	$\Gamma = \Delta(2,5,\infty)$	С	$SL_2(\mathbb{Z}(Y))$
	lattice	00	∩ <i>lattice</i>
Pisot numbers, Weyl spectrum, 3D hyperbolic volumes,	$SL_2(\mathbb{R})$	С	$SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$
	V	С	Х
	curve		Hilbert modular

General curves

K = real quadratic field

$$X_K = (\mathbb{H} \times \mathbb{H}) / \operatorname{SL}(\mathcal{O} \oplus \mathcal{O}^{\vee})$$

 $V = \mathbb{H}/\Gamma \hookrightarrow X_K \qquad \qquad \text{geodesic curve}$

Theorem

Either V is a Shimura curve, or the cusps of V coincide with $\mathbb{P}^1(K)$ and satisfy quadratic height bounds.

proof by descent, using new height

The frontier

surface

What are the cusps of $\Delta(2,7,\infty)$?

 $K = \mathbb{Q}(\cos(2\pi/7))$

References

Geodesic planes in the convex core of an acylindrical 3-manifold (with Mohammadi and Oh)

Billiards, heights, and the arithmetic of non-arithmetic groups

math.harvard.edu/~ctm/papers

Geodesic planes in hyperbolic 3-manifolds (Zhang)

sites.google.com/view/yqzhang/