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Systems of Balance Laws

U, + f(U). +g(U), = S(U)
Examples:

e Gas dynamics with pipe-wall
friction

e Euler equations with
gravity /friction

e shallow water equations with
Coriolis forces

Applications:

e astrophysical and atmospheric
phenomena in many fields
including supernova explosions

e (solar) climate modeling and
weather forecasting

Ui+ F(U). +9(U), = -S(U)
Examples:

e low Mach number compressible
flows

e low Froude number shallow
water flows

e diffusive relaxation in kinetic
models

Applications:

e various two-phase flows such as
bubbles in water

e unmostly incompressible
flows with regions of high
compressibility such as
underwater explosions

e atmospheric flows




Systems of Balance Laws

Uy + §(U), +9(U), = SU) or Uy+ f(U), +9(U), = ~S(U)

e Challenges: certain structural properties of these hyperbolic problems
(conservation or balance law, equilibrium state, positivity, assymptotic
regimes, etc.) are essential in many applications;

e Goal: to design numerical methods that are not only consistent with the

given PDEs, but

— preserve the structural properties at the discrete level — well-balanced
numerical methods

— remain accurate and robust in certain asymptotic regimes of physical
interest — asymptotic preserving numerical methods

[P. LeFloch; 2014]




Asymptotic Preserving (AP) Methods
1
Ui+ fU)s +9U), = -SU)

e Solutions of many hyperbolic systemes reveal a multiscale character and
thus their numerical resolution presence some major difficulties;

e Such problems are typically characterized by the occurence of a small
parameter by 0 < ¢ < 1;

e [ he solutions show a nonuniform behavior as ¢ — 0;

e the type of the limiting solution is different in nature from that of the
solutions for finite values of ¢ > 0.

Goal:

e asymptotic passage from one model to another should be preserved at
the discrete level:

e for a fixed mesh size and time step, AP method should automatically
transform into a stable discretization of the limitting model as ¢ — 0.




Shallow Water System with Coriolis Force

(hi + (hu), + (hv), =0
(hu)s + (hu2 + gh2) + (huv), = —ghBy + fhv

x

N\

\ (hv): + (huv), + (thQ + %h2) = —ghB, — fhu

x

h: water height

u, v: fluid velocity

g: gravitational constant

B = 0 — bottom topography

f = 1/e — Coriolis parameter




Dimensional Analysis

Introduce

Substituting them into the SWE and dropping the hats in the notations, we
obtain the dimensionless form:

\

in which

is the reference Froude number




Explicit Discretization
Eigenvalues of the flux Jacobian:

{u -+ é\/ﬁ, u} and {v + é\/ﬁ, v}

This leads to the CFL condition

Az Ay
IE%LX{’”‘ + %\/ﬁ}7 max {|v| + %\/E}

= O(gAmin) .

Atexpl < v - min

where A, := min(Az, Ay)

o 0 <rv<1isthe CFL number
o Numerical diffusion: O(\,axAx) = O(e™tAx).

e We must choose Ax =~ ¢ to control numerical diffusion and the stability
condition becomes

At = O(&?)




Low Froude Number Flows

Low Froude number regime (0 < € < 1) = very large propagation speeds

Explicit methods:

e very restrictive time and space dicretization steps, typically proportional
to € due to the CFL condition;

e too computationally expensive and typically impractical.

Implicit schemes:
e uniformly stable for 0 < ¢ < 1;

e may be inconsistent with the limit problem;
e may provide a wrong solution in the zero Froude number limit.

Goal: to design robust numerical algorithms, whose accuracy and efficiency
is independent of ¢




Asymptotic-Preserving (AP) Methods

Introduced in [Klar; 1998, Jin; 1999], see also [Jin, Levermore; 1991],
[Golse, Jin, Levermore; 1999].

|dea:

e asymptotic passage from one model to another should be preserved at
the discrete level;

e for a fixed mesh size and time step, AP method should automatically
transform into a stable discretization of the limitting model as ¢ — 0.
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Analysis for the Low Froude Number Limit

We plug the formal asymptotic expansions

h=hO0 4+ cpM 250 4 L.
v =0 o 4 2@ 4 ...

into the SW system:

(hy + (hu)z + (hv), =0

v)y
<(hu)t+(hu %%) (huw), :—fhv

(hv): + (huv), + (hv + i};) = —gfhu

\

and then collect the like powers of ¢ ...




O(e™?)

Analysis for the Low Froude Number Limit

hOBO =g
R OR{D) =0

h(O)h(xl) + h(l)hg)) — (0),,(0)
h(O)h?(Jl) 4+ h(l)h:‘(ﬁ) — _p(0),,00)

RO 4 (R0, (h©y(@), =0

(R ), + {hw)(u(m)ﬂ IOMONONS RO ORI NOIAC

x

(R, + [hw)(v(m)z] + (hOu©@ ), 4 BOR 4 pOpD

Yy
+ h@RO = —pOy®) _ 1O
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Analysis for the Low Froude Number Limit

The equations for O(¢72) and O(e~ 1) terms imply that
hi =0, héo) =0 (= hY = Const), AP =), hél) O

which can be substituted into equations of O(1) terms to obtain the limit
equations:

'hff” + (KO%O), + (RO, =0 — ¥+ ?J?SO) =0
(R ), + {hm)(u(mﬂ + (hOy@y() 4 pOp2) = p0)y (1)

xT

} (h©0©), + [hm) (v<o>)2} o+ (WO (), 4 pOR) = 0 (D)

p) — B (hgg + hg;) —

t

B (h<%<1> n h<1>v<o>) n (h<o>u<1> n h<1>u<o>)
xt

\ yt

Goal: To develop an AP numerical methods for the SW system, which yield

a consistent approximation of the above limiting equations as ¢ — 0 .




Hyperbolic Splitting

Key idea: Split the stiff pressure term [Haack, Jin, Liu; 2012]

e We first split the stiff pressure gradient term into two parts, i.e.

1h* 1h* a(t)h _|_a,(t)h

€22 22 e? g2
N ~~ R
non—stif f stif f

e We then split the flux terms in the continuity equation by introducing a
weight parameter o so that we can construct the slow dynamic system
as a hyperbolic system:

hu = ahu+ (1 — a)hu, hv =ahv+ (1 —a)hv

12




Hyperbolic Flux Splitting

Key idea: Split the stiff pressure term [Haack, Jin, Liu; 2012]

N\

(hi + a(hu), + a(hv), + (1 — a)(hu), + (1 — a)(hv), =

Ih? —a(t)h
(hU)t+ <hu2 _|_ 2 CL( )

£2 ) + (huv)y + ) = lhv

52

(hv): + (huv), + (hv 4 2 2’ a(t)h) + @h

\

This system can be written in the following vector form:

U,+FU),+GU),+FU),+GU),= S(U)
g -~ " g —~ ~, \ ,
non-stiff terms stiff terms source terms

How to choose parameters o and a(t)?

13




Hyperbolic Flux Splitting

U +FU),+GU),+FU),+GU),= SU)
\ ~ _y G ~~ "y \ /
. non-stiff terms o stiff terms source terms;
nonlinear part linear part

Need to ensure: U, + F(U), + CNJ(U)y = 0 is both nonstiff and hyperbolic

Eigenvalues of the Jacobians F /OU and 0G/0U:

{ui \/(1 — a)u? —I—Ozh _6g(t)’ u}, {v:l: \/(1 — )v? —I—Oéh_a(t), ’U}

82

We then take: a=c¢c® and a(t) =ming ,)ecoh(z,y,t), s>1
Remark. It is safe to take oo = £ there as in this case the stability time-step
restriction will be clearly independent of €. The results obtained with aa = ¢

are almost identical and no instabilities have been observed as expected.

14




Time Discretization of the Split System

Ut =U" - AtF(U)" — AtG(U)"

7

Ve

nonlinear part, explicit

— AtF(U)M — AtG(U)™H + AtS(U)"H

7

linear part, implicit

e Nonstiff nonlinear part is treated using the second-order central-upwind

scheme
e Stiff linear part reduces to a linear elliptic equation for A™t! and
straigtforward computations of (hu)"*! and (hv)"*!

For simplicity of presentation: First-order accurate in time

In practice: We implement a two-stage second-order globally stiffly accurate
IMEX Runge-Kutta scheme ARS(2,2,2) (all the proofs will apply)
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Fully Discrete AP Schemes

Ut = Un — AL |FU)" + é(U)g} ~ At [ﬁ(U)gﬂ +GU)M - st

\ . 7

R(U)"
e We use the notation R" := (R"", Rhwn Rho) T and rewrite the system

R =R+ AtRM™ — At(1 — a) [(hu) 2T + (b))

1 At At
n+1 n n hu,n hv,n
(hu) "t = — [(hu) + = () +At(R + =R )
a"Atg L A
‘7(% e )
1 At At
n+1 n n hv,n hu,n
(ho) ™+ = [(hv) —(hu) +At(R —R )
a At At

n—+1 n—+1
g2 (hy _?hx )]

K :=1+ (At/e)?

where

16




Fully Discrete AP Schemes

e We differentiate equations for (hu)""" and (hv)""" with respect to
x and vy, respectively and substitute them into equation into the first
equation and obtain the following elliptic equation for A1 1:

n-+1 an(l o Oé) n+l 1 n h,n At(l o Oé) n n
B S AR = o ARRM = SR () (o))
At n n hu,n hv,n (At)2 hv,n hu,n
—|—?((hv)x ~ (hu)y> + At (Rx + R ) = (Rx ~R! )
where

~

K :=1+ (¢/At)*

e Solve for h™*! and substitute it into the second and third equation to
obtain

(hu)"tt = ...

(hv)"tt = ...

17




Stability of the Proposed AP Scheme

Ut = U™ — AL |F(U)" + é(U)Z} ~ At [ﬁ(U);}“ + QUM - SU)"H!

A\ 7
-~

R(U)"

The stability of the proposed AP scheme is controlled by the CFL condition:

Ax
max {Jul + /(1 — ) + a5}

Atap < v - min

Ay
max {Jvl+ /(1 — e + o250} |

The denominators on the RHS are independent of ¢ (provided a ~ &9).
Therefore, the use of large time steps of size Atap = O(Anin), is sufficient
to enforce the stability of the proposed AP scheme.

18




Proof of Consistency

Recall that for the ¢ — 0 limit: equations for O(¢72) and O(c 1) terms

imply that

O =0, B9 =0 (= 1 = Const), A =0O@ p = _40)
T Yy x )

which can be substituted into equations of O(1) terms to obtain the limit

equations:

\

(R4 (0)),

< (hD90)), +
pH) B (h;} + h;};) -

B (hm)v(l) n h<1>v<o>) n (h<o>u<1> n h<1>u<o>)
xt

1+ (hOu®), + (BOp®), =0 = w400 =0
4 'h<o>(u<o>)z] + (R Oy ©y©®) 1 RORE) = ¢O)

x

'h<o><v<o>)2} + (hOu©p©), 4 OB — — pp0), M)

Yy

t

yt

Goal: To have a consistent approximation of the above limiting equations
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Proof of Consistency

We consider the asymptotic expansions for the unknowns

TN

hj,k h(o) e h(l) 82h('2)’n s

u?k—uggnnts (Dom g2 gz}z o

a”:h(o)’ +5a(1)’ +52a(2)’ +

and assume that the discrete analogs of the first four equations are satisfied
at time level t = t™:

0),n n 0 0 o
™ = O Dy Dy =0,

0),n 1),n 0),n 1),n )
W On _ D pn  On g g

Y
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Proof of Consistency

. . —n+1
From the elliptic equation for h;?,j , we have

[l - (112_ Q)A] (hin " —hOm) = 0(e),

where a™(1 — a)/K = h(®" + O(e).

Matrix I—%A is positive definite and non-singular (with eigenvalues
bounded away from zero independently of ), therefore

R = O 4 Of)

Js

We also have (hu)f,jl = O(1) and (hv)z,jl = O(1), which gives

ntl _ , (0)n+1 +O®) and ,0%-1 _ U;?lz,n+1 +O(e)

Uik — Uk
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Proof of Consistency

We plug the asymptotic expansions
AP — h(O),n 4+ €h(1)’n + €2h(2),n’ hn—l—l _ h(O),n+1 + 8h(l),n—|—1 + 82h(2),n—|—1
u” — h(O),n 4+ €U(1)’n 4+ €2u(2),n’ un—l—l _ u(O),n—I—l + 6U(1)’n+1 4+ 82u(2),n—|—1

" — U(O),n + E’U(l)’n + 82?)(2),71’ o — ,U(O),n—i—l 4+ 51](1)’n+1 4+ 82,0(2),71—1—1

into the implicit-explicit scheme and equate the like powers of ¢ to obtain
the following equations...

0(6_2) : h(O),n+1h§BO),n+1 —0

OR e OR S

O™ : h(o),n+1h;1),n+1 4 h(xO),n—I—lh(l),n—l—l _ 7,(0),n+1,,(0),n+1

h(O),n—l—th(Jl),n—{—l 4 h@(JO),n—l—lh(l),n—Fl _ _h(O),n—l—lu(O),n+1

O1) :

22




Proof of Consistency

e The equations of O(¢7%) and O(e~!) terms imply that

D$h§?g’n+1 =0, Dyhflz’nﬂ =0 = hfﬁ’"“ = p0)n+1 — Const

e For the O(1) terms, we obtain

0),n+1 1),n+1 0),n+1 1),n+1 .
w0 = Dy R O = DR vk

e Taking central differences of the above equations with respect to y and
x, respectively, we obtain

Do\ 4 D) = DDA — Dy DR = 0,

which implies that the divergence-free condition for the discrete velocity
holds at all time levels.

23




Summary

Theorem. The proposed hyperbolic flux splitting method coupled with the
described fully discrete scheme is asymptotic preserving in the sense that
it provides a consistent and stable discretization of the limiting system
as the Froude number e — 0.

Remark. In practice, the fully discrete scheme is both second-order accurate
in space and time as we increase a temporal order of accuracy to the second

one by implementing a two-stage globally stiffly accurate IMEX Runge-Kutta
scheme ARS(2,2,2). The proof holds as well.

Remark. The proposed AP scheme is also asymptotically well-balanced in
the sense that it preserves geostrophic equilibria in the zero Froude number
limit at the discrete level: implies
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Example — 2-D Stationary Vortex
[E. Audusse, R. Klein, D. D. Nguyen, and S. Vater, 2011]

(5
5(1 + 552)T2
1 1 5 7 25
h(?", 0) — 1+82 9 1_0(1 + 582) + 2r — 5 — 57"2 + 52(4 11’1(57") -+ 5 — 20r + ?T2)
1
—(1 —10e + 4e*1n 2),
. O
( 1
D, < =
2 1 ' : 2
u(z,y,0) = —eyY(r), wv(z,y,0)=ex¥(r), Y(r):=4¢ —-—5, F<r<:
r
2
0 >
L "= 5’

Domain: [—1,1] x [-1,1], 7 :=+/x?+ y?

Boundary conditions: a zero-order extrapolation in both x- and y-directions
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L error

Experimental order of convergence

107
1073
S
10 ©
3
|
107°
10 * 1077 '
0.003 0.01 0.06 0.002 0.01 0.03
Grid size Grid size

L>°-errors for h computed using the AP scheme on several different grids
for e = 0.1 (left) and 1073
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Comparison of non-AP and AP methods, ¢ =1

207

157

T =0, 40x40

w
Y

=0, 80x80

207

157

w
v

207

1.57

1.57

T =1, AP, 40x40

T =1, AP, 80x80

2.0

157

157

T =1, Explicit, 40x40

T =1, Explicit, 80x80
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Comparison of non-AP and AP methods, ¢ = 0.1

T =0, 80x80

1+1e-3 ¢

1 I

-1 0

=0, 200><200

1+1e-3

1 I

-1 0

T =1, AP, 80x80

1+2e-3 ¢

1+1e-3 |

w
v

T =1, AP, 200x200

1+2e-3 |

1+1e-3¢

w
v

T =1, Explicit, 80x80

1+2e-3 - 1
1+1e-3+ '

T = 1, Explicit, 200x200

1 +26_3 | i

1+1e-3 |

28



Comparison of non-AP and AP methods, ¢ = 0.01

T =0, 80x80
1+1e-5¢

1 I

-1 0

= 0, 200x200

1+1e-5¢

1 I

-1 0

T =1, AP, 80x80

1+2e-5]

1+1e-5]

A B

v

T =1, AP, 200x200

1+2e-5]

1+1e-5

w
v

T =1, Explicit, 80x80
1+2e-5 _—_

N 4

1+1e-5|

T = 1, Explicit, 200x200

1+2e-5

1+1e-5|
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Comparison of non-AP and AP methods, CPU times

e=1 e=20.1 e =0.01
Grid AP Explicit AP Explicit AP Explicit
40 x 40 0.18 s 0.16 s 0.06 s 1.25 s 0.03 s 10.63 s
80 x 80 1.57 s 1.32 s 0.29 s 473 s 0.18 s 47.0 s
200 x 200 | 24.11s | 21.36 s 5.36 s 163.36 s | 3.37 s 804.15 s
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Smaller values: ¢ = 1073 and ¢ = 10~*

T=0¢e=1073 T=10,e =103 T =200, =103
1+1e-7 | 1 1+1e-7 | 1 1+1e-7 |
1 I 1 I 1 I
-1 0 1 -1 0 1 -1 0 1
T=0e=10"* T =50,e=10"" T =500, =104
1+1e-9¢ 1 1+1e-9¢ 1 1+1e-9¢ 1
1 I 1 I 1 I
-1 0 1 -1 0 1 -1 0 1

Smaller times: 200 x 200, larger times: 500 x 500
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Example — 2-D Traveling Vortex

We take ¢ = 1072 and simulate a traveling vortex with the same initial water

depth profile as in Example 1 but the initial velocities are now modified by
adding a constant velocity vector (15,15)":

u(x,y,0) =15 —eyY(r), wv(x,y,0) =15+ exY(r)

5} <1
r —
2’ 1 _572
Y(r):={ 2 _ 5 Lop<?
(=9 775 g<r=sz
0 7“>g
\ i —57

where r := /22 + y?.
Domain: [—1,1] x [-1,1], 7r:=\/x2+y?
Boundary conditions: a zero-order extrapolation in both x- and y-directions

These initial data correspond to a rotating vortex traveling along a circular
path
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Comparison of non-AP and AP methods, ¢ = 0.01

1.00002

! I 1

100 x 100
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THANK YOU!
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