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SL schemes

SLDG method:

I DG: Low numerical dissipation; compactness; flexibility for
boundary and parallel implementation; superconvergence.

I SL: Could take extra large time stepping size with accuracy
and stability, leading to gain in efficiency.

I Backward SL: Mass conservation can be preserved.

Applications

I Plasma application: Vlasov equation.

I Climate modeling

I Fluid and kinetic models.
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1D SLDG for the linear transport equation∗

Consider a 1D linear transport problem

∂u

∂t
+

∂

∂x
(a(x, t)u) = 0

with appropriate initial and boundary conditions.

We consider an adjoint problem for the test function ψ(x, t):{
ψt + a(x, t)ψx = 0,

ψ(t = tn+1) = Ψ(x),

which is in an advective form, hence ψ stays constant along the
characteristics.

∗Cai-Guo-Q., JSC, 2017
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It can be shown that

d

dt

∫
Ĩj(t)

u(x, t)ψ(x, t)dx = 0, (1)

where Ĩj(t) is a dynamic interval bounded by characteristics
emanating from cell boundaries of Ij at t = tn+1.
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Thus, from equation (1),∫
Ij

u(x, tn+1)Ψ(x, tn+1)dx =

∫
I?j

u(x, tn)ψ(x, tn)dx.
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Two dimensional SLDG‡

I Consider a two-dimensional linear transport problem

∂u

∂t
+

∂

∂x
(a(x, y, t)u) +

∂

∂y
(b(x, y, t)u) = 0

with appropriate initial and boundary conditions.

I Weak formulation of characteristic Galerkin method†: an
adjoint problem for the test function ψ(x, y, t){

ψt + a(x, y, t)ψx + b(x, y, t)ψy = 0,

ψ(t = tn+1) = Ψ(x, y).

Then it can be shown that ∀ψ ∈ P k(Aj),
d
dt

∫
Ãj(t)

u(x, y, t)ψ(x, y, t)dxdy = 0

with ‹Aj(t) a dynamic interval bounded by characteristics
emanating from cell boundaries of Aj at t = tn+1.

†Guo, Nair and Q., MWR, 2014.
‡Cai,Guo and Q., JSC, 2017.
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∫
Aj

u(x, y, tn+1)Ψ(x, y)dxdy =

∫
A∗

j

u(x, y, tn)ψ(x, y, tn)dxdy

with Aj and A?j are shown as in the below left plot.

I Characteristics tracing: Locate four
vertices of upstream cell A?j :
v?q (q = 1, 2, 3, 4) by solving the
characteristics equations,

dx(t)
dt

= a(x(t), y(t), t),
dy(t)
dt

= b(x(t), y(t), t),

x(tn+1) = x(vq),

y(tn+1) = y(vq),

starting from the four vertices of Aj :
vq(q = 1, 2, 3, 4).
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Evaluation of
∫
A?j
u(x, y, tn)ψ(x, y, tn)dxdy

Two observations:
I ψ(x, y, tn) may not be a polynomial.

I u(x, y, tn) is a piecewise polynomial
function on background cells.

Strategies:
I Reconstruct ψ?(x, y) approximating
ψ(x, y, tn) on A?j by a least square
strategy, based on

ψ(x(v?q ), y(v?q ), tn) = Ψ(x(vq), y(vq)),

q = 1, 2, 3, 4.

I Evaluation of the integrand over the
upstream cell has to be done
subregion-by-subregion.
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The swirling deformation problem.

ut −
Å

cos2(
x

2
) sin(y)g(t)u

ã
x

+

Å
sin(x) cos2(

y

2
)g(t)u

ã
y

= 0,

with

I g(t) = cos
(πt
T

)
π,

I x ∈ [−π, π], y ∈ [−π, π],

I The initial condition as shown on the
right.
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Figure: Swirling deformation problem. Third order SL DG scheme:
T = 0.75 (left) and T = 1.5 (right). The numerical mesh is 80× 80 with
CFL = 5.
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The swirling deformation problem: convergence study

Table:
ut −

(
cos2

(
x
2

)
sin(y) cos

(
2πt
3

)
πu
)
x

+
(
sin(x) cos2

(
y
2

)
cos
(

2πt
3

)
πu
)
y

= 0. The

initial condition is a smooth cosine bell. T = 1.5.

Mesh L2 error Order L2 error Order
P 1 SLDG CFL = π CFL = 5π
20×20 1.25E-02 8.59E-03
40×40 2.92E-03 2.10 2.14E-03 2.00
80×80 5.96E-04 2.29 5.42E-04 1.98
160×160 1.30E-04 2.20 1.33E-04 2.02
P 2 SLDG
20×20 3.22E-03 9.37E-03
40×40 6.58E-04 2.29 2.87E-03 1.71
80×80 1.42E-04 2.22 6.92E-04 2.05
160×160 3.15E-05 2.17 1.89E-04 1.87
P 2 SLDG-QC
20×20 2.61E-03 5.29E-03
40×40 3.15E-04 3.05 7.78E-04 2.77
80×80 3.81E-05 3.05 1.04E-04 2.90
160×160 4.91E-06 2.96 1.47E-05 2.83
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Properties of the scheme

Convection equations in a conservative form

ut +∇x · (au) = 0.

A SLDG discretization of

un+1 = SLDG(a,∆t)un.

I Mass conservation.

I High order accuracy in space and time.

I Unconditionally stability which allows arbitrary large stepping
size.

I No dimensional splitting error for multi-dimensional problems.
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Motivation of ELDG

I Motivation
I Higher dimensional problem: complication from quadratic

curve approximations to sides of upstream cells.
I General nonlinear problems: characteristics tracing is difficult

or impossible.

I Related work in literature
I Eulerian-Lagrangian localized adjoint methods (ELLAM):

Douglas and Russel (82’), Celia, Ewing, Wang, etc.
I Eulerian-Lagrangian WENO method: Huang, Arbogast, et. al.

2016
I Arbitrary Lagrangian-Eulerian (ALE) moving mesh method.
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The space-time region of ELDG
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I Linear function α(x, t) in

approximating a(x, t).

I Feature I: Ωj : trapezoid; in high-D

upstream cells are polygons

(tetrahedron).

I Feature II: straight lines

approximating characteristics.
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ELDG for 1D linear transport: A modified adjoint problem

I We consider
ut + (a(x, t)u)x = 0. (2)

I We consider the adjoint problem with ∀Ψ ∈ P k(Ij) on the
time interval [tn, tn+1]:{

ψt + α(x, t)ψx = 0, t ∈ [tn, tn+1],

ψ(t = tn+1) = Ψ(x),
(3)

with α(x, t) being a linear approximation to the original
velocity field a(x, t).
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The semi-discrete ELDG scheme

∫
Ωj

[(2) · ψ + (3) · u] dxdt = 0.

It leads to

d

dt

∫
Ĩj(t)

(uψ)dx = − (Fψ)

∣∣∣x̃
j+1

2
(t) + (Fψ)

∣∣∣x̃
j− 1

2
(t) +

∫
Ĩj(t)

Fψxdx. (4)

where F (u)
.
= (a− α)u.

I In special case of α(x, t) = 0, ELDG becomes RKDG;

I In special case of α(x, t) = a(x, t), ELDG becomes SLDG.
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The semi-discrete ELDG scheme (cont.)

d

dt

∫
Ij

(uΨ(ξ))
∂x̃(t; (ξ, tn+1))

∂ξ
dξ = −

(
F̂Ψ
) ∣∣∣ξ=x

j+1
2

+
(
F̂Ψ
) ∣∣∣ξ=x

j− 1
2

+

∫
Ij

FΨξdξ.

I Lax-Friedrich flux:

F̂ (u−, u+) = 1
2

(F (u−) + F (u+)) + α0
2

(u− − u+), α0 = maxu |F ′(u)|.

I k + 1 points Gauss quadrature rules :∫
Ij
F (uh)Ψξdξ ≈

∑k+1
l=1

(F (uh(xjl, t))Ψξ(xjl)ωl∆x),
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Fully discrete ELDG: SSP RK time discretization

I Denote Ũh =
∫
Ĩj(t)

uψdx =
∫
Ij
uhΨJdξ with J =

∂x̃(t;(ξ,tn+1))
∂ξ

;

I Denote the spatial discretization operator as L
(
Ũh(t), t

)
.

∂

∂t
Ũh(t) = L

(
Ũh(t), t

)
,with Ũh(tn) = Ũnh .

SSP RK methods:

1. Evaluate Ũnh =
∫
I?
j

u(x, tn)ψ(x, tn)dx at tn for all test functions Ψ by the

SLDG scheme.

2. For RK stages i = 1, · · · , s, compute

Ũ
(i)
h

=

i−1∑
l=0

î
αilŨ

(l)
h

+ βil∆t
nL
Ä
Ũ

(l)
h
, tn + dl∆t

n
äó

.

Order αil βil dl
3 1 1 0

3
4

1
4

0 1
4

1
1
3

0 2
3

0 0 2
3

1
2
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Allow for a large time step

I Similar to the time step of DG method, we may use the
following time step

∆t ≤ ∆x

(2k + 1) max |a(x, t)− α(x, t)|
.

I α(x, t) in approximation of a(x, t)

max |a(x, t)− α(x, t)| = O(∆t) +O(∆x2)

⇓

∆t ∼ ∆x
1
2 ,

to be verified by the numerical results.
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A modified adjoint problem for 2D transport

I 2D linear transport equation:

ut + (a(x, y, t)u)x + (b(x, y, t)u)y = 0.

I We consider a modified adjoint problem at Ãj(t) on the time interval
t ∈ [tn, tn+1]:

ψt + α(x, y, t)ψx + β(x, y, t)ψy = 0, ψ(x, y, t = tn+1) = Ψ(x, y) ∈ Pk(Aj),

where (α, β) are Q1 or P 1 polynomials on Aj at tn+1 approximating the
original velocity field (a, b).
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2D ELDG formulation

d

dt

∫
Ãj(t)

uψdxdy = −
∫
∂Ãj(t)

ψF̂ · ndS +

∫
Ãj(t)

F · ∇ψdxdy,

with

F(u, x, y, t) =

Ç
(a(x, y, t)− α(x, y, t))u
(b(x, y, t)− β(x, y, t))u

å
.
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2D ELDG formulation on the reference element

I Jacobian, J(ξ, η) =
∂(x̃,ỹ)
∂(ξ,η)

(τ) =

Å
1− ∂α

∂ξ
(tn+1 − τ) ∂α

∂η
(tn+1 − τ)

− ∂β
∂ξ

(tn+1 − τ) 1− ∂β
∂η

(tn+1 − τ)

ã
.

I Mapping formulas:

I dxdy = det(J(ξ, η))dξdη,
I ∇x,yψ(x, y) = J(ξ, η)−1∇ξ,ηΨ(ξ, η),
I ndS = det(J(ξ, η))J(ξ, η)−T n̆dS̆.

d

dt

∫
Aj

u(x̃(t, (ξ, η, tn+1)), ỹ(t, (ξ, η, tn+1)), t)Ψ(ξ, η) det(J(ξ, η))dξdη

= −
∫
∂Aj

Ψ(ξ, η)F ·
(
det(J(ξ, η))J(ξ, η)−T n̆

)
dS̆

+

∫
Aj

F · (J(ξ, η)−1∇ξ,ηΨ) det(J(ξ, η))dξdη.

Similar to the procedure of 1D ELDG, SSP RK discretization can
be applied to the above formulation.
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EL RKDG on the unstructured mesh

Ã
(0

)
j

Ã j(
t)

A j

y x

t

ŷ x̂

t

Â
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Summary: EL-RKDG

I An organic coupling of SL DG and Eulerian RK DG methods

I Step 1 (SLDG): L2 re-projection of solutions on upstream cells.
I Step 2 (RKDG): flux differences between original and adjoint

problems over the time-dependent dynamic volumes.

I A unified framework to accommodate both SL and RK DG
methods.

I RK DG: α = 0.
I SL DG: α(x, t) follows the exact characteristics.

I Let ∆tELDG be stability constraint of the ELDG.

∆tELDG ∈ [∆tRKDG,∆tSLDG]

I High order accuracy, mass conservation, superconvergence,
unstructured mesh.
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1D transport equation with variable coefficients

Figure: P 1 SLDG-E means P 1 SLDG scheme which solve the
characteristic line exactly. Observations: (1) expected order of
convergence in time is observed; (2) Stability bounds for the maximum
CFLs of P 2 ELDG using N = 80, 160, 320 are observed to be around 3.5,
5 , 7 increasing at the ratio of

√
2 ≈ 1.4, which verifies the time step

estimate ∆t ∼ C
√

∆x.
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Rigid body rotation

ut − (yu)x + (xu)y = 0

I A circle domain:
(x, y) ∈ {(x, y)|x2 + y2 ≤ π2}.

I A sample mesh with the mesh of
160 (GMSH).
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Rigid body rotation: high resolution

(a) initial state N = 7432 (b) P 2 RKDG, CFL = 0.15

(c) P 2 SLDG, CFL = 10.2 (d) P 2 ELDG, CFL = 10.2
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Swirling deformation flow: high order spatial and temporal
accuracy

Figure: The swirling deformation flow with the smooth cosine bells with
T = 1.5. High order spatial and temporal accuracy, large CFL range
increase with mesh refinement.
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Swirling deformation flow: DG P 2

(a) RKDG, CFL = 0.15 (b) SLDG, CFL = 10.2 (c) ELDG, CFL = 10.2
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SLDG-RKEI and ELDG-RKEI methods

I So far, SLDG and ELDG solvers are proposed for linear transport equations.

I In order to solve the following nonlinear transport problem

ut +∇x · (P(u;x, t)u) = 0

we apply a high order Runge-Kutta exponential integrator§, which decomposes
the equation into a set of linearized transport problems.

For example, a third order SLDG-CF3C03 scheme can be implemented as

u(1) = un

u(2) = SLDG

(
1

3
P(u(1)),∆t

)
u(1)

u(3) = SLDG

(
2

3
P(u(2)),∆t

)
u(1)

un+1 = SLDG

(
−

1

12
P(u(1)) +

3

4
P(u(3)),∆t

)
u(2).

§Celledoni, et al., FGCS ,2003
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The guiding center Vlasov model

The guiding center model describes a highly magnetized plasma in
the transverse plane of a tokamak. It reads

ρt +∇ · (E⊥ρ) = 0,

−∆Φ = ρ, E⊥ = (−Φy,Φx)

where ρ is the charge density of the plasma and E = (E1, E2)
determined by E = −∇Φ is the electric field.
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Guiding center Vlasov: high order spatial accuracy

Table: Guiding center Vlasov on the domain [0, 2π] × [0, 2π] with the initial
condition ω(x, y, 0) = −2 sin(x) sin(y). T = 1. CFL = 1. The temporal
scheme CF3C03 is used.

Mesh L1 error Order L1 error Order

P 1 SLDG P 1 ELDG

202 1.39E-02 – 9.59E-03 –
402 3.66E-03 1.93 2.35E-03 2.03
602 1.65E-03 1.97 1.02E-03 2.06
802 9.37E-04 1.96 5.78E-04 1.97
1002 6.01E-04 1.99 3.69E-04 2.00

P 2 SLDG-QC P 2 ELDG

202 2.13E-03 – 1.54E-03 –
402 2.73E-04 2.97 1.79E-04 3.10
602 8.11E-05 2.99 5.21E-05 3.05
802 3.48E-05 2.94 2.10E-05 3.16
1002 1.77E-05 3.02 1.07E-05 3.04

33 / 37



Guiding center Vlasov: high order temporal accuracy &
huge time step!

Figure: The Kelvin-Helmholtz instability problem at T = 5. The mesh of
120 × 120 cells is used. The reference solution from the corresponding scheme
with CFL = 0.1.
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SLDG-QC with adaptive time stepping algorithm for

guiding center Vlasov

3D plot of solutions of third order SLDG-QC-RKEI method with the

adaptive time-stepping algorithm based on the area invariant,

maxj

∣∣∣ area(A?
j )−area(Aj)

area(Aj)

∣∣∣ . The mesh is 100× 100.
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Summary and future work

We propose an ELDG method, which avoids to construct a
quadratic-curved quadrilaterals and still enjoys

I high order DG spatial discretization, high order temporal
discretization, large time stepping size, mass conservation,
resolution of filamentations, superconvergence of long time
integration.

I SLDG + ALE + characteristics tracking/approximation

Further development ELDG:

I linear system such as the wave equation

I handling diffusion and stiff source terms with asymptotic
preserving properties

I positivity preserving ELDG

I nonlinear hyperbolic conservation laws, such as Burgers’,
shallow water, Euler and Navier-Stokes systems.
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