Non-arithmetic lattices

Martin Deraux
Institut Fourier - Université Grenoble Alpes

June 2021, ICERM

Complex hyperbolic space

Complex hyperbolic plane $H_{\mathbb{C}}^{n}$

- Unit ball $\mathbb{B}^{n} \subset \mathbb{C}^{n}$ with Bergman metric
- In homogeneous coordinates ($\mathbb{C}^{n}=$ affine chart of $\left.\mathbb{P}^{n}\right)$, set of negative lines for $\langle z, w\rangle=-z_{0} \bar{w}_{0}+z_{1} \bar{w}_{1}+\cdots+z_{n} \bar{w}_{n}$, with distance function

$$
\cosh \left(\frac{1}{2} d([z],[w])\right)=\frac{|\langle v, w\rangle|}{\sqrt{\langle v, v\rangle\langle w, w\rangle}}
$$

- Holomorphic isometry group: $P U(n, 1)$.

Lattices

- No known classification of lattices (discrete subgroups of $P U(n, 1)$ with finite covolume)
- There are non-arithmetic lattices in $P U(n, 1)$ for $n \leq 3$ (Mostow 1980, Deligne-Mostow 1986, D.-Parker-Paupert 2016, 2021, D. 2020)
- It is widely beleived that they should exist also for every $n \geq 1$ (cf. $P O(n, 1)$)

Known constructions of lattices

- Arithmetic constructions (come from $\mathbb{G}_{\mathbb{Z}}$ in $\mathbb{G}_{\mathbb{R}}$ for an algebraic group \mathbb{G} defined over \mathbb{Q})
- Explicit generating set/fundamental domains
- Uniformization (period mappings, Aubin-Yau)

Fundamental domains

- No totally geodesic real hypersurfaces
- Bisectors have quadratic equations
- A key step is to determine the combinatorics/topology of a semi-algebraic set
- Then apply the Poincaré polyhedron theorem

Triangle groups

(Thompson, Parker-Paupert) Can parametrize ($p, q, r ; n$) triangle groups, i.e groups generated by three complex reflections R_{1}, R_{2}, R_{3} of the same order k, such that

$$
\begin{aligned}
\left(R_{1} R_{2}\right)^{p / 2} & =\left(R_{2} R_{1}\right)^{p / 2}, \\
\left(R_{2} R_{3}\right)^{q / 2} & =\left(R_{3} R_{2}\right)^{q / 2}, \\
\left(R_{3} R_{1}\right)^{r / 2} & =\left(R_{1} R_{3}\right)^{r / 2}, \\
\left(R_{1} \cdot R_{3}^{-1} R_{2} R_{3}\right)^{n / 2} & =\left(R_{3}^{-1} R_{2} R_{3} \cdot R_{1}\right)^{n / 2}
\end{aligned}
$$

D.-Parker-Paupert 2016, 2021

- Many $(p, q, r ; n)$ triangle groups are lattices, some non-arithmetic
- The original proof uses heavy computation (Spocheck)
- Can determine the commensurability classes (trace fields, Margulis commensurator theorem + volume estimates).
Recover all previously known non-arithmetic lattices in $\operatorname{PU}(2,1)$
- Mostow 1980
- Deligne-Mostow 1986
- Couwenberg-Heckman-Looijenga 2005

Produce more examples: 22 commensurability classes in $P U(2,1)$.

List of examples

	$\mathbb{P}_{\mathbb{C}}^{2}$	$\mathbb{E}_{\mathbb{C}}^{2}$	$\mathbb{H}_{\mathbb{C}}^{2}$	
Type $p, q, r ; n$	k	k	k	Alternative description
$2,3,3 ; 3$	2,3	4	$5,6,7,8,9,10,12,18$	DM/Livné
$2,3,4 ; 4$	2	3	$4,5,6,8,12$	DM
$2,3,5 ; 5$	2		$3,4,5,10$	σ_{10}, CHL $\left(H_{3}\right)$
$2,3,6 ; 6$		2	$3,4,6$	
$3,3,3 ; 2$	2,3	4	$5,6,7,8,9,10,12,18$	DM
$3,3,3 ; 3$	2		$4,5,6,7,8,9,10,12,18$	DM
$3,3,3 ; 4$	2		$3,4,5,6,8,12$	DM
$3,3,3 ; 5$	2		$3,4,5,10$	DM
$3,3,3 ; 6$	2		$3,4,6$	DM
$3,3,3 ; 7$	2		$3,-7$	DM
$3,3,3 ; 8$	2		3,4	DM
$3,3,3 ; 9$	2		3	DM
$3,3,3 ; 10$	2		3	DM
$3,3,3 ; 12$	2		3	DM
$3,3,4 ; 4$	2		$3,4,5,6,8,12$	$\mathbf{S}_{1} \simeq \bar{\sigma}_{4}, \mathrm{CHL}\left(G_{24}\right)$
$3,3,4 ; 5$	2		$3,4,5$	\mathbf{S}_{2}, CHL $\left(G_{27}\right)$
$3,3,4 ; 6$		2	$3,4,5$	$\mathbf{E}_{1} \simeq \sigma_{1}$
$3,3,4 ; 7$			$2,-7$	\mathbf{H}_{1}
$3,3,5 ; 5$			$2,3, \pm 5,10$	\mathbf{H}_{2}
$3,4,4 ; 4$		2	$3,4,6,12$	\mathbf{E}_{2}
$4,4,4 ; 4$		2	$3,4,5,6,8,3,12$	DM (finite index)
$4,4,4 ; 5$			$2,3,4$	σ_{5}
$5,5,5 ; 5$			$2,3,4,5,10$	DM (finite index)

Sides of a family of fundamental domains

Triangle group type: $4,4,4 ; 3,3,3 ; 7$
Lattice for $p=3,4,5,6,8,12$.

Commensurability invariants:				
p	$\chi^{\text {orb }}$	$\mathbb{Q}(\mathrm{Tr} \operatorname{Ad} \mathrm{\Gamma})$	C?	A?
3	2/63	$\mathbb{Q}(\sqrt{21})$	C	A
4	25/224	$\mathbb{Q}(\sqrt{7})$	NC	NA(1)
5	47/280	$\mathbb{Q}\left(\sqrt{\frac{5+\sqrt{5}}{14}}\right)$	C	NA(2)
6	25/126	$\mathbb{Q}(\sqrt{21})$	NC	NA(1)
8	99/448	$\mathbb{Q}(\sqrt{2}, \sqrt{7})$	C	NA(2)
12	221/1008	$\mathbb{Q}(\sqrt{3}, \sqrt{7})$	C	NA(2)

Presentations:
$\left\langle R_{1}, R_{2}, R_{3}, J\right| R_{1}^{p}, J^{3},\left(R_{1} J\right)^{7}, R_{3}=J R_{2} J^{-1}=J^{-1} R_{1} J$, $\left.\mathrm{br}_{4}\left(R_{1}, R_{2}\right),\left(R_{1} R_{2}\right)^{\frac{4 p}{p-4}}, \mathrm{br}_{3}\left(R_{1}, R_{2} R_{3} R_{2}^{-1}\right),\left(R_{1} R_{2} R_{3} R_{2}^{-1}\right)^{\frac{6 p}{p-6}}\right\rangle$
Rough combinatorics:

Triangle	$\#(P$-orb)	Top trunc.	Top ideal
$[4] 1 ; 2,3$	7	$p=5,6,8,12$	$p=4$
$[3] 2 ; 1,23 \overline{2}$	7	$p=8,12$	$p=6$

$p=4$

$p=8$

$p=12$

Pictures of fundamental domains

Finite UGGR

Some families include finite groups, that must appear in the Shephard-Todd list (Finite UGGR = Unitary Group Generated by complex Reflections).
For each $G \subset U(3)$ finite $U G G R$, the ring of invariants $\mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]^{G}$ is known to be a polynomial algebra generated by explicit homogeneous polynomials of degree d_{1}, d_{2}, d_{3}. We get an explicit weighted projective space

$$
\mathbb{P}^{2} / G=\mathbb{P}\left(d_{1}, d_{2}, d_{3}\right)
$$

Can also identify the quotient as an orbifold, the branch locus being given by the union of the mirrors of reflections.

Kobayashi-Nakamura-Sakai

In particular, we get a description of \mathbb{P}^{2} / G as an orbifold (X, D), where D is an explicit Q-divisor. For groups generated by involutive reflections, $D=\frac{1}{2} C$ where C is an irreducible curve. Rough idea:

1. Keep X and consider $D=\left(1-\frac{1}{k}\right) C$ for positive integers k (or $k=\infty$)
2. Check whether the pair (X, D) has at most log-canonical singularities, and check $K_{(X, D)}:=K_{X}+D$ is ample.
3. Check whether $c_{1}^{2}(X, D)=3 c_{2}(X, D)$.
4. If so, then after removing the components of D with weight ∞ and the non log-terminal locus, we get a ball quotient of finite volume (Kobayashi-Nakamura-Sakai).

Blow-up

The above condition holds very rarely, but it holds many times (but for special values of k) after a suitable blow-up.

1. To get log-canonical singularities, one often needs to blow-up X (blow-up \mathbb{P}^{2} in a G-equivariant way).
2. The exceptional divisors of the blow-up pick up orbifold weights (determined by the requirement $c_{1}^{2}=3 c_{2}$).

Ball quotient pairs

For example, when G is the automorphism group of the Klein quartic (simple group of order 168), 7 values of k yield a ball quotient:

$$
\begin{gathered}
X^{(3)}=X, D^{(3)}=\left(1-\frac{1}{3}\right) M \\
X^{(4)}=X, D^{(4)}=\left(1-\frac{1}{4}\right) M \\
X^{(5)}=Y, D^{(5)}=\left(1-\frac{1}{5}\right) M+\left(1-\frac{1}{10}\right) E \\
X^{(6)}=Y, D^{(6)}=\left(1-\frac{1}{6}\right) M+\left(1-\frac{1}{6}\right) E \\
X^{(8)}=Z, D^{(8)}=\left(1-\frac{1}{8}\right) M+\left(1-\frac{1}{4}\right) E+\left(1-\frac{1}{8}\right) F \\
X^{(12)}=Z, D^{(12)}=\left(1-\frac{1}{12}\right) M+\left(1-\frac{1}{3}\right) E+\left(1-\frac{1}{4}\right) F \\
X^{(\infty)}=Z, D^{(\infty)}=M+\left(1-\frac{1}{2}\right) E+\left(1-\frac{1}{2}\right) F
\end{gathered}
$$

Conclusion

Not obvious how to find explicit matrix generating sets for these lattices (their existence comes from existence of a solution to a Monge-Ampère equation).

- Can prove that the corresponding ball quotients are isometric (compute orbifold fundamental group and search for an isomorphism)
- Using such uniformization techniques we get a new proof of the existence of most non-arithmetic lattices constructed by D.-Parker-Pauper (18 of the 22 commensurability classes).

