Structure Preserving Numerical Methods for Hyperbolic Systems of Conservation and Balance Laws

Alina Chertock

North Carolina State University chertock@math.ncsu.edu

joint work with S. Cui, M. Herty, A. Kurganov, X. Liu, S.N. Özcan and E. Tadmor

Systems of Balance Laws

$$U_t + f(U)_x + g(U)_y = S(U)$$

Examples:

- Gas dynamics with pipe-wall friction
- Euler equations with gravity/friction
- shallow water equations with Coriolis forces

Applications:

- astrophysical and atmospheric phenomena in many fields including supernova explosions
- (solar) climate modeling and weather forecasting

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = rac{1}{arepsilon}oldsymbol{S}(oldsymbol{U})$$

Examples:

- Iow Mach number compressible flows
- low Froude number shallow water flows
- diffusive relaxation in kinetic models

Applications:

- various two-phase flows such as bubbles in water
- unmostly incompressible flows with regions of high compressibility such as underwater explosions
- atmospheric flows

Systems of Balance Laws

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = oldsymbol{S}(oldsymbol{U})$$
 or $oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = rac{1}{arepsilon}oldsymbol{S}(oldsymbol{U})$

- Challenges: certain structural properties of these hyperbolic problems (conservation or balance law, equilibrium state, positivity, assymptotic regimes, etc.) are essential in many applications;
- Goal: to design numerical methods that are not only consistent with the given PDEs, but
 - preserve the structural properties at the discrete level well-balanced numerical methods
 - remain accurate and robust in certain asymptotic regimes of physical interest – asymptotic preserving numerical methods

[P. LeFloch; 2014]

Asymptotic Preserving (AP) Methods

$$oldsymbol{U}_t + oldsymbol{f}(oldsymbol{U})_x + oldsymbol{g}(oldsymbol{U})_y = rac{1}{arepsilon}oldsymbol{S}(oldsymbol{U})$$

- Solutions of many hyperbolic systemes reveal a multiscale character and thus their numerical resolution presence some major difficulties;
- Such problems are typically characterized by the occurence of a small parameter by $0<\varepsilon\ll1;$
- The solutions show a nonuniform behavior as $\varepsilon \to 0$;
- the type of the limiting solution is different in nature from that of the solutions for finite values of $\varepsilon > 0$.

Goal:

- asymptotic passage from one model to another should be preserved at the discrete level;
- for a fixed mesh size and time step, AP method should automatically transform into a stable discretization of the limitting model as $\varepsilon \to 0$.

Shallow Water System with Coriolis Force

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0\\ (hu)_t + \left(hu^2 + \frac{g}{2}h^2\right)_x + (huv)_y = -ghB_x + fhv\\ (hv)_t + (huv)_x + \left(hv^2 + \frac{g}{2}h^2\right)_x = -ghB_y - fhu \end{cases}$$

- *h*: water height
- u, v: fluid velocity
- g: gravitational constant
- $B \equiv 0$ bottom topography
- $f = 1/\varepsilon$ Coriolis parameter

Dimensional Analysis

Introduce

$$\widehat{x} := \frac{x}{\ell_0}, \quad \widehat{y} := \frac{y}{\ell_0}, \quad \widehat{h} := \frac{h}{h_0}, \quad \widehat{u} := \frac{u}{w_0}, \quad \widehat{v} := \frac{v}{w_0},$$

Substituting them into the SWE and dropping the hats in the notations, we obtain the dimensionless form:

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0, \\ (hu)_t + \left(hu^2 + \frac{1}{\varepsilon^2}\frac{h^2}{2}\right)_x + (huv)_y = \frac{1}{\varepsilon}hv, \\ (hv)_t + (huv)_x + \left(hv^2 + \frac{1}{\varepsilon^2}\frac{h^2}{2}\right)_y = -\frac{1}{\varepsilon}hu, \end{cases}$$

in which

$$\operatorname{Fr} := \frac{w_0}{\sqrt{gh_0}} = \varepsilon$$

is the reference Froude number

Explicit Discretization

Eigenvalues of the flux Jacobian:

$$\left\{ u \pm \frac{1}{\varepsilon}\sqrt{h}, u \right\}$$
 and $\left\{ v \pm \frac{1}{\varepsilon}\sqrt{h}, v \right\}$

This leads to the CFL condition

$$\Delta t_{\exp l} \le \nu \cdot \min\left(\frac{\Delta x}{\max_{u,h}\left\{|u| + \frac{1}{\varepsilon}\sqrt{h}\right\}}, \frac{\Delta y}{\max_{v,h}\left\{|v| + \frac{1}{\varepsilon}\sqrt{h}\right\}}\right) = \mathcal{O}(\varepsilon\Delta_{\min}).$$

where $\Delta_{\min} := \min(\Delta x, \Delta y)$

- $0 < \nu \leq 1$ is the CFL number
- Numerical diffusion: $\mathcal{O}(\lambda_{max}\Delta x) = \mathcal{O}(\varepsilon^{-1}\Delta x).$
- We must choose $\Delta x \approx \varepsilon$ to control numerical diffusion and the stability condition becomes

$$\Delta t = \mathcal{O}(\varepsilon^2)$$

Low Froude Number Flows

Low Froude number regime ($0 < \varepsilon \ll 1$) \Longrightarrow very large propagation speeds

Explicit methods:

- very restrictive time and space dicretization steps, typically proportional to ε due to the CFL condition;
- too computationally expensive and typically impractical.

Implicit schemes:

- uniformly stable for $0 < \varepsilon < 1$;
- may be inconsistent with the limit problem;
- may provide a wrong solution in the zero Froude number limit.

Goal: to design robust numerical algorithms, whose accuracy and efficiency is independent of ε

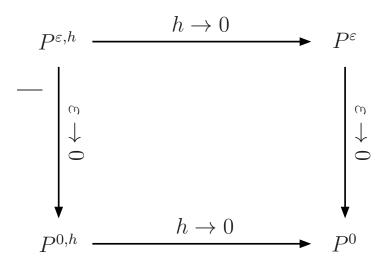
Asymptotic-Preserving (AP) Methods

Introduced in [Klar; 1998, Jin; 1999], see also [Jin, Levermore; 1991],

[Golse, Jin, Levermore; 1999].

Idea:

- asymptotic passage from one model to another should be preserved at the discrete level;
- for a fixed mesh size and time step, AP method should automatically transform into a stable discretization of the limitting model as $\varepsilon \to 0$.



Analysis for the Low Froude Number Limit

We plug the formal asymptotic expansions

$$h = h^{(0)} + \varepsilon h^{(1)} + \varepsilon^2 h^{(2)} + \cdots$$
$$u = u^{(0)} + \varepsilon u^{(1)} + \varepsilon^2 u^{(2)} + \cdots$$
$$v = v^{(0)} + \varepsilon v^{(1)} + \varepsilon^2 v^{(2)} + \cdots$$

into the SW system:

$$\begin{cases} h_t + (hu)_x + (hv)_y = 0\\ (hu)_t + \left(hu^2 + \frac{1}{\varepsilon^2}\frac{h^2}{2}\right)_x + (huv)_y = \frac{1}{\varepsilon}fhv\\ (hv)_t + (huv)_x + \left(hv^2 + \frac{1}{\varepsilon^2}\frac{h^2}{2}\right)_y = -\frac{1}{\varepsilon}fhu\end{cases}$$

and then collect the like powers of ε ...

Analysis for the Low Froude Number Limit

$$\mathcal{O}(\varepsilon^{-2}): \quad h^{(0)}h_x^{(0)} = 0$$
$$h^{(0)}h_y^{(0)} = 0$$

• • •

$$\mathcal{O}(\varepsilon^{-1}): \quad h^{(0)}h_x^{(1)} + h^{(1)}h_x^{(0)} = h^{(0)}v^{(0)}$$
$$h^{(0)}h_y^{(1)} + h^{(1)}h_y^{(0)} = -h^{(0)}u^{(0)}$$

$$\begin{aligned} \mathcal{O}(1) &: \quad h_t^{(0)} + (h^{(0)}u^{(0)})_x + (h^{(0)}v^{(0)})_y = 0 \\ & (h^{(0)}u^{(0)})_t + \left[h^{(0)}(u^{(0)})^2\right]_x + (h^{(0)}u^{(0)}v^{(0)})_y + h^{(0)}h_x^{(2)} + h^{(1)}h_x^{(1)} \\ & (h^{(0)}v^{(0)})_t + \left[h^{(0)}(v^{(0)})^2\right]_y + (h^{(0)}u^{(0)}v^{(0)})_x + h^{(0)}h_y^{(2)} + h^{(1)}h_y^{(1)} \\ & + h^{(2)}h_y^{(0)} = -h^{(0)}u^{(1)} - h^{(1)}u^{(0)} \end{aligned}$$

Analysis for the Low Froude Number Limit

The equations for $\mathcal{O}(\varepsilon^{-2})$ and $\mathcal{O}(\varepsilon^{-1})$ terms imply that

 $h_x^{(0)} = 0, \ h_y^{(0)} = 0 \ (\Rightarrow h^{(0)} \equiv \text{Const}), \ h_x^{(1)} = v^{(0)}, \ h_y^{(1)} = -u^{(0)},$

which can be substituted into equations of $\mathcal{O}(1)$ terms to obtain the limit equations:

$$\begin{cases} h_t^{(0)} + (h^{(0)}u^{(0)})_x + (h^{(0)}v^{(0)})_y = 0 \implies u_x^{(0)} + v_y^{(0)} = 0 \\ (h^{(0)}u^{(0)})_t + \left[h^{(0)}(u^{(0)})^2\right]_x + (h^{(0)}u^{(0)}v^{(0)})_y + h^{(0)}h_x^{(2)} = h^{(0)}v^{(1)} \\ (h^{(0)}v^{(0)})_t + \left[h^{(0)}(v^{(0)})^2\right]_y + (h^{(0)}u^{(0)}v^{(0)})_x + h^{(0)}h_y^{(2)} = -h^{(0)}u^{(1)} \\ h_t^{(1)} - h^{(0)}\left(h_{xx}^{(1)} + h_{yy}^{(1)}\right)_t = \cdots \\ h_t^{(2)} - \left(h^{(0)}v^{(1)} + h^{(1)}v^{(0)}\right)_{xt} + \left(h^{(0)}u^{(1)} + h^{(1)}u^{(0)}\right)_{yt} = \cdots \end{cases}$$

Goal: To develop an AP numerical methods for the SW system, which yield a consistent approximation of the above limiting equations as $\varepsilon \to 0$

11

Hyperbolic Splitting

Key idea: Split the stiff pressure term [Haack, Jin, Liu; 2012]

• We first split the stiff pressure gradient term into two parts, i.e.

$$\frac{1}{\varepsilon^2} \frac{h^2}{2} = \underbrace{\frac{1}{\varepsilon^2} \frac{h^2}{2}}_{non-stiff} - \underbrace{\frac{a(t)h}{\varepsilon^2}}_{stiff} + \underbrace{\frac{a(t)h}{\varepsilon^2}}_{stiff}$$

• We then split the flux terms in the continuity equation by introducing a weight parameter α so that we can construct the slow dynamic system as a hyperbolic system:

$$hu = \alpha hu + (1 - \alpha)hu, \qquad hv = \alpha hv + (1 - \alpha)hv$$

Hyperbolic Flux Splitting

Key idea: Split the stiff pressure term [Haack, Jin, Liu; 2012]

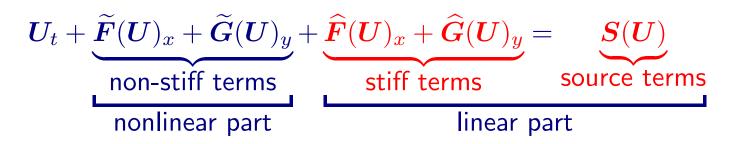
$$\begin{cases} h_t + \alpha(hu)_x + \alpha(hv)_y + (1 - \alpha)(hu)_x + (1 - \alpha)(hv)_y = 0, \\ (hu)_t + \left(hu^2 + \frac{\frac{1}{2}h^2 - a(t)h}{\varepsilon^2}\right)_x + (huv)_y + \frac{a(t)}{\varepsilon^2}h_x = \frac{1}{\varepsilon}hv, \\ (hv)_t + (huv)_x + \left(hv^2 + \frac{\frac{1}{2}h^2 - a(t)h}{\varepsilon^2}\right)_y + \frac{a(t)}{\varepsilon^2}h_y = -\frac{1}{\varepsilon}hu. \end{cases}$$

This system can be written in the following vector form:

$$U_t + \underbrace{\widetilde{F}(U)_x + \widetilde{G}(U)_y}_{\text{non-stiff terms}} + \underbrace{\widetilde{F}(U)_x + \widehat{G}(U)_y}_{\text{stiff terms}} = \underbrace{S(U)}_{\text{source terms}}$$

How to choose parameters α and a(t)?

Hyperbolic Flux Splitting



<u>Need to ensure</u>: $U_t + \widetilde{F}(U)_x + \widetilde{G}(U)_y = 0$ is both nonstiff and hyperbolic

Eigenvalues of the Jacobians $\partial \widetilde{F} / \partial U$ and $\partial \widetilde{G} / \partial U$:

$$\left\{ u \pm \sqrt{(1-\alpha)u^2 + \alpha \frac{h-a(t)}{\varepsilon^2}}, u \right\}, \quad \left\{ v \pm \sqrt{(1-\alpha)v^2 + \alpha \frac{h-a(t)}{\varepsilon^2}}, v \right\}$$

We then take: $\alpha = \varepsilon^s$ and $a(t) = \min_{(x,y) \in \Omega} h(x,y,t), s \ge 1$

Remark. It is safe to take $\alpha = \varepsilon^2$ there as in this case the stability time-step restriction will be clearly independent of ε . The results obtained with $\alpha = \varepsilon$ are almost identical and no instabilities have been observed as expected.

Time Discretization of the Split System

$$\begin{split} \boldsymbol{U}^{n+1} &= \boldsymbol{U}^n - \underbrace{\Delta t \widetilde{\boldsymbol{F}}(\boldsymbol{U})_x^n - \Delta t \widetilde{\boldsymbol{G}}(\boldsymbol{U})_y^n}_{\text{nonlinear part, explicit}} \\ &- \underbrace{\Delta t \widehat{\boldsymbol{F}}(\boldsymbol{U})_x^{n+1} - \Delta t \widehat{\boldsymbol{G}}(\boldsymbol{U})_y^{n+1} + \Delta t \boldsymbol{S}(\boldsymbol{U})^{n+1}}_{\text{linear part, implicit}} \end{split}$$

Nonstiff nonlinear part is treated using the second-order central-upwind scheme

• Stiff linear part reduces to a linear elliptic equation for h^{n+1} and straigtforward computations of $(hu)^{n+1}$ and $(hv)^{n+1}$

For simplicity of presentation: First-order accurate in time

In practice: We implement a two-stage second-order globally stiffly accurate IMEX Runge-Kutta scheme ARS(2,2,2) (all the proofs will apply)

Fully Discrete AP Schemes

$$\boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \underbrace{\left[\widetilde{\boldsymbol{F}}(\boldsymbol{U})_x^n + \widetilde{\boldsymbol{G}}(\boldsymbol{U})_y^n\right]}_{\boldsymbol{R}(\boldsymbol{U})^n} - \Delta t \left[\widehat{\boldsymbol{F}}(\boldsymbol{U})_x^{n+1} + \widehat{\boldsymbol{G}}(\boldsymbol{U})_y^{n+1} - \boldsymbol{S}(\boldsymbol{U})^{n+1}\right]$$

• We use the notation $\pmb{R}^n := (R^{h,n},R^{hu,n},R^{hv,n})^\top$ and rewrite the system

$$\begin{split} h^{n+1} &= h^n + \Delta t R^{h,n} - \Delta t (1-\alpha) \left[(hu)_x^{n+1} + (hv)_y^{n+1} \right] \\ (hu)^{n+1} &= \frac{1}{K} \left[(hu)^n + \frac{\Delta t}{\varepsilon} (hv)^n + \Delta t \left(R^{hu,n} + \frac{\Delta t}{\varepsilon} R^{hv,n} \right) \right. \\ &\left. - \frac{a^n \Delta t}{\varepsilon^2} \left(h_x^{n+1} + \frac{\Delta t}{\varepsilon} h_y^{n+1} \right) \right] \\ (hv)^{n+1} &= \frac{1}{K} \left[(hv)^n - \frac{\Delta t}{\varepsilon} (hu)^n + \Delta t \left(R^{hv,n} - \frac{\Delta t}{\varepsilon} R^{hu,n} \right) \right. \\ &\left. - \frac{a^n \Delta t}{\varepsilon^2} \left(h_y^{n+1} - \frac{\Delta t}{\varepsilon} h_x^{n+1} \right) \right] \end{split}$$

where

$$K := 1 + (\Delta t/\varepsilon)^2$$

16

Fully Discrete AP Schemes

• We differentiate equations for $(hu)^{n+1}$ and $(hv)^{n+1}$ with respect to x and y, respectively and substitute them into equation into the first equation and obtain the following elliptic equation for h^{n+1} :

$$h^{n+1} - \frac{a^n(1-\alpha)}{\widetilde{K}} \Delta h^{n+1} = h^n + \Delta t R^{h,n} - \frac{\Delta t(1-\alpha)}{K} \bigg[(hu)_x^n + (hv)_y^n + \frac{\Delta t}{\varepsilon} \bigg((hv)_x^n - (hu)_y^n \bigg) + \Delta t \bigg(R_x^{hu,n} + R_y^{hv,n} \bigg) + \frac{(\Delta t)^2}{\varepsilon} \bigg(R_x^{hv,n} - R_y^{hu,n} \bigg) \bigg]$$

where

$$\widetilde{K} := 1 + (\varepsilon/\Delta t)^2$$

• Solve for h^{n+1} and substitute it into the second and third equation to obtain

$$(hu)^{n+1} = \dots$$
$$(hv)^{n+1} = \dots$$

Stability of the Proposed AP Scheme

$$\boldsymbol{U}^{n+1} = \boldsymbol{U}^n - \Delta t \underbrace{\left[\widetilde{\boldsymbol{F}}(\boldsymbol{U})_x^n + \widetilde{\boldsymbol{G}}(\boldsymbol{U})_y^n \right]}_{\boldsymbol{R}(\boldsymbol{U})^n} - \Delta t \left[\widehat{\boldsymbol{F}}(\boldsymbol{U})_x^{n+1} + \widehat{\boldsymbol{G}}(\boldsymbol{U})_y^{n+1} - \boldsymbol{S}(\boldsymbol{U})^{n+1} \right]$$

The stability of the proposed AP scheme is controlled by the CFL condition:

$$\Delta t_{\rm AP} \leq \nu \cdot \min\left(\frac{\Delta x}{\max_{u,h} \left\{|u| + \sqrt{(1-\alpha)u^2 + \alpha \frac{h-a(t)}{\varepsilon^2}}\right\}}, \frac{\Delta y}{\max_{v,h} \left\{|v| + \sqrt{(1-\alpha)v^2 + \alpha \frac{h-a(t)}{\varepsilon^2}}\right\}}\right).$$

The denominators on the RHS are independent of ε (provided $\alpha \sim \varepsilon^s$). Therefore, the use of large time steps of size $\Delta t_{AP} = \mathcal{O}(\Delta_{\min})$, is sufficient to enforce the stability of the proposed AP scheme.

Recall that for the $\varepsilon \to 0$ limit: equations for $\mathcal{O}(\varepsilon^{-2})$ and $\mathcal{O}(\varepsilon^{-1})$ terms imply that

$$h_x^{(0)} = 0, \ h_y^{(0)} = 0 \ (\Rightarrow h^{(0)} \equiv \text{Const}), \ h_x^{(1)} = v^{(0)}, \ h_y^{(1)} = -u^{(0)},$$

which can be substituted into equations of $\mathcal{O}(1)$ terms to obtain the limit equations:

$$\begin{cases} h_t^{(0)} + (h^{(0)}u^{(0)})_x + (h^{(0)}v^{(0)})_y = 0 \implies u_x^{(0)} + v_y^{(0)} = 0\\ (h^{(0)}u^{(0)})_t + \left[h^{(0)}(u^{(0)})^2\right]_x + (h^{(0)}u^{(0)}v^{(0)})_y + h^{(0)}h_x^{(2)} = fh^{(0)}v^{(1)}\\ (h^{(0)}v^{(0)})_t + \left[h^{(0)}(v^{(0)})^2\right]_y + (h^{(0)}u^{(0)}v^{(0)})_x + h^{(0)}h_y^{(2)} = -fh^{(0)}u^{(1)}\\ h_t^{(1)} - h^{(0)}\left(h_{xx}^{(1)} + h_{yy}^{(1)}\right)_t = \cdots\\ h_t^{(2)} - \left(h^{(0)}v^{(1)} + h^{(1)}v^{(0)}\right)_{xt} + \left(h^{(0)}u^{(1)} + h^{(1)}u^{(0)}\right)_{yt} = \cdots \end{cases}$$

Goal: To have a consistent approximation of the above limiting equations

We consider the asymptotic expansions for the unknowns

$$\begin{split} \bar{h}_{j,k}^{n} &= h_{j,k}^{(0),n} + \varepsilon h_{j,k}^{(1),n} + \varepsilon^{2} h_{j,k}^{(2),n} + \dots, \\ u_{j,k}^{n} &= u_{j,k}^{(0),n} + \varepsilon u_{j,k}^{(1),n} + \varepsilon^{2} u_{j,k}^{(2),n} + \dots, \\ v_{j,k}^{n} &= v_{j,k}^{(0),n} + \varepsilon v_{j,k}^{(1),n} + \varepsilon^{2} v_{j,k}^{(2),n} + \dots, \\ a^{n} &= h^{(0),n} + \varepsilon a^{(1),n} + \varepsilon^{2} a^{(2),n} + \dots, \end{split}$$

and assume that the discrete analogs of the first four equations are satisfied at time level $t = t^n$:

$$h_{j,k}^{(0),n} = h^{(0),n}, \quad D_x u_{j,k}^{(0),n} + D_y v_{j,k}^{(0),n} = 0,$$
$$v_{j,k}^{(0),n} = D_x h_{j,k}^{(1),n}, \quad u_{j,k}^{(0),n} = -D_y h_{j,k}^{(1),n}, \quad \forall j, k.$$

• From the elliptic equation for $\overline{h}_{j,k}^{n+1}$, we have

$$\left[I - \frac{a^n(1-\alpha)}{\widetilde{K}}\Delta\right](\overline{h}_{j,k}^{n+1} - h^{(0),n}) = \mathcal{O}(\varepsilon),$$

where $a^n(1-\alpha)/\widetilde{K} = h^{(0),n} + \mathcal{O}(\varepsilon)$.

Matrix $I - \frac{a^n(1-\alpha)}{\tilde{K}}\Delta$ is positive definite and non-singular (with eigenvalues bounded away from zero independently of ε), therefore

$$\bar{h}_{j,k}^{n+1} = h^{(0),n} + \mathcal{O}(\varepsilon)$$

• We also have $\overline{(hu)}_{j,k}^{n+1} = \mathcal{O}(1)$ and $\overline{(hv)}_{j,k}^{n+1} = \mathcal{O}(1)$, which gives

$$u_{j,k}^{n+1} = u_{j,k}^{(0),n+1} + \mathcal{O}(\varepsilon) \quad \text{and} \quad v_{j,k}^{n+1} = v_{j,k}^{(0),n+1} + \mathcal{O}(\varepsilon)$$

We plug the asymptotic expansions

• • •

$$\begin{split} h^{n} &= h^{(0),n} + \varepsilon h^{(1),n} + \varepsilon^{2} h^{(2),n}, \quad h^{n+1} = h^{(0),n+1} + \varepsilon h^{(1),n+1} + \varepsilon^{2} h^{(2),n+1} \\ u^{n} &= h^{(0),n} + \varepsilon u^{(1),n} + \varepsilon^{2} u^{(2),n}, \quad u^{n+1} = u^{(0),n+1} + \varepsilon u^{(1),n+1} + \varepsilon^{2} u^{(2),n+1} \\ v^{n} &= v^{(0),n} + \varepsilon v^{(1),n} + \varepsilon^{2} v^{(2),n}, \quad v^{n+1} = v^{(0),n+1} + \varepsilon v^{(1),n+1} + \varepsilon^{2} v^{(2),n+1} \end{split}$$

into the implicit-explicit scheme and equate the like powers of ε to obtain the following equations...

$$\begin{aligned} \mathcal{O}(\varepsilon^{-2}): \quad h^{(0),n+1}h_x^{(0),n+1} &= 0 \\ \quad h^{(0),n+1}h_y^{(0),n+1} &= 0 \end{aligned} \\ \mathcal{O}(\varepsilon^{-1}): \quad h^{(0),n+1}h_x^{(1),n+1} + h_x^{(0),n+1}h^{(1),n+1} &= h^{(0),n+1}v^{(0),n+1} \\ \quad h^{(0),n+1}h_y^{(1),n+1} + h_y^{(0),n+1}h^{(1),n+1} &= -h^{(0),n+1}u^{(0),n+1} \end{aligned}$$
$$\begin{aligned} \mathcal{O}(1): \qquad \dots \end{aligned}$$

- The equations of $\mathcal{O}(\varepsilon^{-2})$ and $\mathcal{O}(\varepsilon^{-1})$ terms imply that

 $D_x h_{j,k}^{(0),n+1} \equiv 0, \quad D_y h_{j,k}^{(0),n+1} \equiv 0 \quad \Longrightarrow \quad h_{j,k}^{(0),n+1} \equiv h^{(0),n+1} = \mathsf{Const}$

• For the $\mathcal{O}(1)$ terms, we obtain

$$u_{j,k}^{(0),n+1} = -D_y h_{j,k}^{(1),n+1}, \quad v_{j,k}^{(0),n+1} = D_x h_{j,k}^{(1),n+1}, \quad \forall j,k$$

• Taking central differences of the above equations with respect to y and x, respectively, we obtain

$$D_y v_{j,k}^{(0),n+1} + D_x u_{j,k}^{(0),n+1} = D_x D_y h_{j,k}^{(1),n+1} - D_y D_x h_{j,k}^{(1),n+1} = 0,$$

which implies that the divergence-free condition for the discrete velocity holds at all time levels.

Summary

Theorem. The proposed hyperbolic flux splitting method coupled with the described fully discrete scheme is asymptotic preserving in the sense that it provides a consistent and stable discretization of the limiting system as the Froude number $\varepsilon \to 0$.

Remark. In practice, the fully discrete scheme is both second-order accurate in space and time as we increase a temporal order of accuracy to the second one by implementing a two-stage globally stiffly accurate IMEX Runge-Kutta scheme ARS(2,2,2). The proof holds as well.

Remark. The proposed AP scheme is also asymptotically well-balanced in the sense that it preserves geostrophic equilibria in the zero Froude number limit at the discrete level: implies

$$u = -\frac{1}{\varepsilon}h_y, \quad v = \frac{1}{\varepsilon}h_x$$

Example — 2-D Stationary Vortex [E. Audusse, R. Klein, D. D. Nguyen, and S. Vater, 2011]

$$h(r,0) = 1 + \varepsilon^{2} \begin{cases} \frac{5}{2}(1+5\varepsilon^{2})r^{2} \\ \frac{1}{10}(1+5\varepsilon^{2}) + 2r - \frac{1}{2} - \frac{5}{2}r^{2} + \varepsilon^{2}(4\ln(5r) + \frac{7}{2} - 20r + \frac{25}{2}r^{2}) \\ \frac{1}{5}(1-10\varepsilon + 4\varepsilon^{2}\ln 2), \end{cases}$$

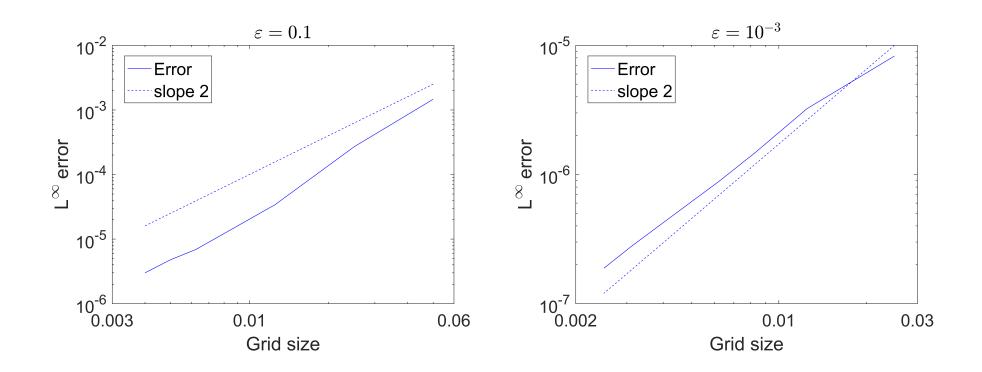
$$\int 5, \qquad r < \frac{1}{5}$$

$$u(x,y,0) = -\varepsilon y \Upsilon(r), \quad v(x,y,0) = \varepsilon x \Upsilon(r), \quad \Upsilon(r) := \begin{cases} \frac{2}{r} - 5, & \frac{1}{5} \le r < \frac{2}{5} \\ 0, & r \ge \frac{2}{5}, \end{cases}$$

Domain: $[-1,1] \times [-1,1], \quad r := \sqrt{x^2 + y^2}$

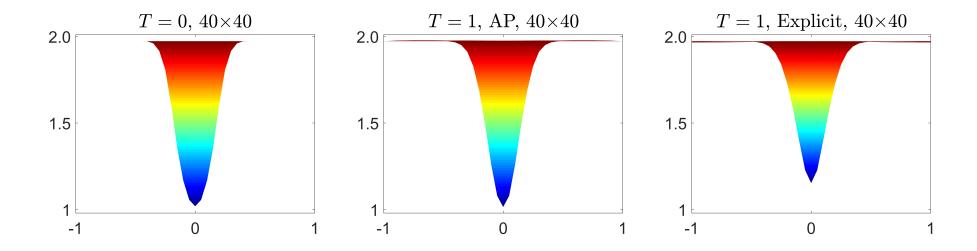
Boundary conditions: a zero-order extrapolation in both x- and y-directions

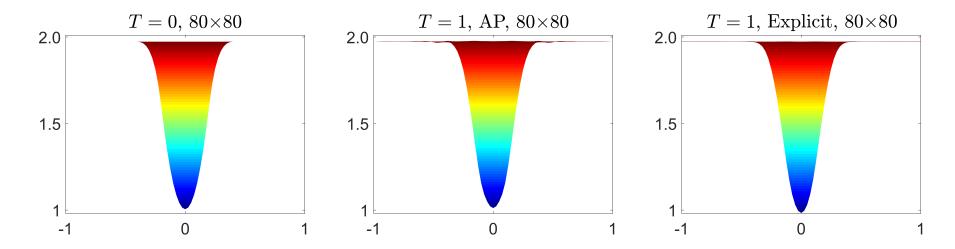
Experimental order of convergence



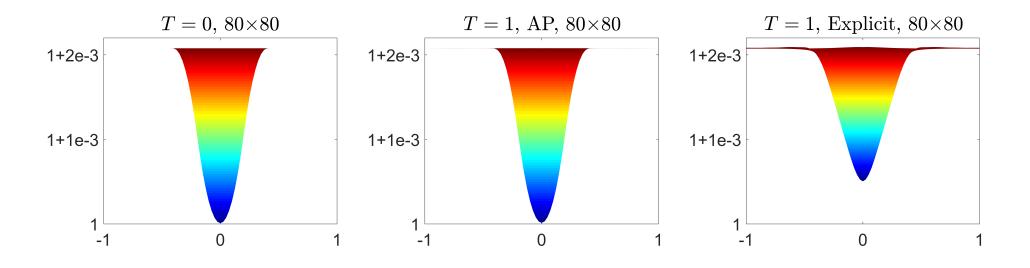
 $L^\infty\text{-}{\rm errors}$ for h computed using the AP scheme on several different grids for $\varepsilon=0.1$ (left) and 10^{-3}

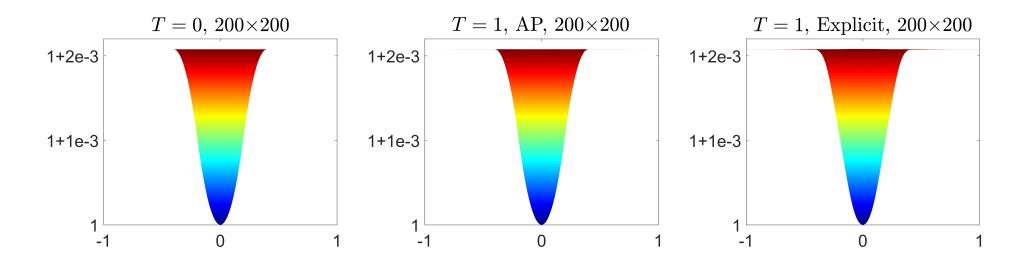
Comparison of non-AP and AP methods, $\varepsilon=1$



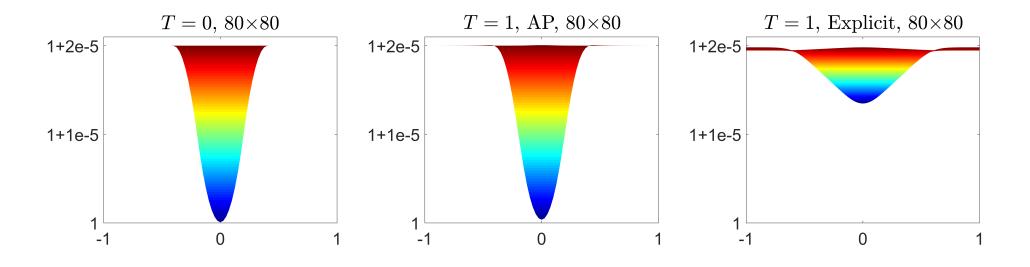


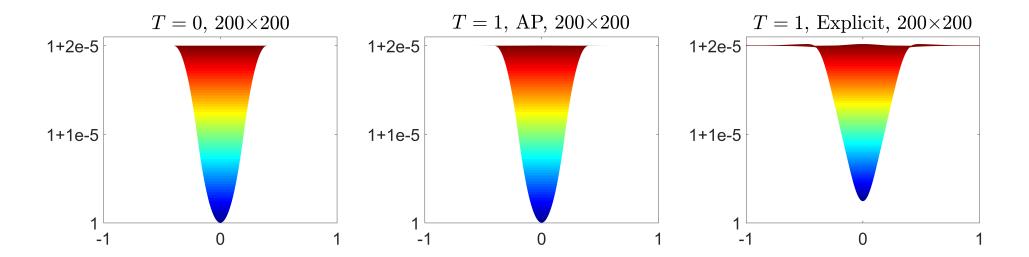
Comparison of non-AP and AP methods, $\varepsilon=0.1$





Comparison of non-AP and AP methods, $\varepsilon=0.01$



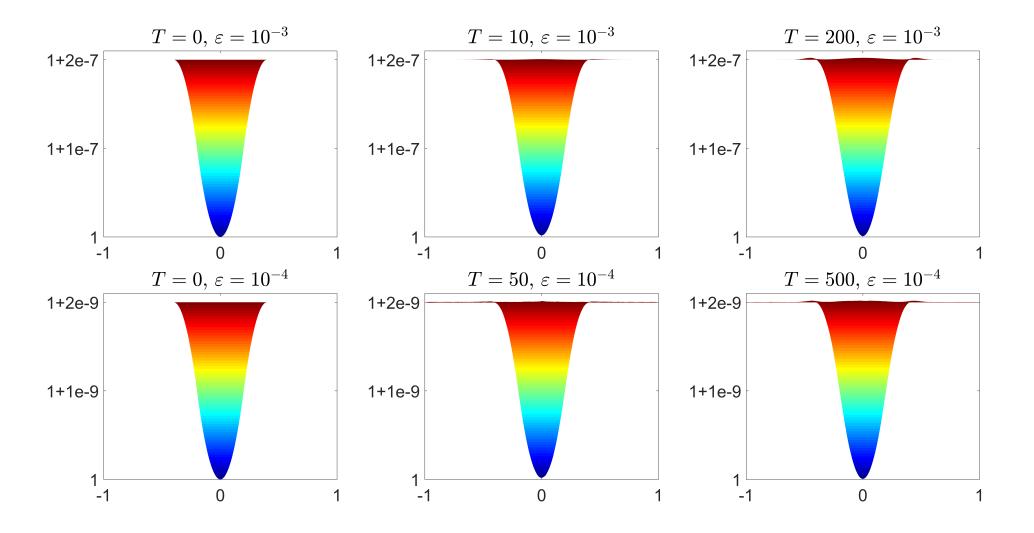


29

Comparison of non-AP and AP methods, CPU times

	$\varepsilon = 1$		$\varepsilon = 0.1$		$\varepsilon = 0.01$	
Grid	AP	Explicit	AP	Explicit	AP	Explicit
40×40	0.18 s	0.16 s	0.06 s	1.25 s	0.03 s	10.53 s
80×80	1.57 s	1.32 s	0.29 s	4.73 s	0.18 s	47.0 s
200×200	24.11 s	21.36 s	5.36 s	163.36 s	3.37 s	804.15 s

Smaller values: $\varepsilon = 10^{-3}$ and $\varepsilon = 10^{-4}$



Smaller times: 200×200 , larger times: 500×500

Example — 2-D Traveling Vortex

We take $\varepsilon = 10^{-2}$ and simulate a traveling vortex with the same initial water depth profile as in Example 1 but the initial velocities are now modified by adding a constant velocity vector $(15, 15)^{\top}$:

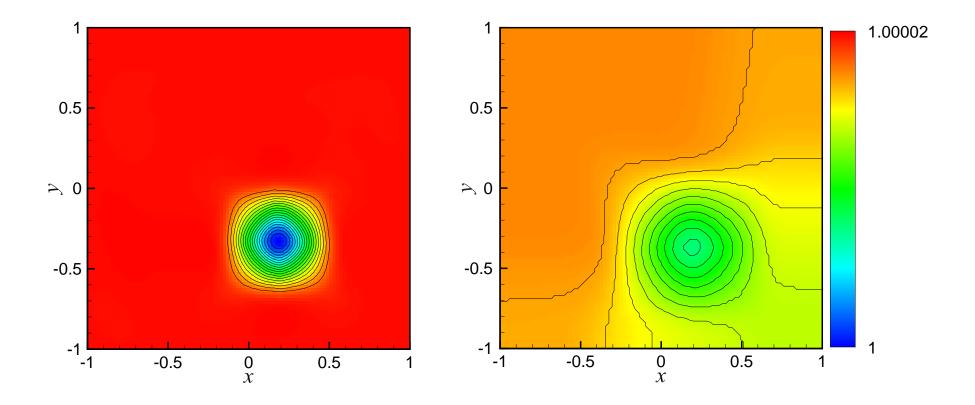
$$\begin{split} u(x,y,0) &= 15 - \varepsilon y \Upsilon(r), \quad v(x,y,0) = 15 + \varepsilon x \Upsilon(r) \\ \begin{cases} 5, & r \leq \frac{1}{5}, \\ \frac{2}{r} - 5, & \frac{1}{5} < r \leq \frac{2}{5}, \\ 0, & r \geq \frac{2}{5}, \end{cases} \end{split}$$

where $r := \sqrt{x^2 + y^2}$.

Domain: $[-1,1] \times [-1,1], \quad r := \sqrt{x^2 + y^2}$

Boundary conditions: a zero-order extrapolation in both x- and y-directions These initial data correspond to a rotating vortex traveling along a circular path

Comparison of non-AP and AP methods, $\varepsilon=0.01$



 100×100

THANK YOU!