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Introduction

 A high order WENO discretization of complicated multidimensional problems leads to large 

amount of operations and computational costs.

 Goal: achieve fast simulations by high order WENO methods (e.g., fifth order WENO scheme) 

for solving hyperbolic conservation laws. 

 Fixed-point fast sweeping WENO schemes for solving steady state hyperbolic conservation 

laws.

- based on high order WENO fast sweeping methods for solving Hamilton-Jacobi 

equations. Utilize the hyperbolic properties of the PDE in the iterative scheme. 

- Liang Wu, Yong-Tao Zhang, Shuhai Zhang, and Chi-Wang Shu, High order fixed-point 

sweeping WENO methods for steady state of  hyperbolic conservation laws and its convergence 

study, Communications in Computational Physics, v20, (2016), pp. 835-869.

- Liang Li, Jun Zhu, Yong-Tao Zhang, Absolutely convergent fixed-point fast sweeping WENO 

methods for steady state of hyperbolic conservation laws, (2020), arXiv:2006.11885 [math.NA]. 

Submitted to Journal of Computational Physics. 

 High order WENO scheme on sparse grids to solve high dimensional problems.

- Xiaozhi Zhu and Yong-Tao Zhang, Fast sparse grid simulations of fifth order WENO scheme 

for high dimensional hyperbolic PDEs, Journal of Scientific Computing, v87, (2021), article number: 

44.
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steady state problems of hyperbolic conservation laws

With some appropriate boundary conditions.

U is the vector of the unknown conservative variables.

F(U) is the vector of flux functions.

h is the source term.

A spatial discretization leads to a large nonlinear system.
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Motivated by high order WENO fast sweeping methods for 

solving static Hamilton-Jacobi equations.
Y.-T. Zhang, H. Zhao, J. Qian, Journal of Scientific Computing, 2006, v29: 25-56.

T. Xiong, M. Zhang, Y.-T. Zhang and C.-W. Shu, Journal of Scientific Computing, 

2010, v45: 514-536.

A local solver based on a monotone numerical 

Hamiltonian, which is consistent with the causality 

of the PDE.

Systematic orderings of all grid points, which can 

cover all directions of the characteristics.   

for example:

on 2D rectangular mesh, the natural orderings 

give the sweeping directions

(1) i=1,N; j=1,M;  (2) i=N,1; j=1,M; 

(3) i=N,1; j=M,1;  (4) i=1,N; j=M,1.

Solving the nonlinear system by Gauss-Seidel 

iterations along alternating directions.
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Explicit high order fast sweeping WENO methods: Fixed-point sweeping schemes. 

Y.-T. Zhang, H.-K. Zhao and S. Chen, Fixed-point iterative sweeping methods for static 

Hamilton-Jacobi equations, Methods and Applications of Analysis, 13, (2006), 299-320.

For example: time marching with the 2nd order TVD-Runge Kutta:

Coupled with fast sweeping techniques (use new values in the stencil, and 

alternating sweeping directions):



WENO discretization

Base scheme: the fifth order finite difference WENO scheme with Lax-

Friedrichs flux splitting.

G.-S. Jiang and C.-W. Shu, JCP, 1996, v126, p. 202-228.
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• Conservative flux approximations: 

• WENO5 approximation with five-point stencil to numerical fluxes (the case of 

positive wind):



Nonlinear weights 
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• For the negative wind, right-biased stencil is used. The formulae for negative 

and positive wind cases are symmetric with respect to the point  

• For the general case, Lax-Friedrichs flux splitting is performed:  



Early work on improvement of convergence to steady state

for WENO schemes

High order WENO schemes suffer from difficulties in their

convergence to steady state solutions, e.g., the residue of WENO

schemes often stops decreasing during their iterations.

For example: studies in S. Zhang and C.-W. Shu (JSC, 2007, 2011)

reveals that slight post-shock oscillations actually cause this

problem.

Slight post-shock oscillations can be mixed with multi-scale

structures in complex fluids and cause problems in resolving the real

physical phenomena.

Two methods developed to reduce the slight post-shock oscillations.

- New smoothness indicators.

- Upwind-biased interpolation is used to form the Jacobian at

the cell interface for the local characteristic decomposition.
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Derived via analyzing effects of  

different parts of the original 

smoothness indicator on 

numerical solution around 

shock waves. (S. Zhang and 

C.-W. Shu, JSC 2007).

• For systems of hyperbolic conservation laws,  upwind-biased interpolation rather 

than the standard Roe average is used to form the Jacobian matrix at the cell 

interface for the local characteristic decomposition. (S. Zhang and C.-W. Shu, 

JSC 2011).

• the upwind-biased interpolation for the x-direction local characteristic decomposition:

u: the x-direction fluid velocity



Fixed-point iterative schemes
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• After WENO discretization, we obtain a nonlinear system  

• Time marching methods are essentially a Jacobi type fixed-point iterations. For 

example:

• This is actually forward Euler method with time step size:

• Another example, Jacobi type fixed-point iterations from the 3rd order TVD 

Runge-Kutta :
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Fixed-point fast sweeping WENO schemes for hyperbolic conservation laws

L. Wu, Y.-T. Zhang, S. Zhang, and C.-W. Shu, High order fixed-point sweeping WENO 
methods for steady state of  hyperbolic conservation laws and its convergence study, 
Communications in Computational Physics, v20, (2016), pp. 835-869.

• Here the iterations do not just proceed in only one direction i=1:N,j=1:M as the 

time-marching approach, but in the following four alternating directions repeatedly,



Runge Kutta type fixed-point sweeping scheme
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Numerical Example I:  Burgers equations
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Numerical Example: A two-dimensional oblique shock
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• Upwind interpolation in the local characteristic decomposition is used to 

improve the convergence of WENO5 scheme to steady state.
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• The fixed-point 

sweeping WENO 

scheme with forward 

Euler is the most 

efficient scheme 

among all of four 

different schemes, 

among all possible 

CFL numbers.
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• Non-oscillatory 

shock transitions 

(In the “Zoomed 

in” small scales) 

are obtained for 

converged 

cases.  



Challenge: for some difficult examples, e.g., regular shock reflection 

problem, the iteration residue of the fixed-point fast sweeping WENO 

scheme still hangs at a truncation error level instead of converging to round-

off levels.

This motivates us to apply recent new WENO approximations to our fixed-

point fast sweeping WENO methods for resolving this issue.

J. Zhu and C.-W. Shu, A new type of multi-resolution WENO schemes with 

increasingly higher order of accuracy, Journal of Computational Physics, 

375 (2018), 659-683.
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Regular shock reflection problem.

Iteration residues hang at 10-3.5

level.



Liang Li, Jun Zhu, Yong-Tao Zhang, Absolutely convergent fixed-point fast sweeping 

WENO methods for steady state of hyperbolic conservation laws, submitted. 2020, 

arXiv:2006.11885 [math.NA].
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A fifth order multi-resolution WENO reconstruction (J. Zhu & C.-W. Shu, JCP, 

2018) is applied in the fast sweeping iterations: 
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Accuracy and CPU time for a 2D Euler system 
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The fast sweeping 

WENO scheme saves 

more than 50% CPU 

costs of that of the 3rd

order TVD Runge-Kutta 

WENO scheme. Similar 

numerical errors and 

accuracy orders are 

obtained. 



Regular shock reflection problem

5/20/2021
Advances and Challenges in Hyperbolic 

Conservation Laws, ICERM, Brown U 24

Residue history of Fast sweeping WENO

Contour plot of the FS WENO solution

FS WENO saves about 66% CPU 

costs of the TVD-RK WENO.



A supersonic flow past an airfoil problem
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Iteration residues converge 

to the level of 10-12.

FS WENO saves about 58% 

CPU costs of the TVD-RK 

WENO.



X. Zhu and Y.-T. Zhang, Fast sparse grid simulations of fifth order WENO scheme for high 

dimensional hyperbolic PDEs, Journal of Scientific Computing, v87, (2021), article number: 44.

Base scheme: 

--- Spatial discretization: high order (e.g the 5th order) finite  

difference WENO schemes with Lax-Friedrichs flux splitting.

--- Time discretization: the third order TVD Runge-Kutta scheme.
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Sparse grids
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Semi-coarsened 

sparse grids with 

the finest level 3.



Sparse-grid combination technique

The final solution is a linear combination of solutions on semi-coarsened grids, where

the coefficients of the combination are chosen such that there is a canceling in

leading-order error terms and the accuracy order can be kept to be the same as that

on single full grids.

Error analysis of linear schemes for linear PDEs has been performed in the following

work which proved the above statement.

-- Griebel, M., Schneider, M., Zenger, C., A combination technique for the solution of sparse grid

problems, in: R. Beauwens, P. de Groen (Eds.), Iterative Methods in Linear Algebra, North-

Holland, Amsterdam, 1992, pp. 263-281.

-- Lastdrager, B., Koren, B., Verwer, J., The sparse-grid combination technique applied to time-

dependent advection problems. Applied Numerical Mathematics, 2001. 38: p. 377-401.

-- Lastdrager, B., Koren, B., Verwer, J., Solution of time-dependent advection-diffusion problems

with the sparse-grid combination technique and a rosenbrock solver. Computational Methods

in Applied Mathematics, 2001. 1: pp. 86-99.

Error analysis of nonlinear schemes / nonlinear PDEs is still open.

We use numerical experiments to show the accuracy order of WENO schemes for

solving nonlinear problems can still be achieved with sparse-grid combination

techniques.
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Error analysis results for the 5th order linear schemes applied to a 2D linear 

advection PDE
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• For the 2D linear PDE:  

• Leading order errors in spatial direction for the 5th order linear 

scheme with the sparse grid combination technique: 

• H is the grid size of the root grid; h is the 

grid size of the most refine grid.



Sparse grid WENO scheme
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d-dimensional sparse-grid combination
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5th order WENO prolongation / interpolation
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Numerical example 1: Linear advection equation
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Computations on single grids:

Computations on sparse grids:

Sparse grid computations can save more than 80% CPU times on 

refined meshes to reach similar error levels as that on single 

grids.
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Numerical errors vs. CPU times



Nonlinear Burgers’ equation,  around 80% CPU times are saved by using 

sparse grids on refined meshes
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Computations on single grids:

Computations on sparse grids – Lagrange prolongation:

Computations on sparse grids – WENO prolongation:



Numerical errors vs. CPU times
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Linear scheme WENO5 scheme



Shock wave case
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CPU time comparison



Application of the sparse grid WENO5 method to simulation of high 

dimensional Vlasov equation 
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An example of Vlasov-Boltzmann transport equation, the relaxation model:

From: A sparse grid DG method for high-dimensional transport equations and its 

application to kinetic simulations. W. Guo and Y. Cheng, SISC, v38, p. A3381, 2016.



Simulation of the 4D case

39

Initial condition:

Boundary conditions: 

Computational domain: [-5, 5] x [-5, 5] x [-5, 5] x [-5, 5]

Zero Dirichlet boundary conditions. 

Single grid:  80 x 80 x 80 x 80

Sparse grid: root grid 10 x 10 x 10 x 10;  the most refined level 3.

Initial condition:2D cut at x2=v2=0 Initial condition:2D cut at v1=v2=0
5/20/2021



Sparse grid WENO5 simulations of 4D problem
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2D cuts at x2=v2=0:



CPU time comparison
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• Sparse grid WENO5 simulations save 93% 

CPU time of that for single grid simulations.

• Comparable resolutions are obtained.  



A simplified 3D Vlasov-Maxwell system
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The example is from:

Z. Tao, W. Guo, Y. Cheng,

Sparse grid discontinuous 

Galerkin methods for the 

Vlasov-Maxwell system.

JCP: X, (2019), 3, 

100022.
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• CPU costs on sparse 

grids: 3585.81 seconds;

• CPU costs on single 

grid: 10331.04 seconds;

• 65% CPU time is saved.
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Conclusions and some open problem
We obtain efficient high order iterative 

schemes by combining fast sweeping 

methods with high order WENO techniques 

for solving steady state hyperbolic 

conservation laws.

Very efficient computations to solve multi-

dimensional hyperbolic PDEs can be 

achieved by using sparse grid techniques 

for high order WENO schemes.

Some open problem for sparse grid WENO 

scheme: when shock profile is very sharp, 

some oscillations / noises can be observed. 

This is due to the last linear combination 

step. It will NOT affect the stability of the 

simulations because the linear combination 

step is only applied once at the final time 

step. How to resolve this issue is open and 

under further investigation. 


