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 I.  
Rigidity in flexible 3-manifolds

(with Amir Mohammadi, Hee Oh and Yongquan Zhang)

Planes in 3-manifolds

M is compact ⇒ P is dense (typical) or

                                    P is a closed surface (miracle)
 

Shah, Ratner

Hyperbolic plane H2 →  M =H3/Γ
image = immersed plane P ⊂ M

M3

P

S2 = boundary of H3 

Orbit of a circle, Γ·C



S2 = boundary of H3 

Orbit of a circle, Γ·C

S2 = boundary of H3 

Closed, totally geodesic surface in M

M3

P

S2 = boundary of H3 

M3

Dense plane in M Arithmetic patterns



Arithmetic patterns Arithmetic patterns

Open problem:  Do ∞ many closed geodesic surfaces 
⇒ M is arithmetic?

Update 2019:  yes: 
Margulis-Mohammadi,   Fisher-Miller-Stover 
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Incised Torus Wild Sphere, iT1 of ;r 1, in black steatite. "What
most people think of as a sphere, the surface of a ball-like object,
is distinguished by some as a tame sphere. There are wild spheres.
The difference is in how the sphere is embedded into three dimen-
sional space; context is important. That is, the homotopy group of
loops of the exterior of the embedded sphere, JTl, of one embed-
ding need not be JTl of another embedding. The idea of A # A is
very common in everyday language: think of your name, say A,
now think of someone else named A, so A # A. Here the bifur-
cation stages yield two trunks, four arms, and then eight fingers.
Note the long extension of stone of the arms."

Thurston's Knotted Wye Hyperbolic Space, in Carrara white
marble. "Thurston describes the mathematical antecedent of this
sculpture as the simplest hyperbolic three manifold with totally
geodesic boundary. Pendent under the trefoil-like loops is the ver-
tex of a wye the arms of which rise, link a neighbor, and descend
below the wye foot-like; all three arms join the base to form a sec-
ond wye. The evacuated spheroids stippling the surface of this
marble recall the semicircle, hemisphere geodesic constructions
of a hyperbolic three space. Because of the unusual extension
achieved in this direct carving, the marble, when lightly tapped with
a knuckle, rings like a bell."

EDITORIAL NOTE: The two photographs of Ferguson's sculptures
above are transposed.

3-manifolds with geodesic boundary 3-manifolds with geodesic boundary



Any plane in core(M) is
either closed or dense.

M - Mohammadi - Oh  2015 

Rigidity holds for planes in
3-manifolds with geodesic boundary….

(purely topological assumption:
acylindrical)

M - Mohammadi - Oh  2017 

… and without geodesic boundary.

Theorem (Zhang, 2020)

There exists an acylindrical M and a plane P in M 
that is neither  closed nor dense.

Cor

Ratner’s theorem fails to generalize 
(without some qualification).
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(a) The Coxeter diagram
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(b) The corresponding polyhedron

(c) The hyperbolic polyhedron in the unit
ball model

Figure 3.1: Combinatorial data and visualization of the polyhedron

refer to its faces using the labelling in Figure 3.1.

The subgroup e� of hyperbolic isometries generated by reflections in all faces of the Double

Lunchbox except Face 1 is also discrete, as a subgroup of the cocompact group in Theorem 3.1.

There is an index 2 subgroup � consisting of all orientation-preserving elements in e�. By Selberg’s

lemma, � in turn contains a finite index torsion free subgroup, which is the fundamental group of

a convex cocompact acylindrical hyperbolic three manifold whose convex core has totally geodesic

boundary by construction. A fundamental domain for the action of e� can be obtained by funneling

out through Face 1, extending Faces 2� 5 to the sphere at infinity across Face 1, as in Figure 3.1c.

To obtain deformations of the group �, we may deform the Double Lunchbox. Let eQ be the

hyperbolic polyhedron with one infinite end as in Figure 3.1c. We can deform eQ by pushing closer

or pulling apart two opposite faces forming the infinite end, while fixing all the dihedral angles.

If eQ(t) is such a deformation where the hyperbolic distance between Faces 3 and 5 is cosh�1(t),

then the group e�(t) generated by reflections in all faces of eQ(t) is a discrete subgroup of Isom(H3),
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C’ C

(a) The limit set ⇤ and an exotic circle C (b) The orbit � · C

Figure 1: The example in Theorem 1.2 from the perspective of the sphere at infinity.
Note that the orbit � · C of the exotic circle C limits on C 0 /2 � · C.

whose core curve is precisely the bending geodesic. Note that P is not a closed submanifold of M ,
as it is not locally connected near P 0.

Below is a picture of P near the convex core boundary in the quotient of M by a reflection
symmetry. We remark that the behavior of P near the convex core boundary only depends on the
geometry of the corresponding quasifuchsian orbifold; see Theorems 2.2 and 3.3, and Figure 5 for
details.

⌘

P

P 0

Figure 2: A cross section near the convex core boundary, in a
plane orthogonal to P . Here ⌘ denotes the bending geodesic.

Planes in cylindrical manifolds. We remark that for cylindrical manifolds, there is no ana-
logue of Theorem 1.1 in general. For example, geodesic planes intersecting the convex core of
a quasifuchsian manifold may have non-manifold, even fractal closures, as explained in [MMO1,
Appx. A]. Nevertheless, we can still consider exotic planes in a general convex cocompact hyper-

3

The exotic plane PThe exotic plane in Theorem 1.4 comes from the one-parameter family of acylindrical orbifolds

constructed in [Zha1], reproduced here as Chapter 3. Figure 1.1 gives some visualizations of the

example: Figure 1.1a depicts the limit set of � with an exotic circle C marked, and Figure 1.1b

shows the orbit of C under �. Note that C 0 (also marked in Figure 1.1a) is not a circle in � ·C, but

there exists a sequence �i 2 � so that �iC ! C 0. This is reflected in our discussion of the geometry

of P (see below), and is quite visible from Figure 1.1b.

C’ C

(a) The limit set ⇤ and an exotic circle C (b) The orbit � · C

Figure 1.1: The example in Theorem 1.4 from the perspective of the sphere at
infinity. Note that the orbit � · C of the exotic circle C limits on C 0 /2 � · C.

Geometry of P , P ⇤
and P . We briefly describe here the geometry of the exotic plane P in the

orbifold, its restriction P ⇤ to the convex core, and its closure P . The plane P is a nonelementary,

convex cocompact surface with one infinite end; its restriction to core(M) cuts the infinite end into

a crown with two tips. In particular P ⇤ has finite area. The two tips of the crown wraps around

and tends to the bending geodesic on the boundary of core(M). Finally, P = P [ P 0, where P 0 is

a closed geodesic plane contained in the infinite end of M . As a matter of fact, P 0 is a cylinder

whose core curve is precisely the bending geodesic. Note that P is not a closed submanifold of M ,

as it is not locally connected near P 0.
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…accumulates on P’

Methods and the frontier

what happens for planes in the Apollonian manifold?

Thick Cantor Set

II.   
The arithmetic of 

non-arithmetic groups

Triangle groups

Δ(p,q,∞)  ⊂ SL2(R)            lattice

H/Δ
cuspπ/p

π/q

=  Q(cos(2π/p),  cos(2π/q),  cos(π/p) cos(π/q))

Kpq  =  Q( Tr(g2) :  g ∈ Δ(p,q,∞))

invariant trace field

Δ(p,q,∞)  is arithmetic  ⇔  Kpq = Q



  Δ(2,3,∞)  = SL2(Z) =               Arithmetic case

0 1 21/2

matrix entries = Z

columns (a,b), gcd=1

cusp = Q ∪ {∞}
z  → z+1
z  → -1/z

-1 0 1

2 3

* 
1 1

0 1

!
,

 
0 1

�1 0

!+

<latexit sha1_base64="l6hlFAKlprP+wMFjmOE2yCx1HLk="></latexit>

  Δ(p,q,∞)             Non-arithmetic case

matrix entries = ?
columns (a,b) ?

cusps = ? ∪ {∞}

Theorem

The cusps of Δ(p,q,∞) coincide with Kpq ∪ {∞},

 and satisfy quadratic height bounds, 
whenever deg(Kpq/Q) = 2. 

is more mysterious!

The golden Hecke group

0 γ/2-γ/2

z →z+γ

2
5

γ = (1+√5)/2

!

z →-1/z

* 
1 �

0 1

!
,

 
0 1

�1 0

!+

<latexit sha1_base64="bee+5sp25GEViwYPl5IOLU72hGU="></latexit>

Γ = Δ(2,5,∞) =

γ0 11/γ 2γ

Cor
The cusps of Γ coincide with K = Q(√5) ∪ {∞}.

Leutbecher, 1970s

5 packing



Golden Continued Fractions

with ai in Z.

Cor
Every x in Q(√5) can be expressed as a finite golden 
continued fraction:

x = [a1, a2, a3, …, aN] =

a1 γ + 
1

a2 γ + 
1

a3 γ + . . . + 1
aN γ  

,

Quadratic height bounds:  N, max log |ai| = O(1+h(x)) .

Golden Fractions

Cor
Every x in K= Q(√5) can be written uniquely as 

a `golden fraction’  x = a/c, up to sign.

a,c in O = Z[γ] ⊂ K   relatively prime

(a,c) column of a matrix in Γ

Quadratic height bounds:  h(a)+h(c) = O(1+h(x)2) .

What about matrix entries in Δ(2,5,∞)? 

M = all nonzero matrix entries

δM = {m’/m : m is in M}

Theorem
The closure of R is a countable semigroup in [-1,1], 
homeomorphic to ωω + 1.

R  = -γ-2 · δM.

(Reveals hidden multiplicative structure.)

method:  nonabelian modular symbols

Image of M under (m’/m, H(m))

0 γ-4



Compare to ωω in 

Pisot numbers,
Weyl spectrum, 
3D hyperbolic volumes, …

Thin group perspective

V        ⊂      X

Γ  =  Δ(2,5,∞)    ⊂       SL2(Z(γ)) 

 ∩                      ∩

SL2(R)      ⊂   SL2(R) x SL2(R)

latticelattice

curve Hilbert modular 
surface

∞

General curves

K = real quadratic field

XK = (H⇥H)/ SL(O�O
_)

<latexit sha1_base64="ufr3YCrO7lGZC8elBJnL/LDwLqY="></latexit>

V = H/� # XK

<latexit sha1_base64="bLuul6rexNf+Ug/mA66XbkwRkE4="></latexit>

geodesic curve

Theorem

Either V is a Shimura curve, or the cusps of  V
coincide with            and satisfy quadratic
height bounds.

P1(K)

<latexit sha1_base64="5icAXsP/ey5Rm5LYsskmVF9t7es=">AAACI3icbVDLSgMxFM20Pur4anXpZrAIdVNmpKLLohvBTQX7wE4tmTRtY/MYkox0GOYv3OrOr3Enblz4L6YPQVsPBA7n3MO9OUFIidKu+2llsiura+u5DXtza3tnN1/YaygRSYTrSFAhWwFUmBKO65poiluhxJAFFDeD0eXEbz5iqYjgtzoOcYfBASd9gqA20p0fSvFw75Wuj7v5olt2p3CWiTcnRTBHrVuwsn5PoIhhrhGFSrU9N9SdBEpNEMWp7UcKhxCN4AC3DeWQYdVJpienzpFRek5fSPO4dqbq70QCmVIxC8wkg3qoFr2J+J/XjnT/vJMQHkYaczRb1I+oo4Uz+b/TIxIjTWNDIJLE3OqgIZQQadOS7U+DCTOWUGUkGBM8/VHHsaHjWIST6hJIaWrbpjZvsaRl0jgpe5Xy6U2lWL2YF5gDB+AQlIAHzkAVXIEaqAMEOHgCz+DFerXerHfrYzaaseaZffAH1tc3ZlejyQ==</latexit>

proof by descent, using new height

The frontier

What are the cusps of Δ(2,7,∞)?

K  =  Q(cos(2π/7))



The frontier

What are the periodic slopes for
billiards in a heptagon?

L(s)=7,

L(2 s) = 2190,
 

…  

Davis-Lelievre
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