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Introduction

A high order WENO discretization of complicated multidimensional problems leads to large
amount of operations and computational costs.

Goal: achieve fast simulations by high order WENO methods (e.g., fifth order WENO scheme)
for solving hyperbolic conservation laws.

Fixed-point fast sweeping WENO schemes for solving steady state hyperbolic conservation
laws.

- based on high order WENO fast sweeping methods for solving Hamilton-Jacobi
equations. Utilize the hyperbolic properties of the PDE in the iterative scheme.
- Liang Wu, Yong-Tao Zhang, Shuhai Zhang, and Chi-Wang Shu, High order fixed-point

sweeping WENO methods for steady state of hyperbolic conservation laws and its convergence
study, Communications in Computational Physics, v20, (2016), pp. 835-8609.

- Liang Li, Jun Zhu, Yong-Tao Zhang, Absolutely convergent fixed-point fast sweeping WENO
methods for steady state of hyperbolic conservation laws, (2020), arXiv:2006.11885 [math.NA].
Submitted to Journal of Computational Physics.

e High order WENO scheme on sparse grids to solve high dimensional problems.

- Xiaozhi Zhu and Yong-Tao Zhang, Fast sparse grid simulations of fifth order WENO scheme
for high dimensional hyperbolic PDEs, Journal of Scientific Computing, v87, (2021), article number:
44,
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steady state problems of hyperbolic conservation laws

With some appropriate boundary conditions.

U is the vector of the unknown conservative variables.
F(U) is the vector of flux functions.

h is the source term.

A spatial discretization leads to a large nonlinear system.
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Motivated by high order WENO fast sweeping methods for

solving static Hamilton-Jacobi equations.
Y.-T. Zhang, H. Zhao, J. Qian, Journal of Scientific Computing, 2006, v29: 25-56.
T. Xiong, M. Zhang, Y.-T. Zhang and C.-W. Shu, Journal of Scientific Computing,
2010, v45: 514-536.

1 A local solver based on a monotone numerical
Hamiltonian, which is consistent with the causality
of the PDE.

1 Systematic orderings of all grid points, which can
cover all directions of the characteristics.
for example:

on 2D rectangular mesh, the natural orderings
give the sweeping directions

(1) iI=1,N; j|=1,M; (2) i=N,1; ]=1,M;
(3) i=N,1; j=M,1; (4) i=1,N; |=M, 1.

1 Solving the nonlinear system by Gauss-Seidel
iterations along alternating directions.
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Explicit high order fast sweeping WENO methods: Fixed-point sweeping schemes.
Y.-T. Zhang, H.-K. Zhao and S. Chen, Fixed-point iterative sweeping methods for static
Hamilton-Jacobi equations, Methods and Applications of Analysis, 13, (2006), 299-320.

For example: time marching with the 2"d order TVD-Runge Kutta:

By + Ot |

1 1
LT | 1)
I;T}i_,-_.l_i- j' —|— N (] i i

Coupled with fast sweeping techniques (use new values in the stencil, and
alternating sweeping directions):
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WENO discretization

1 Base scheme: the fifth order finite difference WENO scheme with Lax-
Friedrichs flux splitting.

G.-S. Jiang and C.-W. Shu, JCP, 1996, v126, p. 202-228.

« Conservative flux approximations:

«  WENOS5 approximation with five-point stencil to numerical fluxes (the case of
positive wind):

(0
fz+i ._H“f_H ,‘l’”lf lj—l—rf:f_i_l

where

1
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H#r;__:)——f —|——HH ).
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Nonlinear weights

¥y d,

: = -=0,1,2.
a1 + a9 + g o (e + /3,)2 :

'“.'r' p—

dp = 0.1.dy = 0.6, dy = 0.3 are called the "linear weights”, and (3. 71, J9 are called the “smoothness

indicators” with the explicit formulae

13, . o o 1. : 12
3 —(fi_o — 2fi_ ; —(fio —4fi 1+ 3fi)".
0 12(}‘ 0o —2fi1+ fi)* + 4(}‘ > —4fic1+ 3f:)

13 1 ,
B —(fie1 = 2fi + fix1)? + = (fiz1 — fir1)%,
| 12“. 1 —2fi + fiz1) +4(,f. 1 — fir1)

13,, . : 1, . : : -
3o oo (fi = 2fiss + fi2)* + (i = 4fisa + fis2)”

4
vhere f; denotes f(u;). € is a small positive number chosen to avoid the denominator becoming 0.

Ve take € = 1075 in this paper.

» For the negative wind, right-biased stencil is used. The formulae for negative
and positive wind cases are symmetric with respect to the point LFESE
* For the general case, Lax-Friedrichs flux splitting is performed:

1

frw) = 5(f() +au), 7 (u) = 5(f(w) - aw), (2.7)

where a = max, |f'(u)|. fT(u) is the positive wind part, and f~(u) is the negative wind part.
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Early work on improvement of convergence to steady state
for WENO schemes

1 High order WENO schemes suffer from difficulties in their
convergence to steady state solutions, e.g., the residue of WENO
schemes often stops decreasing during their iterations.

1 For example: studies in S. Zhang and C.-W. Shu (JSC, 2007, 2011)
reveals that slight post-shock oscillations actually cause this
problem.

1 Slight post-shock oscillations can be mixed with multi-scale
structures in complex fluids and cause problems in resolving the real
physical phenomena.

1 Two methods developed to reduce the slight post-shock oscillations.
- New smoothness indicators.
- Upwind-biased interpolation is used to form the Jacobian at
the cell interface for the local characteristic decomposition.

Advances and Challenges in Hyperbolic
5/20/2021 Conservation Laws, ICERM, Brown U 8



The explicit formulae for the new smoothness indicator are : _ .
Derived via analyzing effects of

different parts of the original
smoothness indicator on
numerical solution around
(35— Afie) 4 Foro)? shock waves. (S. Zhang and
2 J 1 Ji+1 Ji+2) - C_W Shu, JSC 2007)

(fio —4fi1 + 3f1)%

(fic1 — fiv1).

» For systems of hyperbolic conservation laws, upwind-biased interpolation rather
than the standard Roe average is used to form the Jacobian matrix at the cell
interface for the local characteristic decomposition. (S. Zhang and C.-W. Shu,

JSC 2011).
» the upwind-biased interpolation for the x-direction local characteristic decomposition:

Uii1/0=U (1)

when u; /9 > ( . _ _
| u: the x-direction fluid velocity

Uis1/0=U 2) when g9 < (
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Fixed-point iterative schemes

« After WENO discretization, we obtain a nonlinear system

i~ fio 1/2,)/ A1 = (i j+1/2 — Gij—1/2)/ Ay + h(uij, i, y;).

« Time marching methods are essentially a Jacobi type fixed-point iterations. For
example:

_.--. /

—L
Af —{—n,; Au (”

i=1,--- , N:g=1.---

-~

« This is actually forward Euler method with time step size: ANMES
v actually represents the CFL number

g [Az+oy /Ay

« Another example, Jacobi type fixed-point iterations from the 3" order TVD
Runge Kutta :

I—I— ._\?‘,[\’u

z.r;r




Fixed-point fast sweeping WENO schemes for hyperbolic conservation laws

L. Wu, Y.-T. Zhang, S. Zhang, and C.-W. Shu, High order fixed-point sweeping WENO
methods for steady state of hyperbolic conservation laws and its convergence study,
Communications in Computational Physics, v20, (2016), pp. 835-869.

o~
r.

_\I +r1,}, Au

P=ip, -

» Here the iterations do not just proceed in only one direction i=1:N,j=1:M as the
time-marching approach, but in the following four alternating directions repeatedly,

experiments. By the Gauss-Seidel philosophy, we use the newest numerical values on the computa-

stencil of the WENO scheme whenever the awble. That is the reason why we use the

notation u* to represent the values in the scheme (2.13), and uj ; could be u;; or uy f , depending

on the current sweeping direction.
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INYJ = J1.

' L(u*
3y /Ax + iy J.f,f} ierg

L =11, " ,IN] =
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Numerical Example I. Burgers equations

Here we further examine our scheme on a two-dimensional Burgers’ equation with a source term,

e TR
) cos|( — )
s \ _."'l 2 A

v

with initial conditions,
u(x,y,0) = Fsin

b leads to a smooth steady state solution

Setting (3 = 1.
u(x, y,o0) = sin (

We use exact steady state solution on square boundaries. Also we use the same convergence criterion

as before to test the accuracy, i.e. Resyq < le — 12. Results are shown in Table 17 to 24. Again,
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Table 17: Original WENOS5 with Runge-Kutta in time. CFL: 1.0

points

L error

L1 order

Lo error

Lo index (i, j

Lo order

iter #

CPU time

10

2.46e-6

1.23e-5

(9,9

270

4.30e-2

20

6.31e-8

3.50e-7

342

0.23

40

1.37e-9

8.98e-9

(39,39

513

1.42

30

2.95e-11

1.93e-10

)
)
(19,19)
)
)

(79,79

855

9.54

Table 18

: Original WENOS5 with Sweeping(G-S) + RK3 in time. CFL:

1.0

points

Ly error

L, order

L, error

L, order

iter #

CPU time

10

2.46e-6

1.23e-5

159

2.41e-2

20

6.31e-8

3.50e-7

186

0.12

40

1.37e-9

8.99e-9

273

0.70

30

2.95e-11

2.07e-10

450

4.72

Table 19: Original WENO5 with Forward Euler in time. CFL: 0.1

points

Ly error

L, order

L., error

Lo index (i, j

L. order

iter #

CPU time

10

2.46e-6

1.23e-5

(9,9

1195

0.18

20

6.31e-8

3.50e-T

1439

0.92

40

1.37e-9

8.99e-9

(39,39

1822

3.16

30

2.95e-11

2.08e-10

)
)
(19,19)
)
)

(79,79

3178

33.67

Table 20: Original WENObS with Sweeping(G-S) + Forward Euler in time. CFL: 1.0

points

L error

L order

Lo error

L order

iter #

CPU time

10

2.46e-6

1.23e-5

113

1.77e-2

20

6.31e-8

3.50e-7

133

8.39e-2

40

1.37e-9

8.99e-9

181

0.47

30

2.95e-11

2.07e-10

286

3.04




Table 21: New Smoothness Indicator WENO5 with Runge-Kutta in time. CFL: 1.0

points

L, error

L, order

L., error

L, order

iter #

CPU time

10

4.33e-6

1.41e-5
7

270

4.04e-2

20

9.33e-8

54

3.85e-

351

0.22

40

2.03e-9

b3

1.08e-8

528

1.35

80

4.30e-11

.56

2.63e-10

867

8.88

Table 22: New Smoothness Indicator WENOS5 with Sweeping(G-S) + RK3 in time. CFL: 1.0

points

L error

L, order

L error

L order

iter #

CPU time

10

4.33e-6

159

2.28e-2

20

9.33e-8

.54

1.41e-5
3.85e-7

198

0.12

40

2.03e-9

.53

1.08e-8

279

0.67

30

4.30e-11

.56

2.82¢-10

447

441

Table 23: New Smoothness Indicator WENOS with Forward Fuler in time. CFL: 0.1

points

L error

L, order

L error

L order

iter #

CPU time

10

4.33e-6

1166

0.17

20

9.33e-8

.54

19

1409

0.84

40

2.03e-9

5.53

1937

174

30

4.30e-11

.56

2.83e-10

3209

32.04

able 24: New Smoothness Indicator WENOb5 with Sweeping(G-S) + Forward Euler in time. CFL:

.0

points

L4 error

L, order

L, error

L, order

iter #

CPU time

10

4.33e-6

110

1.59e-2

20

9.33e-8

5.54

1.41e-5
3.85e-7

136

8.00e-2

40

2.03e-9

5.53

1.08e-8

193

0.47

30

4.30e-11

5.56

2.82¢-10

289

2.84




Numerical Example: A two-dimensional oblique shock

In this subsection, we simulate an oblique shock which has an angle of 135° with the positive x-
direction, which is also tested in [9] and [10]. The flow Mach number on the left of the shock is
M., = 2. The computational domain is 0 < x < 4 and 0 < y < 2. The initial oblique shock passes
the point (3,0). The domain is divided into 200 x 100 equally spaced points with Az = Ay. With

periodic boundary condition along the shock direction implemented, the residue of the first order

upwind biased interpolation 5th WENO scheme (UIWENO) can settle down to 10~2. UIWENO

is also shown as the most efficient scheme among those offer the best results for this example
in [10]. So here we use UIWENO as our WENO scheme for this example to study the effect of

introducing Gauss-Seidel sweeping method on the reduction of iteration number and computational

. —~ . . . 1—12
time. Convergence criterion is set to the same value, 10 12

« Upwind interpolation in the local characteristic decomposition is used to
iImprove the convergence of WENOS5 scheme to steady state.
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Table 29: 135° Oblique steady shock wave: UITWENO scheme with Forward Euler time marching.

~: CFL number

iteration number

time until conv

CPU time

0.1

23729

22.26

5510

0.2

not convergent, hang at -3.1

Table 30: 135° Oblique steady shock wave: UITWENO scheme with Forward Euler time marching

and Fast Sweeping.

~: CFL number

Iteration number

time until conv

CPU time

0.1

27017

25.36

8569

0.2

15749

29.56

4960

0.4

7689

28.87

2428

0.6

4317

24.31

1357

0.8

3137

23.56

988

1.0

1953

18.32

616

1.2

not convergent (blowed up)

Table 31: 135° Oblique steady shock wave: UITWENO scheme with Runge-Kutta time marching.

~: CFL number

iteration number

time until conv

CPU time

0.1

05463

29.87

22152

0.2

46734

20.24

10907

0.4

22788

28.52

5309

1.0

9507

29.74

2213

1.2

not convergent, hang at -2.2

14

not convergent, hang at -1.9

Table 32: 135° Oblique steady shock wave: UTWENQO scheme with Runge-Kutta time

and Fast Sweeping,.

~: CFL number

iteration number

time until conv

CPU time

0.1

43755

13.69

13655

0.2

25059

15.68

7826

0.4

12123

15.17

3812

1.0

3027

947

951

1.2

not convergent (blowed up)

1.4

not convergent (blowed up)

marching

The fixed-point
sweeping WENO
scheme with forward
Euler is the most
efficient scheme
among all of four
different schemes,
among all possible
CFL numbers.
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5/20/202 Figure 4: The evolution of average residue in terms of iterations of a 135° oblique shock of M., = 2
by various ULIWENO schemes and CFL numbers




FE FS UTWENO

« Non-oscillatory
shock transitions
(In the “Zoomed
in” small scales)
are obtained for
converged

RK UTWENO RK FS U1TWENO cases.

Figure 6: Zoomed density distribution (downstream) of a 135° oblique shock of M, = 2 along the
line y = 1 by various UIWENO schemes and CFL numbers




1 Challenge: for some difficult examples, e.g., regular shock reflection
problem, the iteration residue of the fixed-point fast sweeping WENO
scheme still hangs at a truncation error level instead of converging to round-
off levels.

1 This motivates us to apply recent new WENO approximations to our fixed-
point fast sweeping WENO methods for resolving this issue.

1 J. Zhu and C.-W. Shu, A new type of multi-resolution WENO schemes with
Increasingly higher order of accuracy, Journal of Computational Physics,
375 (2018), 659-683.

FE U1ZSWENO 0 FE FS U1ZSWENO

Log(ResA)

-3.5 -3.5 —
0 05 1 15 2 25 3 0 05 1 15 2 25 3

Iterations <10° Iterations

Regular shock reflection problem.
Iteration residues hang at 10-3-5
level.

RK U1ZSWENO 0 RK FS U1ZSWENO

—
<
7]
o
=
o)
o)
|

Y W . 35 TV e C e T S
0 05 1 15 2 25 3 "0 05 1 15 2 25 3

lterations <104 lterations » IIenges in Hyperbolic
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Liang Li, Jun Zhu, Yong-Tao Zhang, Absolutely convergent fixed-point fast sweeping
WENO methods for steady state of hyperbolic conservation laws, submitted. 2020,
arXiv:2006.11885 [math.NA].

A fifth order multi-resolution WENO reconstruction (J. Zhu & C.-W. Shu, JCP,
2018) is applied in the fast sweeplng iterations:

econstruction a
Step 1. We ¢ 1e central sy stencils Ty Lioiak}, B = 1,2,3, and

5/20/2021 21




J—"El = M, ﬁ‘l—l_ e+ [ f ]
J_il

= is a small value to avoid that the denominator becomes zero. In this paper, ¢ is taken to be 10~°
for all numerical examples.
Step 5. The final reconstructed numerical flux f:l o+ 18 given by

, = T‘ "'flf"fll Tit1/2 :|

-?]=1

z—l
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Accuracy and CPU time for a 2D Euler system

FE Jacobi, v=0.1

NxN

L; error

L; order

L., error

L., order

iterg

CPU time

10 % 10

6.74E-04

2.68E-03

hy17

12.92

20 x 20

1.30E-05

5.69

3.58E-05

6.23

6804

30.63

30 x 30

1.84E-06

4.83

4.76E-06

4.98

8H83

68.08

40 x 40

4.49E-07

4.90

1.13E-06

5.00

10613

138.61

50 x 50

1.50E-07

4.92

3.71E-07

4.96

12725

247.23

60 x 60

6.08E-08

4.94

1.51E-07

4.95

14931

404.63

70 x 70

2.83E-08

4.95

7.04E-08

4.97

17068

616.05

80 x 80

1.46E-08

4.96

3.62E-08

4.99

19093

886.75

RK Jacobhi, v=1.0

NxN

L1 error

Ly order

L error

Lo order

iterg

CPU time

10 x 10

7.41E-04

2.68E-03

1746

4.16

20 x 20

1.31E-05

5.82

3.58E-05

6.23

2037

11.06

30 % 30

1.85E-06

4.84

4.76E-06

4.98

2568

26.47

40 x 40

4.51E-07

4.91

1.13E-06

5.00

3174

52.63

50 x 50

L.50E-07

4.93

3.71E-07

4.96

3825

94.11

60 x 60

6.10E-08

4.95

1.51E-07

4.95

4488

155.11

70 % 70

2.84E-08

4.96

7.04E-08

4.97

5130

236.75

80 x 80

1.46E-08

4.96

3.62E-08

4.99

5739

340.70

FE fast sweeping, y=1.0

N x N

Ly error

Lq order

L. error

Lo order

itert

CPU time

10 x 10

6.62E-04

2.68E-03

560

1.26

20 x 20

1.30E-05

5.67

3.58E-05

6.23

653

4.02

30 x 30

1.84E-06

4.83

4.76E-06

4.98

821

10.69

40 x 40

4.49E-07

4.90

1.13E-06

5.00

1010

22.53

50 x 50

1.50E-07

4.92

3.74E-07

4.96

1213

42.39

60 x 60

6.08E-07

4.94

1.51E-07

4.95

1421

71.19

70 x 70

2.83E-08

4.95

7.04E-08

4.97

1622

110.55

S0 x 80

1.46E-08

4.96

3.62E-08

4.99

1814

160.91

Table 4: Example 4, A 2D Euler system of equations with source terms.

numbers and CPU times of three different iterative schemes. CPU time unit: second
onservation Laws, =

Accuracy, iteratio

The fast sweeping
WENO scheme saves
more than 50% CPU
costs of that of the 3
order TVD Runge-Kutta
WENO scheme. Similar
numerical errors and
accuracy orders are
obtained.




Regular shock reflection problem

—&— CFL=06

Log(ResA)

5000 10000 15000
iterations

FS WENO saves about 66% CPU
costs of the TVD-RK WENDO.

| i.:?

K]
’)
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A supersonic flow past an airfoll problem

(a) RK Jacobi scheme, Supersonic

Supersonic flow

RK .Jacobi scheme

~ : CFL number

iteration number

final time

CPU time

0.9

18942

16.88

4243.36

1.0

17064

16.89

3822.81

1.1

Not convergent

FE fast sweeping scheme

~v : CFL number

iteration number

final time

CPU time

0.9

8492

22.70

3288.59

1.0

4564

13.55

1728.37

1.1

4304

13.91

1618.44

1.2
5/20/2021

Not convergent

Conservation Laws, ICERM, Brown U

(b) FE fast sweeping scheme, Supersonic

Iteration residues converge
to the level of 10-12,

FS WENO saves about 58%
CPU costs of the TVD-RK

WENO.




X. Zhu and Y.-T. Zhang, Fast sparse grid simulations of fifth order WENO scheme for high
dimensional hyperbolic PDEs, Journal of Scientific Computing, v87, (2021), article number: 44.

up + V- f(u) =0, (1)

—

where u(Z,t) is the unknown, and f = (fy,--- ., faq) T is the vector of flux functions

1 Base scheme:
--- Spatial discretization: high order (e.g the 5" order) finite
difference WENO schemes with Lax-Friedrichs flux splitting.
--- Time discretization: the third order TVD Runge-Kutta scheme.
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Sparse grids

¥ direction

Semi-coarsened
sparse grids with
the finest level 3.

x direction
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Sparse-grid combination technique

1 The final solution is a linear combination of solutions on semi-coarsened grids, where
the coefficients of the combination are chosen such that there is a canceling in
leading-order error terms and the accuracy order can be kept to be the same as that
on single full grids.

1 Error analysis of linear schemes for linear PDEs has been performed in the following
work which proved the above statement.

-- Griebel, M., Schneider, M., Zenger, C., A combination technique for the solution of sparse grid
problems, in: R. Beauwens, P. de Groen (Eds.), Iterative Methods in Linear Algebra, North-
Holland, Amsterdam, 1992, pp. 263-281.

-- Lastdrager, B., Koren, B., Verwer, J., The sparse-grid combination technique applied to time-
dependent advection problems. Applied Numerical Mathematics, 2001. 38: p. 377-401.

-- Lastdrager, B., Koren, B., Verwer, J., Solution of time-dependent advection-diffusion problems
with the sparse-grid combination technique and a rosenbrock solver. Computational Methods
in Applied Mathematics, 2001. 1: pp. 86-99.

1 Error analysis of nonlinear schemes / nonlinear PDEs is still open.

1  We use numerical experiments to show the accuracy order of WENO schemes for
solving nonlinear problems can still be achieved with sparse-grid combination
techniques.
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Error analysis results for the 5 order linear schemes applied to a 2D linear
advection PDE

. Forthe 2D linear PDE: (R ¢RI o ol7) Ej,‘f c=10

» Leading order errors in spatial direction for the 5th order linear
scheme with the sparse grid combination technique:

s 0°u 0°u 1 s < 5 | H\ 0 “u
T - \a—+b— )+ ——nh"H -T7ab|{1—-31l0gy — | ———
( dx© d )'6) 3600 ( “ h ) dx09y°

g 1
+ 0 (/16 log, ;

« His the grid size of the root grid; h is the
grid size of the most refine grid.
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Sparse grid WENO scheme

Algorithm: WENO scheme with sparse-grid combination technique

e Step 1: Restrict the initial condition u(x,y,0) to (2N, + 1) sparse grids {Q!:82};
defined above. Here “Restrict” means that functions are evaluated at grid points;

Step 2: On each sparse grid Q12 solve the equation (1) by Runge-Kutta WENO
scheme to reach the final time 7. Then we get (2N, -+1) sets of solutions {U+2}:

e Step 3: At the final time T,

— on each grid Q2 apply prolongation operator PNt-Ni on U412 Then
we get PNL-NL7ll2 - defined on the most refined mesh QN2 For smooth
solutions, the regular Lagrange prolongation can be used directly. In general,
WENO prolongation is used;

— do the combination to get the final solution

[7NL.NL _ E pNL . Nogrlila E PN Neglsle (10)
l1+l=Np l1+lo=Np—1

For three dimensional (3D) or higher dimensional problems, the algorithm is sim-
ilar although prolongation operations are performed in additional spatial directions.
The sparse-grid combination formula for higher dimensional cases can be found in the
literature (e.g. [5]). Specifically the 3D formula is

[A—J?\‘TL :J?\‘T_L _._J?\‘TL — E Pf\‘rj; _._J?\‘TL .,J?\‘T_L [/Tl_[ .(1'2 .33 o 2 E PJ?\‘TL .,J?\'T_L _._.F\‘TL ("’Ej_ £‘2,£3
li+1la+13=Nyp, li+lo+l3=Np—1

_|_ § PE\'TL -:E\'TL :-‘r\'r.[. [TELEQIS‘
l1+lo+l3=Np—2




d-dimensional sparse-grid combination

: Spatial dimension of the PDE
: The most refined level
A sparse grid with levels [,..., [; on each direction.
: Numerical solution at the sparse grid ; after prolongation to the most refined grid
: The solution after combination.

The general formula for combination is,

) l+d—1 et J-1
uf =y, (=pdrlmen|

] X

m=I1 T gl=m—(d-1)

m—1
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5t order WENO prolongation / interpolation

(=X — xig0)
(X —xj—2)(x — Xj1+2)

(x —x;i—2)(x —x;—1)
12h°
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Numerical example 1: Linear advection equation
Example 1 (A 3D Linear equation):

{w + ug +uy +u; =0, —2<r<2,2<y<2,-2<2<2;

u(,y,z,0) = 5111[%{:.1.‘ +y+z)),

with periodic boundary condition. We compute this 3D problem till final time 7' =1

Computations on single grids:

| Np x Np x Ny | L'Emor | Order | L* | Order| Time(s) |

80 x 80 x 80 2.0810e-06 - 7.6743e-06 12.132
160 x 160 x 160 | 6.6581e-08 | 4.966 | 2.4607e-07 | 4.96: 339.748
320 x 320 x 320 | 2.0825e-09 | 4.999 | 7.7131e-09 | 4.99¢ 8461.060
640 x 640 x 640 | 6.5097e-11 5 2.4123e-10 | 4. 231386.000

Computations on sparse grids:

[N, [ Levl | Ny x Ny x Ny | L bror | Order | 1> | Onder | Timets |

80 x 80 x 80 7.6908e-06 4.9805e-05
160 x 160 x 160 | 6.8082e-08 | 6.82 | 2.4792e-07 | 7.65

320 x 320 x 320 | 2.0761e-09 | 5.035 | 7.7136e-09 | 5.006
640 x 640 x 640 | 6.5039e-11 | 4.996 | 2.4124e-10 | 4.999

Sparse grid computations can save more than 80% CPU times on
refined meshes to reach similar error levels as that on single
grids.

Advances and Challenges in Hyperbolic
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Numerical errors vs. CPU times

—e— Regular —e— Regular
Sparse Lagrangian Sparse Lagrangian
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Nonlinear Burgers’ equation, around 80% CPU times are saved by using

Computations on single grids:

Np x Nj x Np

L" Error

sparse grids on refined meshes

Example 5 (A 3D Burgers’ equation):

e+ (), + (), + (%), =0,
u(w,y,2,0) =03+ 0.7sin(5 (x +y + 2))

(r,y,2) € [-3,3] x [-3,3] x [-3,3]; (17)

with periodic boundary conditions. As that for the last example, we first apply both

LOO

Time(s)

80 x 80 x 80
160 x 160 x 160
320 x 320 x 320
640 x 640 x 640

2.0866e-06
6.6687e-08
2.0836e-09
6.5107e-11

7.6725e-06
2.4606e-07
7.7132e-09
2.4124e-10

Np x N x Ny

L! Error

LOO

26.706
691.410
16868.220
444972.000

Time(s)

80 x 80 x 80
160 x 160 x 160
320 x 320 x 320
640 x 640 x 640

Np x N x Nj,

1.4078e-04
7.4122e-07
2.4238e-09
6.4885e-11

L' Error

1.1642e-03
9.2799e-06
2.2712e-08
2.4064e-10

LOO

8.632
171.818
3733.668
92752.380

Time(s)

80 x 80 x 80
160 x 160 x 160
320 x 320 x 320
640 x 640 x 640

1.3225e-04
7.6655e-07
2.4830e-09
6.4883e-11

1.1997e-03
7.9147e-06
2.5650e-08
2.4056e-10

15.106
223.450
4144.632
96962.960




Numerical errors vs. CPU times

—e— Regular , —e— Regular
Sparse Lagrangian Sparse Lagrangian
—#— Sparse WENO
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End Time

Shock wave case

(a) Regular (b) Sparse

Figure 3.9: y-z cut with x =0

Regular Grid Time | Sparse Grid Time | Sparse / Regular Ratio

86549.8 17893.4 0.2067

CPU time comparison

37



Application of the sparse grid WENO5 method to simulation of high
dimensional Vlasov equation

An example of Vlasov-Boltzmann transport equation, the relaxation model:

From: A sparse grid DG method for high-dimensional transport equations and its
application to kinetic simulations. W. Guo and Y. Cheng, SISC, v38, p. A3381, 2016.

fi+v-Vxf+E(,x)-Vy f = L(f),
where L(f) denotes the linear relaxation operator

Hoo (V) p(1,X) — f(1,X,V)
"L' y

L(f)=

and p is an absolute Maxwellian distribution defined as

eXp(—%)

Moo (V) = —(27[9)6“2

»

p(6,x) = ff(t,x,V)dV (6.6)

denotes the macroscopic density. The external electric field E(#, x) is given by a known electrostatic

potential
. x|
EXx) = -Vx®(x) with ®(x) = - (6.7)




Simulation of the 4D case

Initial condition:

Computational domain: [-5, 5] x [-5, 5] x [-5, 5] x [-5, 5]

Boundary conditions: Zero Dirichlet boundary conditions.

Single grid: 80 x 80 x 80 x 80

Sparse grid: root grid 10 x 10 x 10 x 10; the most refined level 3.

Initial condition:2D cut at x2=v2=0 Initial condition:2D cut at v1=v2=0
5/20/2021
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Sparse grid WENOS simulations of 4D problem

2D cuts at x2=v2=0:

x1 x1

(a) Regular mesh (b) Sparse mesh

Figure 8.3:t=1.0,x2=v2=0

0.3

0 * , SH
1 > 5 ‘ 7
v x1

0 ‘ SH
1 > 5 0 7
v x1

(a) Regular mesh (b) Sparse mesh

Figure 8.5:t=3.0,x2=v2 =0 40



CPU time comparison

Regular CPU Time(s) | Regularstd | Sparse CPU Time(s) | Sparse std | sparse/regular ratio
0.5 56231.125 49.6765 3918.4680 247.599210 0.06968
112539.000 2293.2772 7876.2325 72.197921 0.06998

225612.000 2278.5356 14468.5000 406.119687 0.06413
332706.250 2535.732554 22821.1250 409.147743 0.06827

« Sparse grid WENOS simulations save 93%
CPU time of that for single grid simulations.

« Comparable resolutions are obtained.
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A simplified 3D Vlasov-Maxwell system

Jt + & ey + (Ey +&2B3) fe, + (B2 — §1B3) fe, = 0.
083 OF4
ot Ars’
f)El ()B3 .
ot dra R
fﬁ)EQ .
ot )z
where x5 is the spatial variable and &, & are the velocity variables. The system is
defined on the domain €, x Q. €, denotes the physical space and xp € €2,. Q¢ is
the velocity space and (£;1.&2) € €2¢. The probability distribution function of electrons
= f(22.&.82.1). By = Eq(2a,1) and By = Es(x9. 1) are the electric field components.
B3 = Bs(x2,1) is the magnetic field component. The whole physical space has the 2D
electric field E = (E1(x2,1), Ea(22.1),0) and the 1D magnetic field B = (0.0, Bs (22.1)).
The current densities jy(x2,f) and jo(2o, 1) are

Jj1 = /f f(‘)’z.{'1.52.?‘)&1(&51(11&'2. J2 = f/ f{}zilizf)iszilffig (_)(J)
L2

Qc

The initial condition of the system is

F2.61.6.0) = e85 (e~ (€1 =w0a)*/B 4 (1 _ §)e=(E1tv02)*/B]

T

E1(22,0) = Ey(22,0) = 0. Bs(2,0) = bsin(koas).

The computational domain is Q, = [0,27/ko] and Q¢ = [—1.2,1.2]%, with periodic
boundary conditions applied to the system. The parameters are taken to be [ =
0.01,b = 0.001,6 = 05,091 = vga = 03, kg = 0.2 as in [35]. Tere we use this
interesting 3D problem to test the efficiency of the proposed fifth order sparse grid
WENO scheme in this paper. For detailed physical explanations of the system and the
parameters, we refer to [3, 35].

5/20/2021

The example is from:

Z. Tao, W. Guo, Y. Cheng,
Sparse grid discontinuous
Galerkin methods for the
Vlasov-Maxwell system.
JCP: X, (2019), 3,
100022.




(b) g = 5w, sparse grids

CPU costs on sparse
grids: 3585.81 seconds;

CPU costs on single
grid: 10331.04 seconds;

(d) & = 0, sparse grids

65% CPU time is saved.

x 160 single grid. Plots of 43

‘u]mn ns in 2D Jl ANnes w ITh a h\swl third 111ut1< n uumlumt« CFL =0.4.




Conclusions and some open problem

1 We obtain efficient high order iterative
schemes by combining fast sweeping
methods with high order WENO techniques
for solving steady state hyperbolic
conservation laws.

1 Very efficient computations to solve multi-
dimensional hyperbolic PDEs can be
achieved by using sparse grid techniques
for high order WENO schemes.

1 Some open problem for sparse grid WENO
scheme: when shock profile is very sharp,
some oscillations / noises can be observed.
This is due to the last linear combination
step. It will NOT affect the stability of the
simulations because the linear combination
step is only applied once at the final time
step. How to resolve this issue is open and
under further investigation.
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