Conservation Laws in Biology

Two new examples.
( Quarterly Applied Mathematics, 2021)

M. Slemrod ( Univ. of Wisconsin, Madison) and M. Mussel ( NIH)



1. Action Potentials via Continuum Mechanics

2. Biological form via differential geometry



1. Action Potentials via Continuum Mechanics

Scientific Reports nature.com, Feb. 2019

Matan Mussel and Matthias F. Schneider,

Similarities between action potentials and acoustic pulses in a van der Waals fluid.

An action potential is typically described as a purely electrical change that
propagates along the membrane of excitable cells. However, recent experiments
have demonstrated that non-linear acoustic pulses that propagate along lipid
interfaces and traverse the melting transition, share many similar properties with
action potentials.


http://nature.com

Classically, action potentials are explained by
an analogy to an electric circuit
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Classically, action potentials are explained by
an analogy to an electric circuit
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Chap.1, The Hodgkin-Huxley Equations



Model of sound waves in lipid membrane near
phase transition

Model assumptions: Conservation laws

Mass (continuity equation Surface pressure—area

Isotherms in a lipid monolayer
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Model assumptions: Conservation laws

Model of sound waves in lipid membrane near
phase transition
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Lipid membrane: p,p,0,E,v

* Mass (continuity equation)
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Density and pressure aspects vary nonlinearly

Lipid monolayer experiment

)

A6/6,=1.2

Change in density

regime (1)

e
time
T~10"3—-10"%s
U~01-100m/s

Shrivastava and Schneider,
J Royal Soc Interface, 2014

near phase transition

Theory

T=—~10"%s
Pc
U= BE~«1OO1n/S
VPC

MM and Schneider, Sci Rep, 2019

Action potential

N N N

v
T=2-103s
U=21m/s

Hodgkin and Huxley, Nature, 1939



vdW fluid equations are similar to the
generalized Fitzhugh-Nagumo equations

JOURNAL OF DIFFERENTIAL EQUATIONS 52, 1-23 (1984)

Dynamic Phase Transitions
in a Van Der Waals Fluid*™

M. SLEMROD'

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy,
New York 12181, and Mathematics Research Center, University of Wisconsin,
Madison, Wisconsin 53706

The main tool of the analysis is the Conley—Easton theory of isolating
blocks |2]. This theory has been applied by Carpenter {3] to prove the
existence of traveling wave solutions to a generalization of the Fitzhugh—
Nagumo equations modeling nerve impulse transmission. Surprisingly, the
equations governing traveling wave solutions in the phase transition ;Sroblem
given here and the generalized Fitzhugh—Nagumo equations are similar. In
fact, I show a modification of Carpenter’s approach to the wave impulse
equations that yields the desired traveling wave solution to the phase tran-
sition problem.




To capture the phase transition between liquid disordered states and liquid ordered

states we seek a traveling wave solution, w(§), v(£), 6(¢); & = “=FL satisfying the

system:
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Density-voltage relation

By calculating the charge density of the lipid membrane and its interaction with ions accumulating
on both sides of the membrane, an electric potential difference arises

Vxp

when the symmetry across the lipid membrane is broken.

Sound pulse in a lipid
monolayer
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JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 36, 22-40 (1971)

Nonexistence of Oscillationsin a Nonlinear Distributed Network,
M. Slemrod,
Center for Dynamical Systems,
Division of Applied Mathematics, Brown University.



2. Biological form via differential geometry



Cell structure

Wallace F Marshall. Differential geometry meets the cell. Cell, 154(2):265-266, 2013.

“a century ago D Arcy Wentworth Thompson proposed that physical
principles such as surface tension would dictate biological form.”

“The evidence of...proteins goes against the concept of

D Arcy Thompson and appeared to be the final nail in the coffin of

his Pythagorean approach to cell biology. But a paper by

Terasaki et al. ...breathes new life into the old dream of mathematical
biology by describing that connections between endoplasmic
reticulum (ER) sheets mimics a well-known class of mathematical
surfaces, and this shape is in fact predictable

from simple physical rules governing membrane energetics."



(a) and (b) show two different
view angles of a 3D
reconstructions of stacked
ER sheets.

(c) Construction process of a
helicoid from a helix by
drawing lines (blue lines)
perpendicular to the axis
(black line) through the helix
(grey curve).

(d) a 3D helicoid shape.

Reprinted with permission from Elsevier.




The ER model of Terasaki et al.

Membrane surface
Edge line I
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Sketch of an ER membrane



The model has three contributions to the energy:

(i) Elastic bending energy of the sheet edges. This is modeled by

1
Fe = —Ke 32d
v [ (€ +1G P

2
where C I1s the edge line curvature, and (s and s, > 0 are constant “target”
curvature and edge line bending modulus, respectively. Integration i1s done
over the edge line .



(i1) Elastic bending of the edge line surface. This is modeled by

(i

F, = %,{ / J?dA (Willmore energy)
S

where J Is the mean curvature of the edge line surface and K > 0 is the

membrane bending modulus. Integration is performed over the area of the
sheet surface S.

Restriction of sheet expansion Is taken account by a lateral pressure acting
along the sheet edge E with corresponding energy

Fp— | Paa
E

The pressure P 1s assumed to be independent of the membrane edge line [
and surface S.



Consider for simplicity only one connection between the sheets, consisting of an
internal edge E surrounded by a sheet surface. Thus, the total energy is given by
F. + F¢ + Fp and minimized when

( = —l¢s] <0
J = 0

Hence, ( becomes the signed curvature with negative sign indicating that the edge
Is interior to the sheet surface.



Since we have taken (g a constant, the desired surface is one of mean curva-
ture = 0 and edge curvature a negative constant; i.e., helicoid[4|. This helicoid
assumption of ER was derived by Terasaki et al. and is remarkably consistent with
their experimental observations. But examination of their experimental photograph
shows that not surprisingly the experimental results are rough approximations to
helicoids. This suggests the following albeit mathematical conjecture that geomet-
ric information from the helicoid is encoded in the ER surface that allows nature to
produce approximate helicoidal surfaces.



Recall a helicoid has the parametric representation

(r1(z,y),r2(,y),r3(x,y)) = (ysin(z),y cos(z), cr)

Where —oc0 <y < 00, —00 < x < 00, and c I1s a constant. In our case we want a
helicoid with an internal edge and hence if we take —o0 < y < yg < 0, the edge
line 1s internal to the helicoid with




Distances on the helicoid are given by the incremental relation (first fundamental
form)

ds* = Edz* + 2Fdxdy + Gdy*

with
E(y)=c+vy*, F=0, G=1

with associated Gaussian curvature

C2

K(y) = (21 52) < 0.

Alternatively, o
d32 — gijdxzdwj, 1 < Za] < 2

Witth:E,glzzF, QQQZG, 11312113, ZEzzy.



To find such a surface denoted again by (r1(x,y),r2(x,y),r3(x,y)) = r(x,y)
will have to satisfy the incremental relation

67;’? ° 8]'7“ — Gij
for —co <z =2' <00, y1 <y =<y < 0 where r(x,y;) is a prescribed
non-helical external edge.

This 1s the equation for isometric embedding of a two dimensional Rieman-
nian manifold (M, g) into R” (three dimensional Euclidean space). Thus, we have
placed our non-helicoidal surface in the framework of a two-dimensional Riemannian
manifold.



For a two-dimensional surface » embedded in R?, we have tangent vectors 0; 7,
O>r which in turn define the unit normal n to the surface.
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Define second fundamental form h;; by

n

hij — U7 - N

where clearly h;; = hj;.



The fundamental theorem of surface theory asserts a necessary condition for a
smooth embedding of a two-dimensional Riemannian manifold (M, g) in R? is that
the second fundamental form satisfies the Gauss equation

hi1hos — hiahoy = (det g) K
and the Codazzi equations
Oahi1 — O1hia = hi1 Ty + hia (DY, — 1) — hooT'H4
Ooh1o — O1has = h11T55 + h12(T5, — '5;) — haol's,

Here I' . are the Christoffel symbols given by

i L
ik — 59 g{ajgké + Ok gej — 5£9jk}

g~ ' = {g"}. Here again the Einstein summation convention is used.



Our interest lies in the fact the Gauss—Codazzi system when satisfied is also a
sufficient condition for isometric embedding of (M, g) into R?. In particular, the
following generalization of the classical smooth embedding theory to “rough” em-
beddings will be the key.

Theorem (Mardare, 2003) For (z',2) in a connected and simply-connected
open subset 2 of R?. Assume first and second fundamental forms Gij, ki; with

Gij € Wl’oo(ﬂ), hi; € LS (€2) satisfy the Gauss—Codazzi system in the sense of

loc loc
distributions. Here W7 denotes the usual Sobolev spaces. Then, there exists an

embedding r € WZ’OO(Q) C Cl’l(ﬂ) such that the Gauss—Codazzi equations are

loc loc

satisfied almost everywhere in ().



Set K(y) = —v*(y) < 0, u:—% U=

Theorem (Cao, Huang, Wang, ARMA 2015). For any given y; < 0 let the
initial data w(x,y1),v(x,y1) satisfy

u(z,y1) +v(z,y1) bounded, wu(x,y1)—v(x,y1) bounded,
and

ifé% (u(z,y1) +v(z,91)) >0, SU% (u(z,y1) —v(z,y1)) <0,
L S

or

Sug (u(x,y1) +v(x,y1)) <O, iIel]lfQ (u(x,y1) —v(x,y1)) > 0.
T € X

Then, for Q = {(z,y);—00 < = < 00,1 < y < Yo < 0} there is distribu-
tional (weak) solution of the Gauss—Codazzi system where g is the helicoidal metric.
Furthermore, Mardare's theorem yields an isometric embedding r & leafo(ﬂ) C

Chh Q).

loc
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