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Motivation: Vlasov-Poisson system

A collisionless plasma in 1D1V can be described by the nonlinear
Vlasov-Poisson system:

ft+V'fo+E'va:0>
E = _vxqba —Ax¢:,0—1

» f(t,x,V): the probability of finding a particle with velocity v at position
X at time t.

> E: electric field.

> p= [ fdv: the macroscopic charge density.
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Motivation: incompressible Euler equation in vorticity
stream function formulation

Incompressible Navier Stokes equation:

1
ut+V-(u®u+pI):EAu, V-u=0.

Applying the V x operator to the u equation, we obtain the
incompressible Navior-Stokes equation in vorticity stream function
formulation

1
w4+ V- (aw) = ﬁAw
AP =w, u=V+d = (-0, d,).
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Existing numerical methods

» Lagrangian approach:
» Tracking macro-particle trajectories, e.g., Particle-in-cell (PIC).
» For high-D problems with good qualitative results at low cost.
> Inherent numerical noise O(1/+/N): difficult to get precise
results in some situations.
» Eulerian approach:
» Grid-based scheme.
» arbitrary order of accuracy in both space and time.
» CFL restriction for stability with explicit time-stepping method.
» Semi-Lagrangian (SL) approach:
» Combination of Eulerian approach and Lagrangian approach.
» Grid-based scheme.
» Numerical solution is updated by following trajectories.
» Allowing very large CFL number.
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» Eulerian approach:

» Grid-based scheme.
» Arbitrary order of accuracy in both space and time.
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» Eulerian approach:
» Grid-based scheme.
» Arbitrary order of accuracy in both space and time.
Ti-3 i3 L

Nl

thrl
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» Consider u; + f(u ) = 0 solved by RKDG*.

> f[]. Uﬂﬁdi f[ 1/}de€+(]01/} )]-{—1 _(fdﬂr) -5 1 =0.
> Alimitation: The RKDG scheme suffers the strlngent CFL
stability restriction ~

~
S

_1
2k+1"

*Cockburn and Shu, 80's
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» Semi-Lagrangian (SL) approach:

>

>
>
>
>

Combination of Eulerian approach and Lagrangian approach.
Grid-based scheme.

Numerical solution is updated by following trajectories.

Allow very large CFL number.

Popular in plasma physics and global multi-tracer transport in
atmospheric modeling.

€.

J Z;

j T, 1

: — tntl

o
Nl

7/46



» Semi-Lagrangian (SL) approach:

» Combination of Eulerian approach and Lagrangian approach.

Grid-based scheme.

Numerical solution is updated by following trajectories.

>
>
> Allow very large CFL number.
>

Popular in plasma physics and global multi-tracer transport in

atmospheric modeling.

xj7% l'j—% {Ej+%
} - -
/’ /’
4 4
7’ 4
’ ’
’ 7
7 1
1 1
* 1 * 1
i1 Tipl o
: 2 ’ 1 2 ' :
I*
J

Figure: Backward SL.
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SL schemes

SLDG method:

» DG: Low numerical dissipation; compactness; flexibility for
boundary and parallel implementation; superconvergence.

» SL: Could take extra large time stepping size with accuracy
and stability, leading to gain in efficiency.
Applications
» Plasma application: Vlasov equation.
» Climate modeling
» Fluid and kinetic models.
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1D SLDG for the linear transport equationf

Consider a 1D linear transport problem

ou 0
e + %(a(%t)u) =0

with appropriate initial and boundary conditions.

We consider an adjoint problem for the test function ¢ (x,t):

{wt + a($? t)zp:c =0,
¢(t = thrl) = \I/(;L‘)’

which is in an advective form, hence 1) stays constant along the
characteristics.

tCai-Guo-Q., JSC, 2017
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It can be shown that

d
(ﬁ/jj(t)u(x,t)l/}(x,t)dx =0, (1

~—

where fj(t) is a dynamic interval bounded by characteristics
emanating from cell boundaries of I; at t = ¢"1.
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Thus, from equation (1),

tn
(@5 pr ¥(2),p)) = ¥ (2)
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Two dimensional SLDG$

» Consider a two-dimensional linear transport problem

ou 8 0
E + %(CL(-’IJ, y7t)u) + @(b(xa y7t)u) =0

with appropriate initial and boundary conditions.

» Weak formulation of characteristic Galerkin method}: an
adjoint problem for the test function ¢ (z,y,t)

wt + CL(.Z', Y, t)"i/Jx + b(xa Y, t)¢y = 07
U(t =" = U(z,y).

Then it can be shown that Vi) € P¥(A;),
% ij(t) u(z,y, t)w(l‘, Y, t)d:ﬂdy =0

with Zj(t) a dynamic interval bounded by characteristics
emanating from cell boundaries of A; at t = ¢" 1.

tGuo, Nair and Q., MWR, 2014.
8Cai,Guo and Q., JSC, 2017.
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/

J

w(z,y, )W (2, y)dady = / w(z,y, ") (e, y, ") dedy

A*
J

with A; and A7 are shown as in the below left plot.

» Characteristics tracing: Locate four

vertices of upstream cell A7 :
vy(g =1,2,3,4) by solving the
characteristics equations,

dt
(") = z(vg),
y(tn_H) = y(vq),

starting from the four vertices of A;:

v‘](q = 1723374)'

13/46



Evaluation of [,. u(z,y,t")Y(z,y,t")dxdy
J

Two observations:
» (z,y,t") may not be a polynomial.

» wu(z,y,t") is a piecewise polynomial
T 1\ function on background cells.

Al 4 \ Strategies:

.l

» Reconstruct ¥*(z,y) approximating
P(x,y,t") on A} by a least square
strategy, based on

P(x(vg),y(vg),t") = ¥(x(vq), y(vg)),

¢=1,2,34.

L\ _ :
s » Evaluation of the integrand over the
A%,
) Al upstream cell has to be done
\_/

subregion-by-subregion.
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The swirling deformation problem.

with
> g(t) = cos (%) m,
> x€[-mm7], y € [-mm],
» The initial condition as shown on the
right.
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Shapes of upstream cells




Figure: Swirling deformation problem. Third order SL DG scheme:
T =0.75 (left) and T' = 1.5 (right). The numerical mesh is 80 x 80 with
CFL =5.
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The swirling deformation problem: convergence study

Table: Ut — (c052 (

z
2

) sin(y) cos (

27t
3

) Tl"u)z + (sin(z) cos® (¥) cos (%) 7ru)y

The initial condition is a smooth cosine bell. T' = 1.5.

Mesh L? error  Order | L? error  Order
PT SLDG CFL=7 CFL = 57
20x20 1.25E-02 8.59E-03

40x 40 2.92E-03 2.10 2.14E-03 2.00
80x80 5.96E-04 2.29 5.42E-04 1.98
160x 160 1.30E-04 2.20 1.33E-04 2.02
P? SLDG

20x20 3.22E-03 9.37E-03

40x40 6.58E-04 2.29 2.87E-03 1.71
80x80 1.42E-04 2.22 6.92E-04 2.05
160x160 3.15E-05 2.17 1.89E-04 1.87
P2 SLDG-QC

20%20 2.61E-03 5.29E-03

40x40 3.15E-04 3.05 7.78E-04 2.77
80x80 3.81E-05 3.05 1.04E-04 2.90
160x 160 4.91E-06 2.96 1.47E-05 2.83

=0.
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Properties of the scheme

Convection equations in a conservative form

’ut—i-Vx'(au):O.‘

A SLDG discretization of

u"t = SLDG(a, At)u™.

» Mass conservation.
» High order accuracy in space and time.

» Unconditionally stability which allows arbitrary large stepping
size.

» No dimensional splitting error for multi-dimensional problems.
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Motivation of ELDG

» Motivation
» Higher dimensional problem: complication from quadratic
curve approximations to sides of upstream cells.
» General nonlinear problems: characteristics tracing is difficult
or impossible.

> Related work in literature
» Eulerian-Lagrangian localized adjoint methods (ELLAM):
Douglas and Russel (82'), Celia, Ewing, Wang, etc.
» Eulerian-Lagrangian WENO method: Huang, Arbogast, et. al.

2016
> Arbitrary Lagrangian-Eulerian (ALE) moving mesh method.
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The space-time region of ELDG

Ti-1 Titd
: 4 — 1
7 1
dz(t) _ 1~ V 1 d
g = a(@(t),t ’ - 1
"t = 1L7' I; (t) p N /~ u(.I, t)?/)(% t)dI =0
I=2 3 dt I ()
. J
: | A | A
* —~ V" *
Ly =1 Tivd
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The space-time region of ELDG

-3 i+
: 4 — 1
I 1
_ ]
dEC) — a(@(t), f)*,/ .
L(f"*’l) =, 1 J(t) !
2 I '
1
. Yy v n
) * " N I* ¢
S x*
AL =1 e
Ti-% Ti+d
: + +— it

straight lines —<_ ’Q‘ tra ezoid
/“1\ p

/<—I(it)—;N

/ ; / 1
’ 4 / ’
4 /
! na |4 4 ¥ 1 4 I 4
T < t = t
*
x” = . T
i—5 L") =17 i+l

u(z, t)(x, t)de =

P Linear function a(x,t) in
approximating a(z, t).

P Feature I: Q
upstream cells are polygons
(tetrahedron).

P> Feature II: straight lines

approximating characteristics.

0.

;. trapezoid; in high-D
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ELDG for 1D linear transport: A modified adjoint problem

» We consider
ur + (a(z,t)u), = 0. (2)

> We consider the adjoint problem with V¥ € P¥(I;) on the
time interval [t", t"T1]:

Yy + oz, ), =0, t € [t", "1,
Pt = ") = U(x),

with a(z,t) being a linear approximation to the original
velocity field a(z,t).
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The semi-discrete ELDG scheme

[ (@64 @) waa=o
2

Transform the time integral form to the time differential form gives

d
@i ()2 = = ()

100 + (F)
2

i 1) +/_ Fippdzx. | (4)
-3 ()

J

where F(u) = (a — a)u.
» In special case of a(x,t) = 0, ELDG becomes RKDG;
» In special case of a(x,t) = a(z,t), ELDG becomes SLDG.

» The time differential form allows for the direct application of
method-of-lines SSP RK methods.
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The semi-discrete ELDG scheme (cont.)

d D (t; (€, 1)) - A
ﬁ/zj (u\I/(f))deﬁ =—(Fv) ‘gzmé + (Fo) ‘5:xj_% +/Ij FUde.

P Lax-Friedrich flux:
ﬁ(u yut) =12 5(F(u™) + F(ut)) + %(u_ —ut), ap = maxy |F'(u)].

» k + 1 points Gauss quadrature rules :
J1, Flun)Wedé ~ St (F(un (21, 0) Ve () w1 Ax),
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Fully discrete ELDG: SSP RK time discretization

> TR _ . _ 9&((E,tm )
Denote U, ij(t) utpdx ij up W JdE with J 5 ;
P Denote the spatial discretization operator as £ ((:fh(t), t).

Ny £ (U (t),t) ,with U, (t™) = 07"

|
=
=<
=

I

SSP RK methods:
1. Evaluate U}’; = [7 u(z, t™)¢(z, t™)dx at t™ for all test functions ¥ by the
SLDG scheme.

2. For RK stages i =1,---,s, compute

[

79 = Zi [0 + gaatmc (O 17 + dyaen)] .
=

Order a;l Bi d;
3 1 1 0
3 1 1
11012 00012 }
3 3 3 2
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Allow for a large time step

» Similar to the time step of DG method, we may use the
following time step

At < Az
= (2k + 1) max|a(z,t) — a(z,t)|

» «a(x,t) in approximation of a(x,t)
max |a(z,t) — a(z,t)] = O(At) + O(Az?)

4

AtNAIL'%,

to be verified by the numerical results.
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A modified adjoint problem for 2D transport

» 2D linear transport equation:
ut + (a(m, y,t)“)x + (b(iﬂ, y,t)u)y =0.

> We consider a modified adjoint problem at Aj (t) on the time interval
t e [tm, tn )

wt + a(w, y:t)ww + B(I,%t)ﬂ)y = 01 1/’(%1/,15 = tn+1) = \I’(x) y) S Pk(A])v

where (a, 8) are Q! or P! polynomials on A; at "1 approximating the
original velocity field (a,b).
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2D ELDG formulation

A;()

i updxdy = —/

9A;(t)

¢F - ndS + / F - Vidady,
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2D ELDG formulation on the reference element

_ 1— fL&(tn-H -7) fL&(tn-H —7)
: _ o, _ 2] 2]
» Jacobian, J(&,n) = 3(25"]; (r) = < 7(;7?5(tn+1 I ) fng—ﬁ(twrl 9 ) .
n

» Mapping formulas:
> dxdy = det(J(&,n))dédn,
> Voyt(@.y) = J(En) Ve U(E,n),
> ndS = det(J(&,n))J(€,m) " ThdS.

% A_U(fc(t:(£7n,t”+1))7§(t7(&Ti:t"“))»t)‘l’(éﬂ?) det(J(&,m))dédn

o /3,4, V(& F - (det(J(€m) I (€ n) ") dS

+ / F - (J(€, 1) Ve, ¥) det(J (€, n)dédn.
A

J

Similar to the procedure of 1D ELDG, SSP RK discretization can
be applied to the above formulation.
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EL RKDG on the unstructured mesh




Summary: EL-RKDG

» An organic coupling of SL DG and Eulerian RK DG methods

> Step 1 (SLDG): L? re-projection of solutions on upstream cells.
» Step 2 (RKDG): flux differences between original and adjoint
problems over the time-dependent dynamic volumes.

» A unified framework to accommodate both SL and RK DG
methods.

> RK DG: a = 0.
»> SL DG: a(z,t) follows the exact characteristics.

> Let Atgrpg be stability constraint of the ELDG.

Atprpa € [Atrxpa, Atsrpal

» High order accuracy, mass conservation, superconvergence,
unstructured mesh.
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1D transport equation with variable coefficients

10” .——— P!sLDG N=80 P2 SLDG N=80
— — — P!ELDG-ST1 N=80 P? ELDG-ST1 N=80 f
——— P} ELDG-ST2 N=80 - PELDG-ST2 N=80 i,
| —— PSLDG _ N=160 P’SLDG _ N=160 /4
— — — P/ELDG-ST1 N=160 P2ELDG-ST1 N=160 fl-/
——— FLELDGSTZ N=180 | - PELDGST2 N=ito 4!,
10" b= — — P'ELDG-ST1 N=320 —  PYELDG-ST1 N=320 ;* /"
——e— PIELDGST2 N=320 .~ " 1, . P? ELDG-ST2 N=320;
— —— P'SLDGE N=320”
- 10°
= =
g g
£ £
210 by
L o,
10
10° 10°
T A v A ) B
e A S g S 108 A i
107 10' 107 107 10"
CFL

Figure: P' SLDG-E means P* SLDG scheme which solve the
characteristic line exactly. Observations: (1) expected order of
convergence in time is observed; (2) Stability bounds for the maximum
CFLs of P2 ELDG using N = 80, 160, 320 are observed to be around 3.5,

5, 7 increasing at the ratio of V2 & 1.4, which verifies the time step
estimate At ~ CvV Az.
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Rigid body rotation

ut — (yu)e + (zu)y =0

» A circle domain:

(z,y) € {(z,y)]a* +y* < 7%} >°

AN
SRS

> A sample mesh with the mesh

160 (GMSH).

1

2k

3h

<
o ﬁ;
ik

<)

>
[
N VAVARVAN
S SAvAVAVAYA)
TAVAYAVAVAV
SVAVAVAYAY,

Vv VAT

0
Pt

A\
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Rigid body rotation: high resolution

i i

(a) initial state N = 7432 (b) P? RKDG, CFL =0.15

ith

(c) P? SLDG, CFL =10.2 (d) P? ELDG, CFL = 10.2
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Swirling deformation flow: high order spatial and temporal

accuracy

(
7777777 P?ELDG N=2:40° i
107k ~ PPELDG N=2:80° i

~ PPELDG N=2:160° i
P?SLDG N=2x160° i

P'ELDG N=2:40' ;i !
- P'ELDG N=2.80° [/
- P'ELDG N=2<160* [ |
P'SLDG N=2:160° ; |

10° L
0 107

Figure: The swirling deformation flow with the smooth cosine bells with
T = 1.5. High order spatial and temporal accuracy, large CFL range

increase with mesh refinement.
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Swirling deformation flow: DG P?

(a) RKDG, CFL =0.15 (b) SLDG, CFL =10.2 (c) ELDG, CFL = 10.2
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SLDG-RKEI and ELDG-RKEI methods

» So far, SLDG and ELDG solvers are proposed for linear
transport equations.

» In order to solve the following nonlinear transport problem

‘ut + Vi (P(u;x,t)u) = 0‘

we apply a high order Runge-Kutta exponential integrator¥,
which decomposes the equation into a set of linearized
transport problems.

» The SL method can be viewed as an exact time integrator for
linear transport problems.

TCelledoni, et al., FGCS ,2003
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RK exponential integrators for nonlinear ODE systems

Consider
YO oy, we=0)=w ©)
A first order scheme
y" T = exp(Cly")At)y". (6)

To improve the accuracy, a class of commutator-free exponential
integrators can be used. The idea is to achieve high order temporal
accuracy via taking composition of a sequence of linear solvers by
freezing coefficients, which can be explicitly computed as a linear
combination of C(Y") from previous RK stages.

y =y"

y? = exp <

2
y® = exp (gC(y(Q))At) y

1

3C(y(”)At> y
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A third order SLDG-CF3C03 scheme

uD =
u® = SLDG (;P(u(l)), At) ul)

u® = SLDG (;P(u@)), At) ulV)

u"t = SLDG (—%P(u(l)) +

%P(u(?’)), At) u®.
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The guiding center Vlasov model

The guiding center model describes a highly magnetized plasma in
the transverse plane of a tokamak. It reads

Pt +V- (ELP) =0,

AP = Ps EJ_ = (_q)yv (I)‘T)

where p is the charge density of the plasma and E = (E, E»)
determined by E = —V & is the electric field.
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Guiding center Vlasov: high order spatial accuracy

Table: Guiding center Vlasov on the domain [O 27 ] [0, 27] with the initial
condition w(z,y,0) = —2sin(z)sin(y). T =1. CFL = 1. The temporal
scheme CF3CO03 is used.

Mesh | L' error Order | L' error  Order
P! SLDG P! ELDG
202 | 1.39E-02 - [ 9.59E-03 -
402 3.66E-03 193 | 2.35E-03 2.03
602 | 1.65E-03 1.97 | 1.02E-03 2.06
802 | 9.37E-04 1.96 | 5.78E-04 1.97
100> | 6.01E-04 1.99 | 3.69E-04 2.00
P? SLDG-QC P? ELDG
202 | 2.13E-03 - | 1.54E-03 -
402 2.73E-04 297 | 1.79E-04 3.10
602 | 8.11E-05 2.99 | 521E-05 3.05
802 | 3.48E-05 2.94 | 2.10E-05 3.16
1002 1.77E-05 3.02 | 1.07E-05 3.04
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Guiding center Vlasov: high order temporal accuracy &
huge time step!

10?
10°
.
5 10°
=
@
10°
10°
Nz
& —5— P'ELDG+P’ LDG+CF2
107 ——~A&—— P? ELDG+P° LDG+CF3C03

——v—— P? SLDG-QC+P® LDG+CF3C03

| n n TR |
10" 10
CFL

Figure: The Kelvin-Helmholtz instability problem at T'= 5. The mesh of

120 x 120 cells is used. The reference solution from the corresponding scheme
with CFL = 0.1.
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SLDG-QC with adaptive time stepping algorithm for
guiding center Vlasov

16
15
“
13
12
1
10

CFL

P

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40

(=Jbe(+)

3D plot of solutions of third order SLDG-QC-RKEI method with the
adaptive time-stepping algorithm based on the area invariant,

max; M‘ﬁ%}:ﬁm . The mesh is 100 x 100.
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Summary

We propose an ELDG method, which avoids to construct a
quadratic-curved quadrilaterals and still enjoys
» high order DG spatial discretization, high order temporal
discretization, large time stepping size, mass conservation,
resolution of filamentations, superconvergence of long time
integration.

» SLDG + ALE + characteristics tracking/approximation
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Current/future development and open problems
» Linear system such as the wave equation (joint work with
Dr. X. Hong)

» Handling diffusion and stiff source terms with asymptotic
preserving properties (joint work with Dr. M. Ding and Dr. R.
Shu)

» Nonlinear scalar problems such as the Burgers' equation (joint
work with J. Chen, J. Nakao, Dr. Y. Yang)

» Nonlinear hyperbolic systems, such as shallow water, Euler
and Navier-Stokes systems.

» Positivity preserving ELDG.
» Moving mesh ELDG method.

» Analysis of stability for nonlinear problems; accurately
quantify the time stepping sizes allowed for stability.

» What is the position of semi-Lagrangian schemes in the
software development?
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Thank you! Questions?
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