David Keyes
Extreme Computing Research Center
King Abdullah University of Science and Technology

12 January 2022

What has changed in time integration?

(from Sandu, 2022)

@ Many tasty new apples on the tree and delicious new
entrees at the picnic!

o A “Cambrian explosion” of operator splitting methods
that exploit natural separations on the 2x2 state space of
{ stiff | nonstiff } and { linear | nonlinear } terms in order
to achieve solutions of desired temporal accuracy at
lower cost relative to fully implicit solvers

“The goal of high performance
computing 1s not to solve model
problems faster, but to solve complex

problems at all.”
Bill Gropp

“Complex” attributes, still within the realm of well-posed problems
with well-defined, in principle computable solutions, given enough

resolution and computational capability may include:
nonlinearity
high dimensionality
multiple scales in space and time
multiple coupled physical phenomena
multiple field components
wild inhomogeneity
strong anisotropy
ete.

“We want methods that shoot the
problem in the head.”

Bob Brown

In other words, robustness and general applicability for user
productivity before all else, including efficiency, elegance, etc.

“The advantage of unconditional
stability may be worth 1t, even at the
cost of larger coefficients in the error

term.”
David Shirokoft

“Full implicitness provides comfort,
theory, and stability... Linear
implicitness should do the job; then

move beyond as needed.”
Giovanni Russo

“We’re seeking the least implicitness
that delivers the stability we need...
Implicitness steps over ‘inconsequential’
fast components (acoustic waves;

Alfvén waves).”
Emil Constantinescu

@ Complexity of code and user interface

m relative to fully explicit

e Computational cost
m storage, operations, synchronizing communication

m if fastest stiff scales need resolving anyway, fully implicit is not
relevant

m need 1 to 2 orders of magnitude of scale separation between
‘inconsequential’ fast phenomena and phenomena of interest to
cover the generation of the Krylov subspace on each Newton step,
depending on the Jacobian conditioning and the preconditioning

® Robustness

m assumes you can trust Newton to converge

® Temporal accuracy

m traditionally associated with first-order backward Euler

e Complexity of code and user interface

m relative to operator split methods that use both implicit and explicit
m no worries if proper operator splits evolve dynamically

e Computational cost

m allows integration on time scales of interest, sometimes stepping over
many orders of magnitude of fast scales

m full Jacobians not needed

® Robustness

m unconditional stability

m globalization methods for Newton have come a long way

® Temporal accuracy

E no operator splitting error

m BDF2 should often be the default, at the cost just one extra state vector
and negligible extra operations or synchronizing communication

m other fully implicit higher order schemes possibly relevant, at the cost
of further back-vectors of state or RHS

“I’m a believer 1in ‘co-simulation’. We
must learn to work directly from
users’ codes.”

Ray Spiteri

“We use a preconditioner based on our
favorite part and simply leave the
other terms unpreconditioned. ..
Whatever the code has it 1n already —

use 1t!”
Dan Reynolds

“General Linear Method filters can
deliver higher order with just
backward Euler, without changing the

user’s code.”
Sigal Gottlieb

“The name of the game 1s to minimize
the computational cost for a given
accuracy.”

Ray Spiteri

“The name of the game 1s to ask the

user to write their code exactly once,

no matter what algorithm they use.”
Matt Knepley

® Blast thru original nonlinearly implicit manifesto (2007)

multi-scale — avoid stability timestep limit when it is tighter than the
accuracy limit for the phenomena of interest

multi-physics — avoid first-order splitting error

multi-solve — inverse Jacobian action needed, anyway

® Back off from apparent claims of universal applicability

perhaps excessive hubris about Jacobian-free Newton-Krylov schemes

benefit of unconditional stability may be expensive compared to split
schemes that compute the same outputs of interest as accurately

@ Finally, reassert its utility

efficient implicit solvers still needed in ImEx and other tasty new
apples, even if just for part of the operator

our toolkits contain ever improving globalizations for Newton’s method
(esp. thru nonlinear preconditioning)

likewise, ever improving approximate linear solvers

David Keyes
Applied Physics & Applied Mathematics
Columbia University
&
Towards Optimal Petascale Simulations (TOPS) Center
U.S. DOE SciDAC Program

e Why you would, it you could

= for multi-scale problems with wide scale separation,
where interest is in following the slower scales

a for coupled (or “multiphysics”) problems

= for problems with controllable or uncertain parameters
or fields (or “outer loop” problems): optimization,
design, control, inversion, assimilation

= for cranking up temporal order with BDF (at least to 2)

e You can, so you should
= optimal and scalable algorithms known
n freely available software available

= reasonable learning curve that harvests legacy code

Focus on Jacobian-free implicit methods

terms of coding S) LS
= valuable to have, but usually
not necessary

= approximations thereto often . .
sufficient first frontier

= meanwhile, automatic
differentiation tools are always
lowering the threshold

e Iwo stories to track in

“new” frontier

supercomputing —
m raise the peak capability l
m lower the entry threshold with best practices
useful software for all users

“The dominant computational
solution strategy over the past 30
years has been the use of first-order-
accurate operator-splitting, semi-
implicit and explicit time integration
methods, and decoupled nonlinear
solution strategies. Such methods
have not provided the stability
properties needed to perform
accurate simulations over the
dynamical time-scales of interest.
Moreover, in most cases, numerical
errors and means for controlling
such errors are understood
heuristically at best.”

“Research in linear and nonlinear
solvers remains a critical focus area
because the solvers provide the
foundation for more advanced
solution methods. In fact, as
modeling becomes more
sophisticated to increasingly include
optimization, uncertainty
quantification, perturbation
analysis, and more, the speed and
robustness of the linear and
nonlinear solvers will directly
determine the scope of feasible
problems to be solved.”

Some reports predicated on
scalable implicit
solvers ...

Matheraatical
Challenges for the

Department of
Energy

2002

2003 .
2003-2004 (2|vol) January 2003

2004

2006
2007

among 00s
2007
many others 5507 |

2008

fl‘0m DOE? NSF’ I 208 2010
NASA, NRC, etc. (reports outlined in re%ion 2012

added in 2002 update) _—— " 2016

Motivation #1
Many simulation opportunities are multi-scale

® Multiple spatial scales
m interfaces, fronts, layers

m thin relative to domain
size, 0 << L

® Multiple temporal scales
m fast waves

m small transit times
relative to convection or
diffusion, 7<<T

Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL

® Analyst must isolate dynamics of interest and model the rest in a
system that can be discretized over more modest range of scales

® Often involves filtering out of high frequency modes, quasi-
equilibrium assumptions, etc.

® May lead to infinitely “stiff” subsystem requiring implicit
treatment

e.g., DOE’s SciDAC* portfolio is multi-scale

Appplig atioI I

Many Math Common
applications - technologies
drive respond

* Scientific Discovery through Advanced Computing

Examples of scale-separated features
of multiscale problems

® Gravity surface waves in global climate
® Alfvén waves in tokamaks
® Acoustic waves in aerodynamics

® Fast transients in detailed kinetics chemical
reaction mechanisms

@ Bond vibrations in protein folding (?)

Explicit methods are restricted to marching out the long-scale dynamics on
short scales. Implicit methods can “step over” or “filter out” with
equilibrium assumptions the dynamically irrelevant short scales, ignoring
stability bounds. Accuracy requirements must still be satisfied; with long
time steps, one can use high-order temporal integration schemes.

Methods that are not fully nonlinearly
implicit may fail, even if stable

ou 0O Ou Ko KR
= a(xu)—|; a=xku,);, K(s)= 1/2
at 5)6 5)6 K0+k(|s|_Scrit) 7|S|>S

crit

history at
station 10

Linearly implicit, nonlinearly explicit:

U;l+1 . V[@/z (Un+l . U;H_l)

j+l j+l

~&, (U —UTh]=U"

vee { history at
.2 | station 10

Linearly and nonlinearly implicit:

U;l+1 . V[@z (U7.2+1 . U;H_l)

Jj j+l1

0@ I 1 -
~]'—1/2((];l+ — U;ljl)] = U}i :_:_\

0.54

Accuracy as a function of timestep —
GLF23 with gradient-dependent diffusivity

lin implicit, nonlin explicit

fully nonlinearly implicit

For sufficiently small timestep, the nonlinearly implicit and linearly implicit with
lagged diffusivity converge on the same result, but the nonlinear implicit permits
timesteps 104 times larger with same accuracy (c/o S. Jardin, PPPL).

Explicit methods do not weak scale;
(review weak vs. strong scalability)

® ‘““Strong scaling”

m execution time decreases in
inverse proportion to the number
of processors log T

m fixed size problem overall

m often instead graphed as

reciprocal, “speedup”

® “Weak scaling”

m execution time remains constant,
as problem size and processor
number are increased in
proportion

m fixed size problem per processor

m also known as “Gustafson scaling” P

Runtimes of explicit methods grow under weak
scaling due to CKFL stability constraints

® Illustrate for CFL-limited
hyperbolic and parabolic eqns

® Parallel wall clock time

oc TS1+a/dPOt/d

e [Example: explicit wave
problem in 3D (a=1, d=3)

Domain | 103x 103103 | 10*x10%x10* | 10°x10°%x10°

Exe. time 1 day 10 days 3 months

e [Example: explicit diffusion
problem in 2D (a=2, d=2)

Domain 103x 103 10%x 10* 10°x 105

Exe. time 1 day 3 months 27 years

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale 7
h computational mesh cell size

T computational time step size

t=0(h%) stability bound on time step
n=L/h number of mesh cells in each dim
N=n number of mesh cells overall
M=T/t number of time steps overall

O(N) total work to perform one time step
OMN) total work to solve problem

P number of processors

S storage per processor

PS total storage on all processors (=N)
O(MN/P) ideal parallel wall clock time

= (T/t)(PS)/P oc T S!*ovd pod

(since 1/t oc I/h* = n® = N¥¢ = (PS)¥9)

“blackboard”

Motivation #2
Many simulation requirements are multi-physics

e Interfacial coupling

m Ocean-atmosphere coupling
in climate

m Core-edge coupling in
tokamaks

m Fluid-structure vibrations

in aerodynamics
SST Anomalies, c/o A. Czaja, MIT

m Boundary layer-bulk

phenomena in fluids e Bulk-bulk coupling
m Surface-bulk phenomena in m Radiation-hydrodynamics
solids m Magneto-hydrodynamics

® Coupled systems may admit destabilizing modes not
present in either system alone

Operator splitting can destabilize multiphysics

e Model problem @=-Au+u’, u(0)=u,, >0

e Exact solution u(t) = —20 exp(=A!) V\llletl_l def_ifn;i for
1+“70(exp(—,1z)—1) afttime 4= u,

e Numerical approx. U, ~u(t,), t, =kAt, k=0,1,...
e Phase 1 (“R”) i, =u,, up,(t,)=U,, t <t<t_,
® Phase2 (“D”) i, =-du, uy(t)=uyt.). t <t<t,,

e Overall advance U, ,, =u,(t.,)

Uk
1-U,(t-t,)
® Phase 2 solution u, (1) =u,(t,,,)exp(-A(t—1,))

e Overall advance ¢y _ -y, exp(-4Af) Can blow up in
1-U At finite time!

® Phase 1 solution %)=

Operator splitting can destabilize multi-physics

e Example from Estep et al. (2007), A =2, u,=1
® 50 time steps, phase 1 subcycled inside phase 2

1 “R” per “D” 5 “R” per “D” 10 “R” per “D”
Continuous Discrete U
i+ Au=u’, u(0)=u,, t>0 u,(t) = ud
a0 1-U,(t-t,)
u, exp(—Af
u(t) = : up () =uy(t,,,)exp(—A(—t,))

exp(—A Atr)
1-U, At

U
1+ -2 (exp(=Ar)—1
" (exp(-20)-1) .

This is a prototype for a Fourier mode of a
reaction-diffusion PDE

u —au_=u", u(0,x)=u,(x), t>0

® Diffusive time-scale depends only on the wavenumber,
whereas reactive time-scale changes with amplitude

® Besides opening the possibility of finite-time blow-up for a
problem that is well defined for all time, operator splitting
leaves a first-order error, independent of integration errors
for the two phases independently

® See Estep et al. (2007) for additional examples of splitting
multiple components in one domain, multiple domains, etc.

2022 Giovanni Russo noted in Monday’s panel that additive
(F=F,+F,) and component (u=(v,w)7) splitting of u '=F\(u)

note: .
can be placed in correspondence.

Motivation #3

Many simulation opportunities face uncertainty

Climate prediction

Subsurface contaminant
transport or petroleum
recovery, and seismology

Medical imaging

Subsurface property estimation, c/o Roxar

e Stellar dynamics, e.g.,

® Uncertainty can be in

m constitutive laws

supernovac

Nondestructive evaluation o »
m initial conditions

of structures m boundary conditions

UQ, sensitivity, optimization, parameter estimation,
boundary control all require the ability to apply the inverse
action of the Jacobian — available in all Newton-like
implicit methods — and can also use its adjoint

Multi-solve efficiently via adjoints

e Forward operator equation Lu=f
® Desired functional of solution /() =<€ ,u>

® Define adjoint operator "y = g

(Lu,vy=(L'v,u)
® Once we solve for vgiven { [v=/
® Then desired output ... ((u) = < g,u> —
<L*v,u> = (v, Lu) =
/)

... reduces to a mere inner
product for each forcing f

Significance for multi-solve problems

® For one solution of the adjoint problem (per output
functional desired) one can evaluate many outputs per
input to the forward problem at a cost of one inner
product each

m Rather than solving the forward problem for each input

e Part of the price to be paid in coding (ability to solve
with linearized adjoint) is often included in the price
paid to take the forward problem implicit

m Caveat: a key shortcut for solving with L when L is a Jacobian,
namely the matrix-free application of L (see later), is not directly
available for L™

m Instead of one function evaluation per matvec, it takes a number of
function evaluations corresponding to the number of significant
singular values

Significance for inverse problems

® Inverse problems are often formulated as PDE-
constrained optimization problems

m objective function (mismatch of model output and “true” output)
m equality constraints (PDE)

m possible inequality constraints

® Can be cast as nonlinear rootfinding problem

m Form (augmented) Lagrangian

m Take gradient of Lagrangian with respect to design variables, state
variables, and Lagrange multipliers

m Obtain large nonlinear rootfinding problem (so-called KKT system)

® Solving with Newton requires the Jacobian of gradient
which is the Hessian of Lagrangian
m Makes use of the Jacobian of PDE system and its adjoint Sa

\9

Comparing nonlinear explicit and implicit methods

Explicit Naively Implicit
Reliability robust when stable uncertain
Performance predictable data-dependent
Concurrency O(N) limited

Synchronization

once per step

many times per step

Communication

nearest neighbor*

global, in principle

Workspace

O(N)

ON "), e.g., w=5/3

Complexity

O(N)

O(N), e.g., c=7/3

* plus the estimation of the stable step size

Components of scalable solvers for PDEs

® Subspace solvers

m clementary smoothers

alone unscalable:
either too many
m incomplete factorizations iterations or too

much fill-in

N

m full direct factorizations

® Global linear preconditioners
m Schwarz and Schur DD methods

m multigrid

opt. combins. of
subspace solvers

A\

® Linear accelerators
m Krylov methods

mat-vec algs.

/\

® Nonlinear rootfinders

m Newton-like methods

vec-vec algs.
+ linear solves

/N

Newton-Krylov-Schwarz:
a PDE applications “workhorse”

F(u)~F(u)+F'(u,)ou=0 Jou=—-F M7 Jou=-M"F
u=u_+2Au ou= argmin {Sx+F} M= R'(RJR')'R,
xeV={F JF . J*F -}
Newton Krylov Schwarz
nonlinear solver accelerator preconditioner

asymptotically quadratic spectrally adaptive parallelizable

“Secret sauce” #1:
iterative correction, w/ each step O(V)
® The most basic idea in iterative methods for Ax = b
X —x+B7'(b—Ax)
® Evaluate residual accurately, but solve approximately,
where B~!is an approximate inverse to A4

® A sequence of complementary solves can be used, e.g.,
with B, first and then B, one has

x < x+[B'+B;' =B, AB"'|(b— Ax)

e Optimal polynomials of (B~ A) lead to various
preconditioned Krylov methods

® Scale recurrence, e.g., with B, b= RT(RART)_IR ,
leads to multilevel methods

“Secret sauce” #2:
treat each error component in optimal subspace

smoother

A Multigrid V-cycle

Finest Grid

Restriction
transfer from
fine to coarse

grid
Prolongation
coarser grid has fewer cells transfer from coarse
(less work & storage) First Coarse Grid to fine grid
N , A
\ ’
\ /
- . \ /
Recursively apply this N
idea until we have an \ 7

easy problem to solve

c/o R. Falgout, LLNL

“Secret sauce” #3:
skip the Jacobian

® In the Jacobian-Free Newton-Krylov (JFNK) method
for /(1) = 0, a Krylov method solves the linear Newton

correction equation, requiring Jacobian-vector
products

® These are approximated by the Fréchet derivatives

J(u)v = l[F(qugv)—F(u)]
g

(where & is chosen with a fine balance between

. Carl Jacobi
approximation and floating point rounding error) or by

automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

® One still builds the Krylov space on a true /(1) (to
within floating point limitations)

Jacobian-free preconditioning

® Krylov iteration is expensive in memory and in
function evaluations, so subspace dimension kK must be
kept small in practice, through preconditioning the
Jacobian with an approximate inverse, so that the
product matrix has low condition number in

(B'A)x=B""bh

® Given the ability to apply the action of 5B “lto a
vector, preconditioning can be done on either the left,
as above, or the right, as in, e.g., for matrix-free:

JB v~ l[F(u +&B'v) - F(u)]
&

Jacobian-free NK is not necessarily matrix-free

® To evaluate the linear residual, we use the true F'’(u) , giving a
true Newton step and asymptotic quadratic Newton
convergence

® To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics
in the system and respects the limitations of the parallel
computer architecture and the cost of various operations:

m Jacobian blocks decomposed for parallelism (Schwarz)

Jacobian of lower-order discretization

Jacobian with “lagged” values for expensive terms

Jacobian stored in lower precision

Jacobian of related discretization

operator-split Jacobians

physics-based preconditioning

Secret sauce #4:
use the user’s solver to precondition

Almost any code to solve (1) = 0 computes
a residual and invokes some process to
compute an update to u based on the
residual

This map defines a (usually weakly)

converging nonlinear method INCWWON U\l‘[SlC\ﬁ
M : F(u*)— du
u —u +ou

“Solver” M is, in effect, a user-supplied

preconditioner and can be applied directly

within a Jacobian-free Newton context

This is the “physics-based preconditioning”

strategy discussed in the DOE trilab E?

report

Nonlinear implicitness is usually easy to
add to linear implicitness

® Linear versus nonlinear problems

m solving linear systems often constitutes 90% of the running
time of a large PDE simulation

m the nonlinearity is often a fairly straightforward outer loop,
in that it introduces no new types of messages or
synchronizations not already present in Krylov-Schwarz, and
has overall many fewer synchronizations than the
preconditioned Krylov method or other linear solver inside it

® We can wrap Jacobian-free Newton based on the true
residual outside

m as a clean up of first-order splitting errors or errors from
other convenient approximations

Example of physics-based preconditioning:
1D shallow water system (Knoll-K, 2004)

continuity momentum

Underlined terms cause fast gravity surface wave with speed (g/)!?

Semi-implicit discretization to step over the wave stability limit is

Solve discretized momentum equation for time-advanced flux:

Substitute into discretized continuity equation:

Example of physics-based preconditioning:
1D shallow water system, cont.

Solving this linear parabolic equation for #""! across the
domain and substitute into the equation for (/)" pointwise

Voila! A single scalar parabolic solve is sufficient to update
both fields, but leaves a linearization error

To turn this into a preconditioner for a fully implicit treatment,
we need a map from residuals to updates:

continuity residual momentum residual

parabolic solve for J'A

Pointwise update for Juh

Example of Jacobian-free Newton-Krylov:
fast spin-up of ocean circulation model

State vector, u(?)

Propagation operator (this is any
code) @ (u,1): u(t) = @ (u(0),?)
m here, single-layer quasi-geostrophic ocean

forced by surface Ekman pumping,
damped with biharmonic hyperviscosity

Task: find state u that repeats every
period 7' (assumed known)
Difficulty: direct integration (DI) to
find steady state may require
thousands of years of physical time

Innovation: pose as Jacobian-free
NK rootfinding problem, F(u) = 0,
where F(u)=u - @ (u(0),7)
m Jacobian is dense, would never think of
forming!

0
0
converged streamfunction

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

1

I @ :

?@wﬂj
(e /) d
4

D L
0 0.2 0.4 0.6 0.8

difference between DI and
NK (10-14)

1

Residual

Residual

Example: fast spin-up of ocean circulation model

using Jacobian-free Newton-Krylov

322 grid, 5 _=0.02775

(D]

- = NK
2046.2
200 400 600
Integration time (years)
128% grid, 8 = 0.0235
m
(D]
=) o P
566.0
200 400 600

Integration time (years)

Residual

Residual

642 grid, 5 =0.025

DI

- = NK
873.4
0 200 400 600
Integration time (years)
2567 grid, 5 = 0.0232
m
Dl
=)
5
109.4
10
. 1446 |
0 200 400 600

Integration time (years)

2-3 orders of
magnitude
speedup of
Jacobian-free
NK relative to
Direct

Integration
(D)

OGCM:
Helfrich-
Holland
integrator

Implemented
in PETSc as an
undergraduate
research
project

Back to 2022

What has changed in time integration?

(from Sandu, 2022)

@ Many tasty new apples on the tree and delicious new
entrees at the picnic!

o A “Cambrian explosion” of operator splitting methods
that exploit natural separations on the 2x2 state space of
{ stiff | nonstiff } and { linear | nonlinear } terms in order
to achieve solutions of desired temporal accuracy at
lower cost relative to fully implicit solvers

® From an idealistic numerical analyst’s perspective, perhaps

m Other methods with the same or lower asymptotic cost can achieve higher
order error by exploiting equation structure

m In a variety of systems amenable to rigorously quantifying errors, cost-
benefit analysis favors more surgical approaches

m Opportunities from new mathematics should influence future software
development starting today

® KFrom a practical perspective, no

m Understanding of equation structure in complex dynamically evolving
systems may be incomplete

m Such systems, if set up to run for days on thousands of cores, can ill afford
unanticipated losses of stability

m Many workhorse codes currently suffering from first-order splitting error
need to be retrofitted with monolithic nonlinear implicit solvers, as an
“on-ramp” to and backstop for more sophisticated approaches

We don’t have an arms race, but a love fest

® The new tasty apples still have some dependency on
nonlinearly implicit solvers

m Apart from constant coefficient splitting (e.g., to exploit optimal

Poisson solvers) there are few reasons to restrict the implicit parts
to be linear

@ Implicit solvers have good customers in sophisticated
operator-split, multi-stage integrators

m As the sophisticated integrators are advancing, so are the
components of the nonlinearly implicit solvers needed to support
them

m Some of these components, e.g., Krylov solvers, linear
preconditioners, nonlinear preconditioners are immediately
transferable

To conclude ... about nonlinear preconditioning
from recent talk at IPAM ©

http://helper.ipam.ucla.edu/publications/bdcrc2020/bdcrc2020 17523.pdf

We’re committed to making full nonlinear implicitness a practical
component in timestepping strategies for complex
multiscale, multiphysics, multicomponent problems

