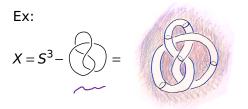
Computing with hyperbolic structures in dimension 3

Nathan M. Dunfield University of Illinois (Cornfields)

Expanded version with references: http://dunfield.info/warwick2017

Orientable M^3 with comp. metric of curvature -1; compact or finite-vol.

That is, $M = \Gamma^{\mathbb{H}^3}$ for Γ a lattice in $\operatorname{Isom}^+ \mathbb{H}^3 = \operatorname{SO}_0(3, 1) = \operatorname{PSL}_2\mathbb{C}$.



Computing with hyperbolic structures in dimension 3

Nathan M. Dunfield University of Illinois

Here $\Gamma = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix} \rangle$ for $\alpha = e^{\pi i/3} = \frac{1+\sqrt{3}i}{2}$.

vol(X) = 2.029883212819307250... systole = 1.08707014499573909... Expanded version with references: http://dunfield.info/warwick2017

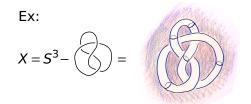
[Thurston/Perelman] Closed M^3 have geometric decompositions. Hyperbolic geom is the most common and the most interesting/mysterious.

[Mostow] The hyperbolic structure is unique when it exists (dim \ge 3.)

Cor: Can solve the homeomorphism problem for compact M^3 . Also, $\pi_1 M^3$ is residually finite and so has solvable word problem.

Orientable M^3 with comp. metric of curvature -1; compact or finite-vol.

That is, $M = {}_{\Gamma} {\setminus}^{\mathbb{H}^3}$ for Γ a lattice in $\operatorname{Isom}^+ \mathbb{H}^3 = \operatorname{SO}_0(3, 1) = \operatorname{PSL}_2\mathbb{C}$.



Here $\Gamma = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix} \rangle$ for $\alpha = e^{\pi i/3} = \frac{1+\sqrt{3}i}{2}$.

vol(X) = 2.029883212819307250... systole = 1.08707014499573909...

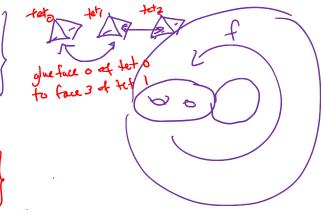
Input: Topological description, such as a triangulation, bundle structure, knot/link construction, Heegaard splitting,...

Note: Most hyperbolic 3-manifolds are not arithmetic.

Output: Description of hyperbolic structure in terms of glued geometric polyhedra.

Can then get volumes, lengths of geodesics, eigenvalues of Δ , harmonic forms, word problem, and decide when two such are isometric.

Can do at scale: 1,000s of tets and millions of examples.



Quick SnapPy Demo 1.

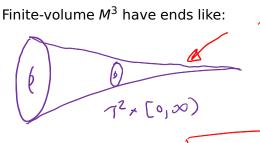
Input: Topological description, such as a triangulation, bundle structure, knot/link construction, Heegaard splitting,...

Note: Most hyperbolic 3-manifolds are not arithmetic.

Output: Description of hyperbolic structure in terms of glued geometric polyhedra.

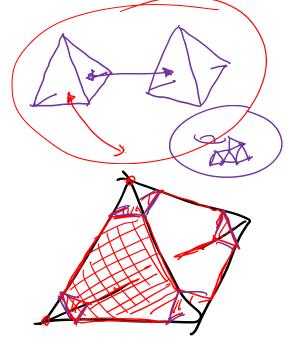
Can then get volumes, lengths of geodesics, eigenvalues of Δ , harmonic forms, word problem, and decide when two such are isometric.

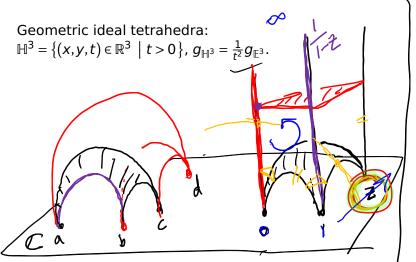
Can do at scale: 1,000s of tets and millions of examples.



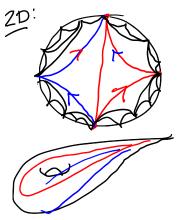
Setting: N cpt with ∂N tori; $M = N \setminus \partial N$ hyperbolic.

An *ideal triangulation* \mathcal{T} is a cell complex built from finitely many tets by gluing faces in pairs with $\mathcal{T} \setminus \mathcal{T}^0 \cong M$.





z = shape param associated to the edge joining 0 to ∞



[Thurston] Suppose *I* is an ideal triangulation of M and $z_i \in \mathbb{C}$ with $Im(z_i) > 0$ satisfy the polynomial edge and cusp eqns and also $\sum \arg(z_i) = 2\pi$ around each edge. Then these shapes give the complete hyperbolic structure on M. In particular $vol(M) = \sum Li_2(z_i) < 1.02(\#tet)$ Zittit & BeGung Jeon. Note: Effectively, $\#z_i = \#$ equations. [Weeks] In practice, can solve numerically via Newton's method starting with all $z_i = e^{\pi i/3}$.

[HIKMOT 2014] Method for certifying solutions to Thurston's equations using interval arithmetic. Given $\epsilon > 0$, returns $z'_i \in \mathbb{Q}(i)$ and a proof that the actual solution z_i satisfies $|z_i - z'_i| < \epsilon$.

Moral: Proof of the inverse function theorem is effective (Interval Newton's Method; Krawczyk's test).

Can then compute volume to guaranteed accuracy, provably decide if two such manifolds are isometric, find symm. groups, solve the word problem, but more to do. **[Thurston]** Suppose \mathcal{T} is an ideal triangulation of M and $z_i \in \mathbb{C}$ with $\operatorname{Im}(z_i) > 0$ satisfy the polynomial edge and cusp eqns and also $\sum \arg(z_i) = 2\pi$ around each edge. Then these shapes give the complete hyperbolic structure on M. In particular

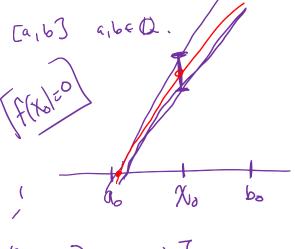
 $vol(M) = \sum Li_2(z_i) < 1.02(\#tet)$

Note: Effectively, $\#z_i = \#$ equations.

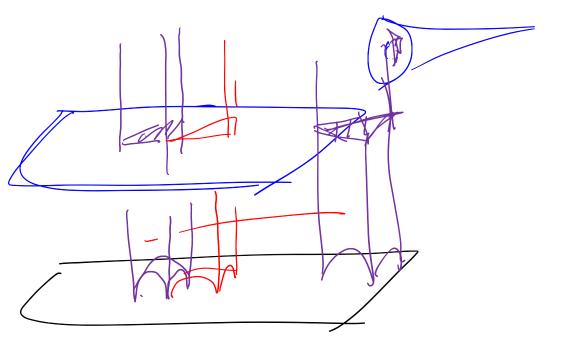
[Weeks] In practice, can solve numerically via Newton's method starting with all $z_i = e^{\pi i/3}$. **[HIKMOT 2014]** Method for certifying solutions to Thurston's equations using interval arithmetic. Given $\epsilon > 0$, returns $z'_i \in \mathbb{Q}(i)$ and a proof that the actual solution z_i satisfies $|z_i - z'_i| < \epsilon$.

Moral: Proof of the inverse function theorem is effective (Interval Newton's Method; Krawczyk's test).

Can then compute volume to guaranteed accuracy, provably decide if two such manifolds are isometric, find symm. groups, solve the word problem, but more to do.



 $f([q_0, b_0]) = [a_1, b_1]$



[Epstein-Penner] A finite-volume hyperbolic *n*-manifold *M* has a canonical ideal cellulation \mathcal{T} defined purely from the hyp structure.

"Delaunay dual to Vornoi decomp based at infinity"

[Weeks] Combinatorial "local convexity" algorithm.

Certifiable [DHL 2015; FGGTV 2016].

[HIKMOT 2014] Method for certifying solutions to Thurston's equations using interval arithmetic. Given $\epsilon > 0$, returns $z'_i \in \mathbb{Q}(i)$ and a proof that the actual solution z_i satisfies $|z_i - z'_i| < \epsilon$.

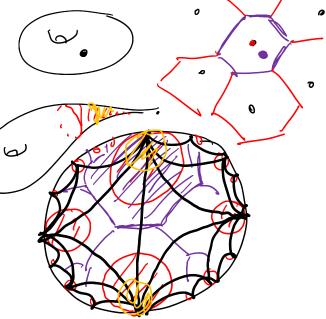
Moral: Proof of the inverse function theorem is effective (Interval Newton's Method; Krawczyk's test).

Can then compute volume to guaranteed accuracy, provably decide if two such manifolds are isometric, find symm. groups, solve the word problem, but more to do. **[Epstein-Penner]** A finite-volume hyperbolic *n*-manifold *M* has a canonical ideal cellulation \mathcal{T} defined purely from the hyp structure.

"Delaunay dual to Vornoi decomp/ based at infinity"

[Weeks] Combinatorial "local convexity" algorithm.

Certifiable [DHL 2015; FGGTV 2016].



Watch this space!

[D-Hirani] Numerical methods for finding harmonic representatives of elements of $H^1(M; \mathbb{R})$, and so can compute regulators, RS torsion, etc.

[D-Obeidin-Rudd] Go from an ideal triangulation of a link exterior to a link diagram. Goal: find link diagrams for all the principal congruence link complements [Baker-Goerner-Reid 2019].

[Epstein-Penner] A finite-volume hyperbolic *n*-manifold *M* has a canonical ideal cellulation \mathcal{T} defined purely from the hyp structure.

"Delaunay dual to Vornoi decomp based at infinity"

[Weeks] Combinatorial "local convexity" algorithm.

Certifiable [DHL 2015; FGGTV 2016].

Watch this space!

[D-Hirani] Numerical methods for finding harmonic representatives of elements of $H^1(M; \mathbb{R})$, and so can compute regulators, RS torsion, etc.

[D-Obeidin-Rudd] Go from an ideal triangulation of a link exterior to a link diagram. Goal: find link diagrams for all the principal congruence link complements [Baker-Goerner-Reid 2019].