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Complex hyperbolic space

Complex hyperbolic plane Hn
C

I Unit ball Bn ⊂ Cn with Bergman metric

I In homogeneous coordinates (Cn=affine chart of Pn), set of
negative lines for 〈z ,w〉 = −z0w̄0 + z1w̄1 + · · ·+ znw̄n, with
distance function

cosh(
1

2
d([z ], [w ])) =

|〈v ,w〉|√
〈v , v〉〈w ,w〉

I Holomorphic isometry group: PU(n, 1).



Lattices

I No known classification of lattices (discrete subgroups of
PU(n, 1) with finite covolume)

I There are non-arithmetic lattices in PU(n, 1) for n ≤ 3
(Mostow 1980, Deligne-Mostow 1986, D.-Parker-Paupert
2016, 2021, D. 2020)

I It is widely beleived that they should exist also for every n ≥ 1
(cf. PO(n, 1))



Known constructions of lattices

I Arithmetic constructions (come from GZ in GR for an
algebraic group G defined over Q)

I Explicit generating set/fundamental domains

I Uniformization (period mappings, Aubin-Yau)



Fundamental domains

I No totally geodesic real hypersurfaces

I Bisectors have quadratic equations

I A key step is to determine the combinatorics/topology of a
semi-algebraic set

I Then apply the Poincaré polyhedron theorem



Triangle groups

(Thompson, Parker-Paupert) Can parametrize (p, q, r ; n) triangle
groups, i.e groups generated by three complex reflections
R1,R2,R3 of the same order k , such that

(R1R2)p/2 = (R2R1)p/2,

(R2R3)q/2 = (R3R2)q/2,

(R3R1)r/2 = (R1R3)r/2,

(R1 · R−1
3 R2R3)n/2 = (R−1

3 R2R3 · R1)n/2



D.-Parker-Paupert 2016, 2021

I Many (p, q, r ; n) triangle groups are lattices, some
non-arithmetic

I The original proof uses heavy computation (Spocheck)

I Can determine the commensurability classes (trace fields,
Margulis commensurator theorem + volume estimates).

Recover all previously known non-arithmetic lattices in PU(2,1)

I Mostow 1980

I Deligne-Mostow 1986

I Couwenberg-Heckman-Looijenga 2005

Produce more examples: 22 commensurability classes in PU(2, 1).



List of examples

P2
C E2

C H2
C

Type p, q, r;n k k k Alternative description

2,3,3; 3 2,3 4 5,6,7,8,9,10,12,18 DM/Livné
2,3,4; 4 2 3 4,5,6,8,12 DM
2,3,5; 5 2 3,4,5,10 σ10, CHL(H3)
2,3,6; 6 2 3,4,6
3,3,3; 2 2,3 4 5,6,7,8,9,10,12,18 DM
3,3,3; 3 2 4,5,6,7,8,9,10,12,18 DM
3,3,3; 4 2 3,4,5,6,8,12 DM
3,3,3; 5 2 3,4,5,10 DM
3,3,3; 6 2 3,4,6 DM
3,3,3; 7 2 3,−7 DM
3,3,3; 8 2 3,4 DM
3,3,3; 9 2 3 DM
3,3,3; 10 2 3 DM
3,3,3; 12 2 3 DM
3,3,4; 4 2 3,4,5,6,8,12 S1 ≃ σ4, CHL(G24)
3,3,4; 5 2 3,4,5 S2, CHL(G27)
3,3,4; 6 2 3,4,5 E1 ≃ σ1
3,3,4; 7 2,−7 H1

3,3,5; 5 2,3,±5,10 H2

3,4,4; 4 2 3,4,6,12 E2

4,4,4; 4 2 3,4,5,6,8,3,12 DM (finite index)
4,4,4; 5 2,3,4 σ5
5,5,5; 5 2,3,4,5,10 DM (finite index)
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Sides of a family of fundamental domains



Pictures of fundamental domains



Finite UGGR

Some families include finite groups, that must appear in the
Shephard-Todd list (Finite UGGR = Unitary Group Generated by
complex Reflections).
For each G ⊂ U(3) finite UGGR, the ring of invariants
C[z1, z2, z3]G is known to be a polynomial algebra generated by
explicit homogeneous polynomials of degree d1, d2, d3.
We get an explicit weighted projective space

P2/G = P(d1, d2, d3).

Can also identify the quotient as an orbifold, the branch locus
being given by the union of the mirrors of reflections.



Kobayashi-Nakamura-Sakai

In particular, we get a description of P2/G as an orbifold (X ,D),
where D is an explicit Q-divisor. For groups generated by
involutive reflections, D = 1

2C where C is an irreducible curve.
Rough idea:

1. Keep X and consider D = (1− 1
k )C for positive integers k (or

k =∞)

2. Check whether the pair (X ,D) has at most log-canonical
singularities, and check K(X ,D) := KX + D is ample.

3. Check whether c2
1 (X ,D) = 3c2(X ,D).

4. If so, then after removing the components of D with weight
∞ and the non log-terminal locus, we get a ball quotient of
finite volume (Kobayashi-Nakamura-Sakai).



Blow-up

The above condition holds very rarely, but it holds many times
(but for special values of k) after a suitable blow-up.

1. To get log-canonical singularities, one often needs to blow-up
X (blow-up P2 in a G -equivariant way).

2. The exceptional divisors of the blow-up pick up orbifold
weights (determined by the requirement c2

1 = 3c2).



Ball quotient pairs

For example, when G is the automorphism group of the Klein
quartic (simple group of order 168), 7 values of k yield a ball
quotient:

X (3) = X ,D(3) = (1− 1
3 )M

X (4) = X ,D(4) = (1− 1
4 )M

X (5) = Y ,D(5) = (1− 1
5 )M + (1− 1

10 )E

X (6) = Y ,D(6) = (1− 1
6 )M + (1− 1

6 )E

X (8) = Z ,D(8) = (1− 1
8 )M + (1− 1

4 )E + (1− 1
8 )F

X (12) = Z ,D(12) = (1− 1
12 )M + (1− 1

3 )E + (1− 1
4 )F

X (∞) = Z ,D(∞) = M + (1− 1
2 )E + (1− 1

2 )F



Conclusion

Not obvious how to find explicit matrix generating sets for these
lattices (their existence comes from existence of a solution to a
Monge-Ampère equation).

I Can prove that the corresponding ball quotients are isometric
(compute orbifold fundamental group and search for an
isomorphism)

I Using such uniformization techniques we get a new proof of
the existence of most non-arithmetic lattices constructed by
D.-Parker-Pauper (18 of the 22 commensurability classes).
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