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Complex hyperbolic space

Complex hyperbolic plane Hg
» Unit ball B” C C" with Bergman metric

» In homogeneous coordinates (C"=affine chart of P"), set of
negative lines for (z, w) = —zgwp + z1wq + - - - + z,W,, with
distance function

[{v, W)l

(v, v){w, w)

COSh(%d([Z]v [w])) =

» Holomorphic isometry group: PU(n,1).



Lattices

» No known classification of lattices (discrete subgroups of
PU(n,1) with finite covolume)

» There are non-arithmetic lattices in PU(n,1) for n <3
(Mostow 1980, Deligne-Mostow 1986, D.-Parker-Paupert
2016, 2021, D. 2020)

> It is widely beleived that they should exist also for every n > 1
(cf. PO(n,1))



Known constructions of lattices

» Arithmetic constructions (come from Gz in Gy for an
algebraic group G defined over Q)

» Explicit generating set/fundamental domains
» Uniformization (period mappings, Aubin-Yau)



Fundamental domains

» No totally geodesic real hypersurfaces
» Bisectors have quadratic equations

> A key step is to determine the combinatorics/topology of a
semi-algebraic set

» Then apply the Poincaré polyhedron theorem



Triangle groups

(Thompson, Parker-Paupert) Can parametrize (p, g, r; n) triangle
groups, i.e groups generated by three complex reflections
R1, R2, R3 of the same order k, such that

(RIR2)P/? = (RaRy)P/?,
(RaR3)9/% = (R3R,)9/2,
(RsR1)"/? = (RiR3)"/?,

(R1- Ry 'RaR3)"? = (Ry ' RaRs - Ry)"/?



D.-Parker-Paupert 2016, 2021

» Many (p, g, r; n) triangle groups are lattices, some
non-arithmetic

» The original proof uses heavy computation (Spocheck)

» Can determine the commensurability classes (trace fields,
Margulis commensurator theorem + volume estimates).

Recover all previously known non-arithmetic lattices in PU(2,1)
» Mostow 1980
» Deligne-Mostow 1986
» Couwenberg-Heckman-Looijenga 2005

Produce more examples: 22 commensurability classes in PU(2,1).
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Sides of a family of fundamental domains

Triangle grou

Lattice for p =

1p ty:

Cc ability invariants:
P X" [QIrAdD)[C?[ A?
3| 2/63 Q(v21) A
4| 25/224 QW) 2| NA(1)
5| 47/280 | Q(y/25) | C |NA(2)
6| 25/126 | Q(v21) |NC|NA(1)
8| 99/448 | Q(V2.VT) | C |NA(2)
12 221/1008 | Q(vV3.V7) | C [NA(2)

Presentations:

<n..m.n,,../ |RE, . (RyJ), Ry
bra( Ry, Ry), (RiR)75, br

=JRy =Ry,
(R RaRoy ), (R Rl )7 )

Rough combinatorics:

Triangle #(P-c

orb) | Top trunc. | Top ideal

[T 2 3 7
32 1, 232 7
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Pictures of fundamental domains
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Finite UGGR

Some families include finite groups, that must appear in the
Shephard-Todd list (Finite UGGR = Unitary Group Generated by
complex Reflections).

For each G C U(3) finite UGGR, the ring of invariants
Clz1, 22, 23] € is known to be a polynomial algebra generated by
explicit homogeneous polynomials of degree di, do, ds.

We get an explicit weighted projective space

P?/G = P(dy, da, d3).

Can also identify the quotient as an orbifold, the branch locus
being given by the union of the mirrors of reflections.



Kobayashi-Nakamura-Sakai

In particular, we get a description of P?/G as an orbifold (X, D),
where D is an explicit Q-divisor. For groups generated by
involutive reflections, D = %C where C is an irreducible curve.
Rough idea:
1. Keep X and consider D = (1 — %)C for positive integers k (or
k = o0)
2. Check whether the pair (X, D) has at most log-canonical
singularities, and check K(x p) := Kx + D is ample.
3. Check whether c?(X, D) = 3cx(X, D).
4. If so, then after removing the components of D with weight

oo and the non log-terminal locus, we get a ball quotient of
finite volume (Kobayashi-Nakamura-Sakai).



Blow-up

The above condition holds very rarely, but it holds many times
(but for special values of k) after a suitable blow-up.
1. To get log-canonical singularities, one often needs to blow-up
X (blow-up P? in a G-equivariant way).
2. The exceptional divisors of the blow-up pick up orbifold
weights (determined by the requirement ¢? = 3¢y).



Ball quotient pairs

For example, when G is the automorphism group of the Klein
quartic (simple group of order 168), 7 values of k yield a ball
quotient:

X® =X,D0) = (1-1)m
X® =X,D® =(1-HM
X® =y DO =(1-HM+(1- %)E
X® =y DO =1-HM+(1-})E
X®=7zD® =1-HM+(1-HE+(1-})F
x(12) = 7z p(12) —( —E5M+(1-HE+(1-HF
X®) =7 D) =M+ (1-3E+(1-1)F



Conclusion

Not obvious how to find explicit matrix generating sets for these
lattices (their existence comes from existence of a solution to a
Monge-Ampeére equation).

» Can prove that the corresponding ball quotients are isometric

(compute orbifold fundamental group and search for an
isomorphism)

» Using such uniformization techniques we get a new proof of
the existence of most non-arithmetic lattices constructed by
D.-Parker-Pauper (18 of the 22 commensurability classes).
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