Non-arithmetic lattices

Martin Deraux

Institut Fourier - Université Grenoble Alpes

June 2021, ICERM

Complex hyperbolic space

Complex hyperbolic plane $H^n_{\mathbb{C}}$

- Unit ball $\mathbb{B}^n \subset \mathbb{C}^n$ with Bergman metric
- ▶ In homogeneous coordinates (\mathbb{C}^n =affine chart of \mathbb{P}^n), set of negative lines for $\langle z, w \rangle = -z_0 \bar{w}_0 + z_1 \bar{w}_1 + \cdots + z_n \bar{w}_n$, with distance function

$$\cosh(rac{1}{2}d([z],[w])) = rac{|\langle v,w
angle|}{\sqrt{\langle v,v
angle\langle w,w
angle}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Holomorphic isometry group: PU(n, 1).

Lattices

- No known classification of lattices (discrete subgroups of PU(n, 1) with finite covolume)
- ► There are non-arithmetic lattices in PU(n, 1) for n ≤ 3 (Mostow 1980, Deligne-Mostow 1986, D.-Parker-Paupert 2016, 2021, D. 2020)
- ► It is widely beleived that they should exist also for every n ≥ 1 (cf. PO(n, 1))

Known constructions of lattices

► Arithmetic constructions (come from G_Z in G_R for an algebraic group G defined over Q)

- Explicit generating set/fundamental domains
- Uniformization (period mappings, Aubin-Yau)

Fundamental domains

- No totally geodesic real hypersurfaces
- Bisectors have quadratic equations
- A key step is to determine the combinatorics/topology of a semi-algebraic set

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Then apply the Poincaré polyhedron theorem

(Thompson, Parker-Paupert) Can parametrize (p, q, r; n) triangle groups, i.e groups generated by three complex reflections R_1, R_2, R_3 of the same order k, such that

$$(R_1R_2)^{p/2} = (R_2R_1)^{p/2},$$

$$(R_2R_3)^{q/2} = (R_3R_2)^{q/2},$$

$$(R_3R_1)^{r/2} = (R_1R_3)^{r/2},$$

$$(R_1 \cdot R_3^{-1}R_2R_3)^{n/2} = (R_3^{-1}R_2R_3 \cdot R_1)^{n/2}$$

D.-Parker-Paupert 2016, 2021

- Many (p, q, r; n) triangle groups are lattices, some non-arithmetic
- The original proof uses heavy computation (Spocheck)
- Can determine the commensurability classes (trace fields, Margulis commensurator theorem + volume estimates).

Recover all previously known non-arithmetic lattices in PU(2,1)

- Mostow 1980
- Deligne-Mostow 1986
- Couwenberg-Heckman-Looijenga 2005

Produce more examples: 22 commensurability classes in PU(2,1).

List of examples

	$\mathbb{P}^2_{\mathbb{C}}$	$\mathbb{E}^2_{\mathbb{C}}$	$\mathbb{H}^2_{\mathbb{C}}$	
Type $p, q, r; n$	k	k	k	Alternative description
2,3,3; 3	2,3	4	5,6,7,8,9,10,12,18	DM/Livné
2,3,4; 4	2	3	4,5,6,8,12	DM
2,3,5; 5	2		3,4,5,10	σ_{10} , CHL(H_3)
2,3,6; 6		2	3,4,6	
3,3,3; 2	2,3	4	5,6,7,8,9,10,12,18	DM
3,3,3; 3	2		4,5,6,7,8,9,10,12,18	DM
3,3,3; 4	2		3,4,5,6,8,12	DM
3,3,3; 5	2		3,4,5,10	DM
3,3,3; 6	2		3, 4 ,6	DM
3,3,3; 7	2		3,-7	DM
3,3,3; 8	2		3,4	DM
3,3,3; 9	2		3	DM
3,3,3;10	2		3	DM
3,3,3; 12	2		3	DM
3,3,4; 4	2		3,4,5,6,8,12	$S_1 \simeq \overline{\sigma_4}$, CHL(G_{24})
3, 3, 4; 5	2		3,4,5	S_2 , CHL(G ₂₇)
3,3,4; 6		2	3,4,5	$E_1 \simeq \sigma_1$
3,3,4; 7			2,-7	H_1
3,3,5; 5			2,3,±5,10	H_2
3,4,4; 4		2	3,4,6,12	E_2
4,4,4; 4		2	3,4, <mark>5,6</mark> ,8,3,12	DM (finite index)
4,4,4;5			2, 3 , 4	σ_5
5,5,5; 5			2,3, 4 ,5,10	DM (finite index)

Sides of a family of fundamental domains

Triangle group type: 4,4,4; 3,3,3; 7

Lattice for p = 3, 4, 5, 6, 8, 12.

	Commensurability invariants:							
p	χ^{orb}	$\mathbb{Q}(TrAd \Gamma)$	C?	A?				
3	2/63	$\mathbb{Q}(\sqrt{21})$	С	A				
4	25/224	$\mathbb{Q}(\sqrt{7})$	NC	NA(1)				
5	47/280	$\mathbb{Q}(\sqrt{\frac{5+\sqrt{5}}{14}})$	С	NA(2)				
6	25/126	$\mathbb{Q}(\sqrt{21})$	NC	NA(1)				
8	99/448	$\mathbb{Q}(\sqrt{2},\sqrt{7})$	С	NA(2)				
12	221/1008	$\mathbb{Q}(\sqrt{3},\sqrt{7})$	С	NA(2)				
	Presente tions.							

$$\langle R_1, R_2, R_3, J | R_1^p, J^3, (R_1J)^7, R_3 = JR_2J^{-1} = J^{-1}R_1J,$$

$$br_4(R_1, R_2), (R_1R_2)^{\frac{4p}{p-4}}, br_3(R_1, R_2R_3R_2^{-1}), (R_1R_2R_3R_2^{-1})^{\frac{6p}{p-6}}$$

Pictures of fundamental domains

Finite UGGR

Some families include finite groups, that must appear in the Shephard-Todd list (Finite UGGR = Unitary Group Generated by complex Reflections).

For each $G \subset U(3)$ finite *UGGR*, the ring of invariants $\mathbb{C}[z_1, z_2, z_3]^G$ is known to be a polynomial algebra generated by explicit homogeneous polynomials of degree d_1, d_2, d_3 . We get an explicit weighted projective space

$$\mathbb{P}^2/G = \mathbb{P}(d_1, d_2, d_3).$$

Can also identify the quotient as an orbifold, the branch locus being given by the union of the mirrors of reflections.

Kobayashi-Nakamura-Sakai

In particular, we get a description of \mathbb{P}^2/G as an orbifold (X, D), where D is an explicit Q-divisor. For groups generated by involutive reflections, $D = \frac{1}{2}C$ where C is an irreducible curve. Rough idea:

- 1. Keep X and consider $D = (1 \frac{1}{k})C$ for positive integers k (or $k = \infty$)
- 2. Check whether the pair (X, D) has at most log-canonical singularities, and check $K_{(X,D)} := K_X + D$ is ample.
- 3. Check whether $c_1^2(X, D) = 3c_2(X, D)$.
- 4. If so, then after removing the components of D with weight ∞ and the non log-terminal locus, we get a ball quotient of finite volume (Kobayashi-Nakamura-Sakai).

Blow-up

The above condition holds very rarely, but it holds many times (but for special values of k) after a suitable blow-up.

- 1. To get log-canonical singularities, one often needs to blow-up X (blow-up \mathbb{P}^2 in a *G*-equivariant way).
- 2. The exceptional divisors of the blow-up pick up orbifold weights (determined by the requirement $c_1^2 = 3c_2$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ball quotient pairs

For example, when G is the automorphism group of the Klein quartic (simple group of order 168), 7 values of k yield a ball quotient:

$$\begin{aligned} X^{(3)} &= X, D^{(3)} = (1 - \frac{1}{3})M \\ X^{(4)} &= X, D^{(4)} = (1 - \frac{1}{4})M \\ X^{(5)} &= Y, D^{(5)} = (1 - \frac{1}{5})M + (1 - \frac{1}{10})E \\ X^{(6)} &= Y, D^{(6)} = (1 - \frac{1}{6})M + (1 - \frac{1}{6})E \\ X^{(8)} &= Z, D^{(8)} = (1 - \frac{1}{8})M + (1 - \frac{1}{4})E + (1 - \frac{1}{8})F \\ X^{(12)} &= Z, D^{(12)} = (1 - \frac{1}{12})M + (1 - \frac{1}{3})E + (1 - \frac{1}{4})F \\ X^{(\infty)} &= Z, D^{(\infty)} = M + (1 - \frac{1}{2})E + (1 - \frac{1}{2})F \end{aligned}$$

Conclusion

Not obvious how to find explicit matrix generating sets for these lattices (their existence comes from existence of a solution to a Monge-Ampère equation).

- Can prove that the corresponding ball quotients are isometric (compute orbifold fundamental group and search for an isomorphism)
- Using such uniformization techniques we get a new proof of the existence of *most* non-arithmetic lattices constructed by D.-Parker-Pauper (18 of the 22 commensurability classes).