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Rothe's Method

» Erich Rothe: 1930, “Zweidimensionale parabolische randwertaufgaben
als grenzfall eindimensionaler randwertaufgaben”, Mathematische
Annalen,

» Analysis and Numerics Summary Papers

> Jozef Kacur: 1978, “Method of Rothe and nonlinear parabolic boundary
value problems of arbitrary order”, Czechoslovak Mathematical Journal,

» Karel Rektorys: 1982, “The method of discretization in time and partial
differential equations”, Equadiff 5

> Fritz John: 1985, “On integration of parabolic equations by difference
methods"”, Fritz John Collected Papers,

» Transverse Method of Lines (Show that treating all time at once lades to
constant high order methods in time)

> Pierluigi Amodio and Francesca Mazzia: 1995, “A boundary value
approach to the numerical solution of initial value problems by multistep
methos”, Journal of Difference Equations and Applications,

» Annamaria Mazzia and Francesca Mazzia: 1997, “High-order transverse
schemes for the numerical solution of PDEs", Journal of computational
and applied mathematics



Rothe's Method

» Parallel in Time (All of time, but distributed computing)

» Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici: 2001,
“Résolution d'EDP par un schéma en temps «pararéel»”, Comptes
Rendus de I'’Académie des Sciences-Series I-Mathematics,

» Robert D Falgout, Stephanie Friedhoff, Tz V Kolev, Scott P MacLachlan,
and Jacob B Schroder: 2014, “Parallel time integration with multigrid”,
SIAM Journal on Scientific Computing

» Method of Lines Transpose (Use of Greens functions to address BVP)

> Jun Jia and Jingfang Huang: 2008, “Krylov deferred correction
accelerated method of lines transpose for parabolic problems”, Journal of
Computational Physics,

» Matthew Causley, Andrew J Christlieb, Benjamin Ong, and Lee Van
Groningen: 2014 “Method of lines transpose: An implicit solution to the
wave equation”, Mathematics of Computation

» Matthew Causley, Hana Cho, Andrew J Christlieb, David C Seal: 2016,
“Method of Lines Transpose: High Order L-Stable O(N) Schemes for
Parabolic Equations Using Successive Convolution”, SIAM Journal on
Numerical Analysis



Rothe's Method

» Successive Convolution (Expanding the spatial operator in continues well
behaved convergent expansions)

> Andrew J Christlieb, Wei Guo, Yan Jiang and Hyoseon Yang: 2020,
“Kernel based high order 'explicit’ unconditionally stable scheme for
nonlinear degenerate advection-diffusion equations”, Journal of Scientific
Computing,

> Andrew J Christlieb, William A Sands and Hyoseon Yang: 2020, “A
Kernel-Based explicit unconditionally stable scheme for Hamilton-Jacobi
equations on nonuniform meshe"”, Journal of Scientific Computing,

» Andrew J Christlieb, Pierson T Guthrey, and William A Sands, and
Mathialakan Thavappiragasm: 2021, “Parallel Algorithms for Successive
Convolution”, Journal of Scientific Computing.



What are we talking about?

Two big themes:

> First - New spatial discretization that makes explicit time stepping
methods be unconditionally stable.
Method designed for multi-core computing,
Avoids iteration and all to one communication of implicit solves.

» Second - The method has been developed to solve PDEs with several
boundary conditions.

We will go back and forth between the two as we put the story together.



Photo gallery of applications of Kernel based methods
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Matthew F Causley and Andrew J Christlieb: 2014, “Higher order A-stable schemes for the wave equation using a successive convolution

approach”, SIAM Journal on Numerical Analysis.



Non-ideal MHD (V-B =0, B=V x A, and J =V x B)

m

1 e
8tA+(V><A)><u:—<77J+J><V><A+ 2atJ,>
ne ne

8tJ:0tVXVXA

Hamilton-Jacobi equations -
Constrained Transport for MHD



Example

Consider 1D Hamilton-Jacobi equations

¢t + H(¢pz) = 0.

We construct the following semi-discrete scheme
d Preo— o

where ¢, ; and gf):’i are the approximations to ¢, at x; obtained by left-biased and
right-biased methods, respectively.

Applications in diverse fields:

» Optimal control, seismic waves, crystal growth, robotic navigation, image
processing, and calculus of variations.

> Burgers equation, magnetic scalar/vector potential equations for MHD,
Navier-Stokes with Maxwell equation can also be casted as H-J equations.

Reference:

» A.J. Christlieb, W. Guo, and Y. Jiang, A kernel based high order “explicit” unconditionally stable
scheme for time dependent Hamilton-Jacobi equations, J. Comp. Phys. (2020).



What to look for in this talk:

Consider 0y = ¢d.f(y) -

» Explicit time stepping, for example, forward Euler

n+1 n
Y -y
At = c0:f(y)

gt —yp _ S — )

At Az

» CFL At < A2 finite propagation — stable.

@AY @AY
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Kernel based approximation

» Terms like 9, and 0,(n(z)0;) are made up of linear derivatives * 0,".
» Big idea: 0, ~ global instead of local gives (At > % — stable).

» Approximate 0, via a fast O(N) convolution integral with a kernel that
gives an O(At*) approximation.

(A%

ARight Moving Convolution Stencil

Left Facing Derivative A

a b
Space

(c) Stable for all At

» For linear PDEs, provably unconditionally stable even when using explicit
time stepping.



Kernel Based Expansion of d,,
~ 0,(-) with =i (15(+))" dy in O(N).



Motivation — MOLT

Prototypical linear PDEs:
> Linear advection equation: (0; — ¢d;)u =0
» Diffusion equation: (9; — 0y )u =0
» Wave equation: (9y — ¢20,z)u =0

Semi-discretize the equations in time (could use a BDF method to get high
order):

» Linear advection equation: (Z — cAtd,)u™*! = u™

» Diffusion equation: (Z — vAt0,,)u™t! = u»

» Wave equation: (Z — c2At20,,)u™ = 2u™ — y"~t

with an identity operator Z.

Observation: the operators 7 + i@w arise in each of examples.

1 1 1
(Z = —50) = (T = ~0)(T + ~0:)

We introduce the operators for simplicity:

L, =1— 181 and Lr =7+ laﬁ
(0% [0}



Integral solutions to MOL? formulation

Consider the univariate Helmholtz operators
1 1
=(Z—- -0, =(Z+ =0, .
Lr[u] (I aé‘ )u(x) and Lg[u] ( + aa )u(z)
We define convolution with the Green's function by the integral operators
b T
I[u](z) := a/ e y(r)dr and  Ig[u](z) == a/ e y(r)dr

so that the Helmholtz operators are inverted as
L7 =Be "™ L [[u](z) and L;' = Ae 7 4 Ip[u](z),

with boundary terms B and A in the Homogeneous solutions.



Kernel expansion of 0,

b
L, =(T- é@w)() +B.C., L;'=Brtlealt-a) 4 a/ e_o‘(f_z)(~)dT.J

T

Rewriting the first equation:
1
——0,=(L,—1I)+ B.C.
@
Defining a new operator D;, =7 — L’Zl, then this gives
Lr,=(I-Dg)"

and we expand (Z — D)~ ! in a power series

1 + -1 -1 = ¥4
=0 = (L, —T) = L(T- L) = (T D, =Y D,
20 (LL—-I)=L(Z-L,)=(Z-D.) Dg L

p=1



Kernel based approximation

A right traveling wave gives left facing operator (z moving from b to a) to
give a right facing derivative:

b
Lr=(1- éax)c) +B.C., L7'=DBrtlealt-a) 4 a/ e~ =0 () dr

x

oo
If = —a Z DY
p=1

and a left traveling wave gives right facing operator (z moving from a to b)
to give a left facing derivative:

x

1
Lr=(1+ E(%)() +B.C., Lp'=Artlealema) a/ e~ == ()dr

a
oo
J; =« Z DY
p=1
where

D,=TI-L;" and Dp=TI-L;"



Kernel Based Methods:

Description and Analysis



Consistency

Multiple ways to establish consistency, easiest way is to observe the relations
between our series and the resolvent expansion [Abadias et. al. (2017).].

Theorem (Consistency)

If ¢ € C*1]a, b], then

16:6(=) +aZD [41(2) oo = O(AtY), ||az¢(x)—aZD [#1(@) o = O(Ath).

p=1

Reference:

» A.J. Christlieb, W. Guo, and Y. Jiang, A kernel based high order “explicit” unconditionally stable
scheme for time dependent Hamilton-Jacobi equations, J. Comp. Phys. (2019).

» L. Abadias and P.J. Miana, CO-semigroups and resolvent operators approximated by Laguerre
expansions, Journal of Approximation Theory (2017).

» M. Causley, H. Cho, A.J. Christlieb and D. Seal, Method of Lines Transpose: High Order L-Stable
O(N) Schemes for Parabolic Equations Using Successive Convolution, SIAM J. Numer. Anal.
(2016)



Kernel based scheme 1 - The whole picture

(%) Oy — cOzy =0 + B.C.

Single-step and Multi-stage method

Apply SSP-RK3 for the equation (x):

y(l) =qy" — Atcd,y",

=354 (0 e,
1 4
1 2
n+l _ n (2) (2)
=gyt + 5 (v - Ateday™)

Then we use the approximation

3
0; =a )y Dh+0(Ar).
p=1
Reference:

» A.J. Christlieb, W. Guo, and Y. Jiang, A kernel based high order “explicit” unconditionally stable
scheme for time dependent Hamilton-Jacobi equations, J. Comp. Phys. (2019).

» A.J. Christlieb, W. Guo, Y. Jiang and H. Yang, A kernel based high order “explicit”
unconditionally stable scheme for nonlinear degenerate advection-diffusion equation, J. Sci.
Comp. (2020).

» A.J. Christlieb, W. Sands and H. Yang, A kernel based explicit unconditionally stable scheme for
Hamilton-Jacobi equations on nonuniform meshes, J. Comp. Phys., (2020).



Kernel based scheme 2 - The whole picture

(%) Oy — cOzy =0 + B.C.

Multi-step and Single-stage method

Integrating the equation (x):

At N
/ Ory(r, z)dr — caz/ y(r,z)dr =0
¢ ¢

gives the update
y" =" — cd:Ply"](2)

with

PN = [ stra)inx (e - 3 @) + i)

n

Then we use the approximation
9, =ay Dh+ 0(Ar),
p=1

Reference:

» A.J. Christlieb and H. Yang, High order single-stage multi-step schemes with MOL™ approach, In
progress.



Stability

Consider Hamilton-Jacobi equations on [a, b] with periodic boundary conditions.
We take the parameter o = 3/(cAt) with ¢ = max |H'(¢)|. Here we address the
operators Dy, and Dy with periodic boundary treatments

Dil¢l(a) = Di[¢l(b) and  Dilo](a) = Dy[#](b);

Theorem (Stability: Von Neumann analysis)

Suppose the suggested method employs the k-th order SSP RK scheme or k-th
order multistep strategy derived above for k£ = 1, 2, 3. There exists constant
Bk, maz > 0 such that the scheme is A-stable provided 0 < 8 < Bk max-

k 1 2 3
Brmaz 2 1 1.243

Reference:

» A.J. Christlieb, W. Guo, and Y. Jiang, A kernel based high order “explicit” unconditionally stable
scheme for time dependent Hamilton-Jacobi equations, J. Comp. Phys. (2019).

» A.J. Christlieb and H. Yang, High order single-stage multi-step schemes with moL™ approach, In
progress, 2020.

» A.J. Christlieb, W. Guo, Y. Jiang and H. Yang, A kernel based high order “explicit”

unconditionally stable scheme for nonlinear degenerate advection-diffusion equation, J. Sci.
Comp. (2020).



Kernel Based Methods
with Successive Convolution and WENQO



Kernel based schemes for nonlinear equations

Recap: For distributed spatial domain {z;}, we approximate

¢z ;) —aZD [#](s),

(z NaZD [#](z:)

where D? = Dr[D? '] and D% = Dx[D% '] for p > 1 and
D,=T-L;', Dr=T- Ly,

with
b
[,Zl[v](xi) = a/ efa(yfzi)v(y)dy + Be~ o=,

L3 v)(z) = a/ ey (y)dy + Ae™ 7,



Successive convolution for I; and Iy

Then
b i
I[v)(z:) = a/ e = y(y)dy  and  Ig[v](z) = a/ e~ @y (y) dy
can be calculated by
In[o](z:) = e 2" [ [o)(zig1) + Jo[v](z), i=0,...,N —1,
In[v](z:) = e~ 2% Ig[v](zi—1) + Jr[v)(z:), i=1,...,N,

where I“[v](zx) = 0 and I*[v](20) = 0, and

T4l Ti
Julo)(z:) = Oz/ U(y)e—a(y—zi)dy and  Jg[v](z:) = a/ v(y)e‘“(“_y)dy.

Q i—1

Therefore, once Ji[v](z;) and Jr[v](z;) are computed for all i, we then can obtain
Ip[v](z:) and Igr[v](z;) via the recursive relation above.

Evaluate J.[v](z;) and Jg[v](z;) with WENO methodology.



WENO based quadrature

Consider the approximation for Jg[v](2;) on the 6-point stencil {z;—3, -+, Zi12}:
173 L:Q L:l i itl i+2

On the stencil S(¢) and S,(7),7 = 0,1, 2, we obtain the approximation as
Ji = a/ e =9 p(s)ds, and Ji, = a/ e =9y () ds,
Ti—1 Ti—1

where p and p, are interpolants to v on S(¢) and S,(%) that satisfy
Ji = Jr[v)(z:) + aO(Az®) and  J;, = Jr[v](z) + aO(Az?)

if v is smooth. Then we can find linear weights d, s.t.

2
Ji=Y " drdir.
r=0



WENO based quadrature: nonlinear approximation

From

2
Y didir = Jnlol(a),

r=0
we construct the final approximation to Jr[v](z;) as

2
5 Wr Ji,'r
r=0

where the nonlinear weight w, for each of local solutions J; . is defined by

Qo d’r

Zkak o €+ Br

so that w, ~ d, and

> widiy = Jrlo]() + aO(Az).

r=0

Here (3, is derived to measure the smoothness of the function on each of substencils
Sr(7), r=0,1,2 and ¢ > 0.



Numerical Results (Part 1)



Linear equations

&, 9,0) = — cos(n(z + 1)/2).

—2<z,y<2,

CFL N, x N, k=1. 8=1. k=2.8=0.5. k=3. 8=0.6.
error order error order error order
20 x 20 1.28e-02 - 1.73e-01 - 2.25e-03 -
40 x 40 3.22e-03 1987 | 4.48e-02 1.947 | 1.69e-04 3.736
0.5 80 x 80 8.07e-04 1.998 | 1.13e-02 1.990 | 1.65e-05 3.356
160 x 160 | 2.02e-04 2.000 | 2.82e-03 1.998 | 1.90e-06 3.115
320 x 320 | 5.05e-05 2.000 | 7.06e-04 2.000 | 2.33e-07 3.032
20 x 20 1.94e-01 - 9.92e-01 - 3.08e-01 -
40 x 40 5.00e-02 1.931 | 5.66e-01 0.810 | 3.16e-02  3.283
2 80 x 80 1.29e-02 1984 | 1.73e-01 1.710 | 2.36e-03  3.747
160 x 160 | 3.23e-03 1.996 | 4.48e-02 1.948 | 1.86e-04 3.661
320 x 320 | 8.07e-04 1.999 | 1.13e-02 1.990 | 1.80e-05 3.370

Table: Loo-errors and orders of accuracy at 7' = 2.




Nonlinear equations in uniform grids

¢t+%(¢z+¢y+1)2:07 —2§£C7y§2,
¢°(z,y) = — cos(m(z + y)/2).

k=1. 8=1. k=2.8=0.5. k=3. 8=0.6.
error order error order error order
20 x 20 5.48e-02 - 1.68e-02 - 6.36e-04 -
40 x 40 2.98e-02 0.877 | 4.72e-03 1.836 | 5.11e-05 3.637
0.5 80 x 80 1.63e-02 0.874 | 1.28e-03 1.880 | 4.29¢-06 3.574
160 x 160 | 8.37e-03  0.961 | 3.30e-04 1.956 | 5.13e-07 3.065
320 x 320 | 4.27e-03  0.970 | 8.46e-05 1.965 | 6.03e-08 3.091
20 x 20 1.66e-01 - 2.41e-01 - 5.63e-02 -
40 x 40 9.94e-02 0.739 | 5.96e-02 2.017 | 8.39e-03 2.745
2 80 x 80 5.64e-02 0.817 | 1.70e-02 1.810 | 9.15e-04 3.197
160 x 160 | 3.05e-02 0.886 | 4.74e-03 1.841 | 6.26e-05 3.871
320 x 320 | 1.63e-02 0.906 | 1.28e-03 1.886 | 4.76e-06 3.717

CFL | N, x N,

Table: Loo-errors and orders of accuracy at 7' = 0.5/7>.



Nonlinear equations and grids with random perturbations

(bt + %(sz + ¢y + 1)2 =0,
(]5(113, Y, 0) = - COS(’]T(.CL‘ + y)/2)

—2<z,y<2,

CFL N, x N, k=1. 8=1. k=2.8=0.5. k=3. 8=0.6.
error order error order error order
40 x 40 1.09e-01 - 6.43e-02 - 7.76e-03 -
80 x 80 6.14e-02 0.835 | 1.66e-02 1.951 | 1.00e-03 2.952
0.5 160 x 160 | 3.30e-02 0.895 | 4.47e-03 1.894 | 7.88e-05 3.669
320 x 320 | 1.71e-02 0.945 | 1.19e-03 1.916 | 4.69e-06 4.069
640 x 640 | 8.72e-03  0.975 | 3.05e-04 1.959 | 3.36e-07 3.802
40 x 40 2.16e-01 - 3.21e-01 - 1.73e-01 -
80 x 80 1.72e-01  0.327 | 1.98e-01 0.696 | 4.68e-02 1.888
2 160 x 160 | 1.10e-01 0.653 | 6.45e-02 1.621 | 7.72e-03  2.600
320 x 320 | 6.15e-02 0.835 | 1.66e-02 1.962 | 1.00e-03 2.948
640 x 640 | 3.30e-02 0.897 | 4.46e-03 1.894 | 7.62e-05 3.716

Table: Loo-errors and orders of accuracy at 7' = 0.5/7>.




Riemann problem in nonuniform grids: for small cells

¢r +sin(py +¢y) =0, —1<z,y<1
¢($, y,O) = 7T(|y| - |$|)

Construct a nonuniform mesh consisting of 60 x 60 grid points using a
geometric series, selecting the ratio between the smallest cell size and the
biggest cell size to be 1: 7.

0325

-0.50

075

o]

1o 45 o0 o5 10 05 0 -1

(a) Generated mesh (b) Numerical solutions’ surfaces and contour at 7' = 1.



- Multistage Methods vs Multistep Methods (CFL=1)

Example 1 (H-J form: Burgers equation)

b+ 3(¢a+ 0y +1) =0, —2<2,y<2,
¢°(z,y) = — cos(n(z + y)/2).

No x N, Runge-Kutta 3 Multistep-3
error order error order
20 x 20 5.63e-02 - 1.68e-02 -

40 x 40 8.39e-03  2.74 | 3.14e-03  2.42
80 x 80 9.15e-04 3.19 | 4.18e-04 2091
160 x 160 | 6.26e-05  3.87 | 5.29e-05 2.98

Example 2 (Advection-Diffusion equation)

Ut + U + Uy = 0.01(Uge + uyy), —2< 1,y <2,
u(z,y,0) = sin(n(z + y)/2).

Ny x Ny Runge-Kutta 3 Multistep-3
error order error order
20 x 20 5.81e-01 7.38e-02

40 x 40 1.45e-01 2.00 | 2.03e-02 1.86
80 x 80 2.07e-02  2.81 | 2.64e-03 2.94
160 x 160 | 2.69e-03  2.94 | 3.53e-04 2091




- Multistage Methods vs Multistep Methods (CFL = 2)

Example 1 (H-J form: Burgers equation)

b+ 3(¢a+ 0y +1) =0, —2<2,y<2,
¢°(z,y) = — cos(n(z + y)/2).

No x N, Runge-Kutta 3 Multistep-3
error order error order
20 x 20 6.88e-02 - 1.68e-02

40 x 40 5.92e-02 0.22 | 1.68e-02  0.00
80 x 80 8.34e-03  2.83 | 3.16e-03 241
160 x 160 | 9.21e-04 3.18 | 4.19e-04 2.92

Example 2 (Advection-Diffusion equation)

Ut + U + Uy = 0.01(Uge + uyy), —2< 1,y <2,
u(z,y,0) = sin(n(z + y)/2).

Ny x Ny Runge-Kutta 3 Multistep-3
error order error order
20 x 20 8.03e-01 - 7.60e-02 —

40 x 40 5.84e-01 0.46 | 7.38e-02  0.04
80 x 80 1.45e-01 2.00 | 2.03e-02 1.86
160 x 160 | 2.07e-02  2.81 | 2.64e-03 2.94




Generalized Kernel Based Methods



Kernel based approximation with arbitrary boundary conditions

From the linear wave equation
Oy —cOzy=0 + B.C., z€]a,bl
the numerical solution is updated from

@) = 00 o [ "o e
with o = 1/(cAt). Therefore the operators are dfefined by
Ly=(T- éaz)(-)+B.C. L) = Be T +a/b e () dr
with B = B[()"] = (-)"*(b).
Now, the boundary term can be approximated by Taylor expansion:

Bly"] := g™ (b) = y"(b) + Aty;'(b) + O(AL?)
= y"(b) + cAtyl(b) + O(AL?)
= (D) + -yl (6) + O(AR).

Reference:

» A.J. Christlieb, S. Gottlieb, W. Sands and H. Yang, Generalized kernel based explicit
unconditionally stable schemes for arbitrary boundary conditions, In progress, 2020.



Kernel based approximation with arbitrary boundary conditions

Suppose ¢ € C¥"1[a, b] and we set the operator Dy, with general boundary
treatments. Then We can obtain that

DL[as](x):—Z L (a) +Z PEB(B)e =) — 1[0k (o)

p=1

Consider k = 2 case:
1, L, 1, —a(b—z) 1 "
Drlo)(z) = ——¢'(z) — —¢"(z) + —¢"(b)e — — 11[¢"](2).
e} o e} -
Instead of adding successively defined term D? = D,[D?" '], p > 2, we define

~ 1
Dldl(e) = Da[el(s) — —5 " (e~
and apply the Dy, operator:
~ 1 1
Di[DL[¢ll(z) = —¢" (= )+ 3 ]L[¢W]( )+ gffW"](m)-
Then we obtain higher order approximation to ¢’(z) with the modified partial sum:

DLI1(#) + DoIBLldll(s) — 6" (D)™™ = = 2/(2) + O(=).



Kernel based approximation with arbitrary boundary conditions

Using the general boundary treatments, we can modify the partial sums for the first
derivative operators:

61 (z) ~ P{[9](x) —aZDiwl 2) + SR (b)e 0

p=1

where

D} =Dy,
Dl =Dy B0~ (1) ore(p)e ), p>2
L — L[ L ] o z¢( )6 ’ p =4

It can be easily derived for the case ¢ () =~ P{*[¢](z) by a similar process.

Suppose ¢ € C*™[a, b], k =1, 2, 3. Then, the modified partial sums satisfy

0:6(5) ~ P < € (1) 1057 00

where * indicates L and R operators.




Numerical Results (Part 2)



Linear equations

¢r+(¢2) =0, —-1<z<1,
¢(z,0) = — cos(mz).

Table: (Periodic boundary conditions) Loo-errors and orders of accuracy at 7' = 1.

CFL N k=1. k=2. k=3.
error order error order error order
40 | 3.07e-01 - 7.92e-02 8.01e-03 -

80 1.69e-01 0.864 | 2.07e-02 1.933 | 9.51e-04 3.074
0.5 160 | 8.84e-02 0.933 | 5.27e-03 1.976 | 1.13e-04 3.067
320 | 4.52e-02 0.967 | 1.33e-03 1.990 | 1.38e-05 3.042
640 | 2.29e-02 0.983 | 3.33e-04 1.995 | 1.69e-06 3.023

Table: (Dirichlet boundary conditions) Loo-errors and orders of accuracy at 7' = 1.

CFL N k=1. k=2. k=3.
error order error order error order
40 3.06e-01 - 7.93e-02 - 7.11e-03 -

80 1.68e-01 0.862 | 2.06e-02 1.942 | 8.31e-04 3.097
0.5 160 | 8.83e-02 0.931 | 5.23e-03 1.981 | 9.81e-05 3.081
320 | 4.52e-02 0.966 | 1.31e-03 1.992 | 1.18e-05 3.050
640 | 2.29e-02 0.983 | 3.29e-04 1.997 | 1.45e-06 3.027




Nonlinear equations

¢+ 3(9:+1)2=0, -1<z<1,
¢(z,0) = — cos(mz).

Table: (Periodic boundary) Loo-errors and orders of accuracy at T = 0.3/7°.

CFL N k=1. k=2. k=3.
error order error order error order
40 3.52e-02 - 2.81e-03 - 2.30e-03 -

80 | 6.59e-03 2.419 | 1.15e-03 1.285 | 4.03e-04 2.515
0.5 160 | 3.30e-03 0.997 | 4.00e-04 1.525 | 5.73e-05 2.814
320 | 1.66e-03 0.996 | 1.26e-04 1.665 | 7.60e-06 2914
640 | 8.30e-04 0.995 | 3.43e-05 1.881 | 9.61e-07 2.983

Table: (Dirichlet boundary) Loso-errors and orders of accuracy at T = 0.3/7°.

CFL N k=1. k=2. k=3.
error order error order error order
40 | 3.47e-02 2.81e-03 - 1.77¢-03

80 | 6.59e-03 2.395 | 1.01e-03 1.476 | 2.85e-04 2.634
0.5 160 | 3.30e-03 0.997 | 3.76e-04 1.424 | 3.95e-05 2.848
320 | 1.66e-03 0.996 | 1.11e-04 1.758 | 5.07e-06 2.962
640 | 8.30e-04 0.995 | 3.02e-05 1.878 | 6.28e-07 3.012




A propagating problem with Dirichlet boundaries in nonuniform

grids

bt — /P2 +dr+1=0, 2*+y*<1

¢(z,y,0) =sin (3 (2 + y°))

with the Dirichlet boundary ¢(z,y,t) =1+t for all 2% + 3 = 1.
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0.0
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05 oo .
000 g

-1.00 e .
0500 o5 o

CFL =05 CFL =2
(b) Propagating solutions at T=0, 0.6 and 1.2

(a) Domain discretization



Magnetohydrodynamics
Examples



Magnetohydrodynamics equations

Consider the MHD equations

p pu 0

pu |puut+pal -B®B| _ 0

O l'e | TV [+ p) - Bu-B) | = 0

B u®B-B®u V x (nJ+ LJ xB)
V-B=0,
with the equation of state as

_p_ plu®  IBJ?
E=g+=5 + 35—

Methods to overcome V - B = 0:
The projection method, 8-wave scheme, hyperbolic divergence cleaning method, the
constrained transport method.

Reference:

» A.J. Christlieb, F. Cakir and Y. Jiang, A Kernel Based High Order "Explicit" Unconditionally
Stable Constrained Transport Method for Ideal Magnetohydrodynamics, Revised, 2020.

» A.J. Christlieb, X. Feng, Y. Jiang and Q. Tang, A high-order finite difference WENO scheme for
ideal magnetohydrodynamics on curvilinear meshes, SIAM J. Sci. Comput. (2017)



Magnetic vector potential formulation

Observe: B is a field, therefore there exists an A, magnetic vector potential,
such that V x A = B.

Goal: Express B in MHD in terms of A.

Start with Electron inertial equation, solve for E:

E——u><B+nJ+

In Maxwell, replace E in ;B = —V x E, with the above,

atBZVX(uXB—(nJ—i—

:03))

Noting that V x A = B and using the Weyl gauge,

A+ (VxA)xu (nJ—i—

20.3).

» A.J. Christlieb, J.A. Rossmanith and Q. Tang, Finite difference weighted essentially non-oscillatory
schemes with constrained transport for ideal magnetohydrodynamics, J. Comput. Phys. (2014).

Reference:



Examplel: 2D smooth vortex problem

The initial conditions are
(p,u',u®,v® p, B, B>, B®) = (1,1,1,0,1,0,0,0)
with perturbations on u', %, B*, B and p as :
(5u1,6u2) _ 2/26051 r? ( Y, z),
(6B*,6B%) = 2’1 0507 N—y, z),

5 = p(l—r*) — K L7
p - 87[_2 k)

and the initial magnetic potential is

AB(Oa Z, y) = %60.5(17’9)3

where 72 = 22 4+ y?. The vortex strength is taken as p = 5.389489439 and
£ = v/2p such that the lowest pressure is around 5.3 x 10712 which happens in the

center of the vortex. The domain is [—10, 10] x [—10, 10] and periodic boundary
condition is used on all four boundaries.



Examplel: 2D smooth vortex in resistive MHD

> Solve 2D smooth vortex problem with several resistive terms 7.
» Contour plots of ||B|| at time ¢t = 20 with Az = Ay = 0.2:

(i) FD scheme




Example2: 3D Blast wave

The initial conditions are
(p,u',w?,w®, B', B%, B%) = (1,0,0,0,50/+/27,50/v/2m, 0)
with a spherical pressure pulse

[ 1000 r<o0.1
) 0.1 otherwise.

where r = /22 + 32 + 22. The initial condition for magnetic potential :
A(0,z,y,2) =(0,0,50/V2ry — 50/V2mz).

We use domain [—0.5,0.5] x [—0.5,0.5] x [—0.5,0.5] and outflow boundary
conditions are applied everywhere.



Example2: 3D Blast wave

(i) Density contour plots at ¢ = 0.01 with 150 x 150 x 150 grid point
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x-axis x-axis

(ii) Pressure contour plots at ¢ = 0.01 with 150 x 150 x 150 grid point
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(a) FD scheme (b) Kernel based scheme



THANK YOou!!



Appendix



Parallel Algorithm



Domain Decomposition

DL=I-L;' Da=T-L,
with

b
ﬁzl[v](xi) = a/ efo‘(yfzi)v(y)derBe*a(bfz),

zi




Non-blocking All Reduce Parallel Code Diagram

m——— { Start MPI_Tallreduce: Wave Speeds ]

[ MPT_Tsends: Halo ][lmeriorReconstmctions]}

Halo Reconstructions

[ Convolution Sweeps ] [MPI_Isends:ECdata ] 3

Build “Inverse” Operators
Build “D” Operators

Integrator + Local Reduce

Reference:

» A.J. Christlieb, P.T. Guthrey, W.A. Sands and M. Thavappiragasm, “Parallel
Algorithms for Successive Convolution”, arXiv and submitted



Weak scaling results: up to 9 nodes

DOF /node/s

Efficiency

0.8

0.6

0.4

0.6
0.4
0.2

0.0

x10° Advection Diffusion Hamilton-Jacobi

Nodes Nodes Nodes

—e— DOF/node = 1681° —#= DOF/node = 6721% —»— DOF/node = 26881%
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Weak scaling results: up to 49 nodes

Hamilton-Jacobi
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DOF /node/s

Efficiency

g scaling results: up to 9 nodes

x10° Advection Diffusion Hamilton-Jacobi
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Nodes
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Example3: Hartmann problem with PEC boundary conditions

The Hartmann flow model for MHD is taken to be incompressible (V - v = 0), and
p=1,p=1. The momentum and magnetic field equations are given as

0 . 1
p[a%ﬁL(V-V)V] =-Vp+f+N([xB)+ ﬁVQ\h
0B _ 1 o
W'F(VV)B—(B V)V-FWV B.

With the assumptions of linearity in above equations, we have that

Rm
= v(y)X d B=y+ —B.(y)%x.
v=u(k and B=y+ ()1

The geometry of the problem consists of two infinite parallel plates and there is flow
in the gap between the plates.




Example3: Hartmann problem with PEC boundary conditions

Figure: Induced magnetic field for the Hartmann problem at Ha = 0,2, 5, 10.

02

Ha=10

0 2w 05 03 I 0 02 04 06 08 1
Y y
(a) [Muller] (b) Kernel based scheme

Reference:

» U. Miiller and L. Biihler, Magnetofluiddynamics in channels and containers, Springer Science &
Business Media (2013)



