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System of Hyperbolic Conservation Laws

ut + f (u)x = 0, u ∈ Rn

f ′(u)r i(u) = λi(u)r i(u), λ1(u) < · · · < λn(u).

Shock wave (u+,u−) along x = x(t) with speed σ = x ′(t) and
states u± = u±(t) = u(x(t)± 0, t).
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• Shock wave represents an irreversible process in the gas
flow.
• From second law of thermodynamics, the entropy

increases during an irreversible process.
• Bethe-Weyl: For ideal gases, the increase of the entropy as

the gas flows across a shock guarantees the mathematical
stability and physical admissibility of the shock.
• This is not so for gases with general equation of state. The

increase of the entropy is a necessary, but not sufficient
condition for the admissibility of the shock.
• Goal: To interpret the admissibility of a shock from the view

point of differential equations in terms of the production of
the entropy in thermodynamics.



Euler equations for compressible media (in Lagrangian
coordinates):τv
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ρ density, τ = 1/ρ specific volume, v velocity, p pressure, e
internal energy, E = e + v2/2 total energy.

p = p(τ,e), p = p̃(τ, s), Constitutive Law.

de = θds − pdτ, Thermodynamics Relation.

θ temperature, s entropy.
Acoustic waves are isentropic pressure waves:

c =
√
−p̃τ , acoustic speed, p̃τ = pτ − ppe.



Poisson 1808, Stokes 1848 i-simple waves and shock formation
for Euler equations. For general system ut + f (u)x = 0:{

u(x , t) ∈ R i(u0), integral curve of r i(u) through u0

u(x , t) = u(x − λi t ,0), λi = λi(u(x , t)) = λi(u(x − λi t ,0), t ≤ 0.
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Two considerations for Euler equations
1. Formation of shocks through compression:
∇uλi(u) · r i(u) 6= 0. For the acoustic modes with speed p̃τ

of the Euler equations, the compressibility condition
becomes p̃ττ 6= 0.

2. Shock is irreversible, entropy s increases as the gas flow
across a shock.

Theorem (Hans Bethe 1942, Hermann Weyl 1949)
Consider the Euler equations and suppose that

p̃ττ 6= 0, convexity condition for shock formation.

Then a shock is compressible if and only if the entropy
increases as the gas flows across the shock.



Generalization to general system of hyperbolic conservation
laws ut + f (u)x = 0:

• Lax 1957:

∇uλi(u) · r i(u) 6= 0, genuine nonlinearity.
λi(u−) > σ > λi(u+), Lax entropy condition.

• Lax 1971: Entropy pair (η(u),q(u)) for general system
ut + f (u)x = 0 if η′′(u) > 0 and η(u)t + q(u)x =
0 for smooth solution u, or η′(u)f ′(u) = q′(u).

Theorem (Lax 1971)
For the genuinely nonlinear field, ∇uλi(u) · r i(u) 6= 0, the
entropy inequality η(u)t + q(u)x < 0 across a shock holds if
and only if the Lax entropy condition holds.



• For scalar laws, u ∈ R, the convexity condition becomes
f ′′(u) 6= 0. There is a theory for the general case when
f ′′(u) changes sign.
• any convex function η(u) is an entropy with entropy flux

given by q(u) =
∫ u

η′(v)f ′(v)dv .
• Entropy inequality: η(u) + q(u)x ≤ 0 for all entropy pairs iff

f (u+)− f (u−)

u+ − u−
≤ f (u)− f (u−)

u − u−
for all u between u− and u+

Oleinik entropy condition.

• The Russian School of Oleinik 1959 and Kruzkov 1970
completed the theory for scalar laws making essential use
of entropy inequality.



• Entropy pair (η(u),q(u)) for general system ut + f (u)x = 0
if η′′(u) > 0 and η′(u)f ′(u) = q′(u).

• For Euler equations (s,0) is essentially the only entropy
pair. For a general system, the existence of the entropy
pair is exceptional.
• The existence of an entropy pair is a constitutive

hypothesis.

Theorem (Godunov 1961)
A system is symmetrizable if and only if an entropy pair exists.
• The scalar theory requiring an abundance of entropy pairs

does not works for the general systems.
• How to capture the entropy condition, such as the Oleinik

condition with only one entropy pair?
• How about the systems, for which there is essentially only

one entropy pair (η(u),q(u))?



Theorem (Dafermos 1973)
For scalar laws, consider the entropy function η(u) = u2/2 and
the associated entropy flux q(u) =

∫ u zf ′(z)dz. A resolution of
discontinuity yields maximum entropy production if and only if
the shock waves in the resolution satisfy the Oleinik entropy
condition.
The same holds for the p-system with physical entropy pair{

τt − vx = 0,
vt + p(τ)x = 0

, η(τ, v) =
v2

2
−
∫ τ

p(z)dz, q(τ, v) = pv ,

and the Wendroff E-condition for 1-shock (or 2-shock) (u−,u+):

p(τ+)− p(τ−)

τ+ − τ−
≥ (or ≤ )

p(τ)− p(τ−)

τ − τ−
for all τ between τ− and τ+.



Hugoniot curves H i(u0), i = 1, · · · ,n, through a state u0:

H(u0) = {u : σ(u − u0) = f (u)− f (u0)

for some scalar σ = σ(u0,u)},
H(u0) = H1(u0) ∪ · · · ∪ Hn(u0) Hugoniot curves,

σ = σ(u0,u)→ λi(u0) as u → u0 along H i(u0).

Liu entropy condition:

σ(u−,u+) ≤ σ(u−,u) for u ∈ H i(u−) between u− and u+.
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Liu entropy condition:

σ(u−,u+) ≤ σ(u−,u) for u ∈ H i(u) between u− and u+.

1. Similar to the Lax theory for genuinely nonlinear case, the
Liu condition allows for the unique resolution of the

Riemann problem u(x ,0) =

{
ul for x < 0,
ur for x > 0

for general

systems when |ur − ul | is sufficiently small.
2. To obtain global theory, one should aim at specific

systems, such as the Euler equations.
3. Liu condition is much more restrictive than the entropy

inequality η(u)t + q(u)x ≤ 0.
4. Goal: To relate the Liu condition to something about the

entropy pair given by physics.



Euler equationsτv
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Basic hypothesis: pe > 0, pτ < 0.
Goal:

1. To obtain global theory for the Riemann problem.
2. To relate the Liu condition to the so-called entropy

procedure for the formation of shocks.

Analysis:

1. Establish the global monotonicity of Hugoniot curves.
2. Establish the global relation between the entropy

production rate and the compressibility of the shock.



Rankine-Hugoniot condition for Euler equations
σ(τ − τ0) = −(v − v0),

σ(v − v0) = p − p0,

σ
(
e + 1

2v2 − e0 − 1
2(v0)2) = pv − p0v0, or,

S1 = (τ−τ0)(p−p0)+(v−v0)2 = 0, S2 = (τ−τ0)(p+p0)+2(e−e0) = 0.

Tangent to Hugoniot curve is ∇S1 ×∇S2. Along H1(u0):
v̇
ṗ
τ̇
ṡ

 =


2(τ − τ0)

(
1− pe

pτ
p0
)

+ 2
pτ

(p − p0)

2(v − v0)
( pe

pτ
(p + p0)− 2

)
− 2

pτ
(v − v0)

(
2 + pe(τ − τ0)

)
1

σθpτ
(σ − λ1)(σ − λ3)(v − v0)





Lemma (Monotonicity)
Along H1(u0) and R1(u), u 6= u0, v and p are strictly
monotone, and (p − p0)(τ − τ0) < 0, (v − v0)(p − p0) < 0.

Lemma (Shock and characteristic speeds)
Along the Hugoniot curve H1(u0), σ̇(u,u0) > 0, if and only if
σ(u,u0) < λ1(u).

Lemma (Tangency and convexity)
When the shock speed has a critical point, σ̇(u,u0) = 0, the
Hugoniot curve H1(u0) is tangent to the characteristic curve
R1(u). At the critical point, σ has maximum, σ̈ < 0 if and only if
∇uλ1(u) · r1(u) < 0.

Lemma (Entropy and compressibility)
Along R1(u0), the entropy is constant. Along H1(u0), the
entropy s = s(u) increases if and only if σ(u0,u) > λ1(u).



To solve the Riemann problem, one constructs the wave curves
W i(u0) so that for u ∈W i(u0), u is connected to u0 by an
i-wave. For a genuinely nonlinear field, the wave curve is a
combination of R i(u0) and H i(u0).
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Waves for a genuinely nonlinear field.
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The wave curves W 1, W 3 are globally monotone in v and in p.
To solve the Riemann problem ul ,ur ), draw the wave curves
W 1(ul) and W (ur ) to intersect, in the (v ,p) plane at un,um
with vn = vm, pn = pm. The wave (un,um) corresponds to the
characteristic λ2 and represents a thermal wave.
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Definition (Liu-Ruggeri 2003)
A 1-shock wave (u−,u+) is constructible by the entropy
procedure if it can be reached from a wave of zero strength by
dynamically increasing its strength through the following
procedures:
(1). A shock wave increases its strength by continuously
moving its end states (u+(α),u−(α)) away from each other so
that the entropy production increases in the process:

d
dα
(
s(u+(α))− s(u−(α))

)
> 0.

(2). A shock wave increases its strength and entropy production
by combining two shock waves of the same speed.



• The entropy procedure is to view the admissibility of a
shock through the dynamic process of constructing the
shock by gradually increasing its strength and entropy
production through absorbing the adjacent waves.
• von Karman: ”Any physical process starts from

somewhere and goes to somewhere.”
In response to von Neumann about the non-uniqueness of
Prandtl construction of shock reflections off a ramp.

Theorem (Journal of Hyperbolic Differential Equations. 2021)
A shock wave of any strength for the Euler equations satisfies
Liu entropy condition if and only if it is constructible by the
entropy procedure.



If. Any shock satisfying Liu condition can be constructed by
entropy procedure:
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To reduce (u−,u+) to zero wave:

(u−,u+)⇒ (u−, ū+) = (u−,u1) ∪ (u1, ū+),

(u1, ū+)⇒ (u0,u); (u−,u1)⇒ (u−, ū−).



Only If. Any shock violating Liu condition cannot be
constructed by entropy procedure:
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Conpressive, not (E)(E) implies compressibility

Entropy change along the Hugoniot courve:

ṡ =
1

σθpτ
(σ − λ1)(σ − λ3)|v − v−| along H1(u−) ⇒

Decrease in entropy production with weakening of shock.



Only If. Any shock violating Liu condition cannot be
constructed by entropy procedure:
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ūr

The interval of violation of Liu
condition increases as the shock
becomes weaker
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