
David Keyes
Extreme Computing Research Center

King Abdullah University of Science and Technology
12 January 2022

Updating the
Nonlinearly Implicit Manifesto

What has changed in time integration?

! Many tasty new apples on the tree and delicious new
entrees at the picnic!

! A “Cambrian explosion” of operator splitting methods
that exploit natural separations on the 2x2 state space of
{ stiff | nonstiff } and { linear | nonlinear } terms in order
to achieve solutions of desired temporal accuracy at
lower cost relative to fully implicit solvers

(from Sandu, 2022) (from Constantinescu, 2022)

“The goal of high performance
computing is not to solve model
problems faster, but to solve complex
problems at all.”

Bill Gropp
“Complex” attributes, still within the realm of well-posed problems
with well-defined, in principle computable solutions, given enough
resolution and computational capability may include:
• nonlinearity
• high dimensionality
• multiple scales in space and time
• multiple coupled physical phenomena
• multiple field components
• wild inhomogeneity
• strong anisotropy
• etc.

“We want methods that shoot the
problem in the head.”

Bob Brown

In other words, robustness and general applicability for user
productivity before all else, including efficiency, elegance, etc.

“The advantage of unconditional
stability may be worth it, even at the
cost of larger coefficients in the error
term.”

David Shirokoff

“Full implicitness provides comfort,
theory, and stability… Linear
implicitness should do the job; then
move beyond as needed.”

Giovanni Russo

“We’re seeking the least implicitness
that delivers the stability we need…
Implicitness steps over ‘inconsequential’
fast components (acoustic waves;
Alfvén waves).”

Emil Constantinescu

What is wrong with fully implicit?
! Complexity of code and user interface

! relative to fully explicit
! Computational cost

! storage, operations, synchronizing communication
! if fastest stiff scales need resolving anyway, fully implicit is not

relevant
! need 1 to 2 orders of magnitude of scale separation between

‘inconsequential’ fast phenomena and phenomena of interest to
cover the generation of the Krylov subspace on each Newton step,
depending on the Jacobian conditioning and the preconditioning

! Robustness
! assumes you can trust Newton to converge

! Temporal accuracy
! traditionally associated with first-order backward Euler

What is good about fully implicit?
! Complexity of code and user interface

! relative to operator split methods that use both implicit and explicit
! no worries if proper operator splits evolve dynamically

! Computational cost
! allows integration on time scales of interest, sometimes stepping over

many orders of magnitude of fast scales
! full Jacobians not needed

! Robustness
! unconditional stability
! globalization methods for Newton have come a long way

! Temporal accuracy
! no operator splitting error
! BDF2 should often be the default, at the cost just one extra state vector

and negligible extra operations or synchronizing communication
! other fully implicit higher order schemes possibly relevant, at the cost

of further back-vectors of state or RHS

“I’m a believer in ‘co-simulation’. We
must learn to work directly from
users’ codes.”

Ray Spiteri

“We use a preconditioner based on our
favorite part and simply leave the
other terms unpreconditioned…
Whatever the code has it in already –
use it!”

Dan Reynolds

“General Linear Method filters can
deliver higher order with just
backward Euler, without changing the
user’s code.”

Sigal Gottlieb

“The name of the game is to minimize
the computational cost for a given
accuracy.”

Ray Spiteri

“The name of the game is to ask the
user to write their code exactly once,
no matter what algorithm they use.”

Matt Knepley

Flow of presentation
! Blast thru original nonlinearly implicit manifesto (2007)

! multi-scale – avoid stability timestep limit when it is tighter than the
accuracy limit for the phenomena of interest

! multi-physics – avoid first-order splitting error
! multi-solve – inverse Jacobian action needed, anyway

! Back off from apparent claims of universal applicability
! perhaps excessive hubris about Jacobian-free Newton-Krylov schemes
! benefit of unconditional stability may be expensive compared to split

schemes that compute the same outputs of interest as accurately

! Finally, reassert its utility
! efficient implicit solvers still needed in ImEx and other tasty new

apples, even if just for part of the operator
! our toolkits contain ever improving globalizations for Newton’s method

(esp. thru nonlinear preconditioning)
! likewise, ever improving approximate linear solvers

A nonlinearly
implicit manifesto*

*a public declaration of principles and intentions

David Keyes
Applied Physics & Applied Mathematics

Columbia University
&

Towards Optimal Petascale Simulations (TOPS) Center
U.S. DOE SciDAC Program

Going implicit?
" Why you would, if you could

! for multi-scale problems with wide scale separation,
where interest is in following the slower scales

! for coupled (or “multiphysics”) problems
! for problems with controllable or uncertain parameters

or fields (or “outer loop” problems): optimization,
design, control, inversion, assimilation

! for cranking up temporal order with BDF (at least to 2)

" You can, so you should
! optimal and scalable algorithms known
! freely available software available
! reasonable learning curve that harvests legacy code

Focus on Jacobian-free implicit methods

" Two stories to track in
supercomputing
! raise the peak capability
! lower the entry threshold with

useful software

higher capability
for hero users

best practices
for all users

" Jacobian a steep price, in
terms of coding
! valuable to have, but usually

not necessary
! approximations thereto often

sufficient
! meanwhile, automatic

differentiation tools are always
lowering the threshold

first frontier

“new” frontier

DOE “E3” report (2007)
highlights weaknesses of explicit methods

“The dominant computational
solution strategy over the past 30
years has been the use of first-order-
accurate operator-splitting, semi-
implicit and explicit time integration
methods, and decoupled nonlinear
solution strategies. Such methods
have not provided the stability
properties needed to perform
accurate simulations over the
dynamical time-scales of interest.
Moreover, in most cases, numerical
errors and means for controlling
such errors are understood
heuristically at best.”

DOE E3 report highlights
opportunities for implicit methods

“Research in linear and nonlinear
solvers remains a critical focus area
because the solvers provide the
foundation for more advanced
solution methods. In fact, as
modeling becomes more
sophisticated to increasingly include
optimization, uncertainty
quantification, perturbation
analysis, and more, the speed and
robustness of the linear and
nonlinear solvers will directly
determine the scope of feasible
problems to be solved.”

2002
2003

2003-2004 (2 vol)
2004

2006
2006

2007

Fusion Simulation
Project

June 2007

2007

18th AIAA Computational Fluid Dynamics Conference, June 25–28, 2007, Miami, FL

Petaflops Opportunities for the NASA Fundamental
Aeronautics Program

Dimitri J. Mavriplis �

David Darmofal †

David Keyes ‡

Mark Turner §

The premise of this paper is the observation that the engineering community in general,
and the NASA aeronautics program in particular, have not been active participants in the
renewed interest in high performance computing at the national level. Advocacy for high
performance computing has increasingly been taken up by the science community with
the argument that computational methods are becoming a third pillar of scientific discov-
ery alongside theory and experiment. Computational engineering, on the other hand, has
continually been relegated to a set of mature software tools which run on commodity hard-
ware, with the notion that engineering problems are not complex enough to warrant the
deployment of state-of-the-art hardware on such a vast scale. We argue that engineering
practices can benefit equally from an aggressive program in high performance computa-
tional methods, and that these problems are at least as important as science problems,
particularly with regards to any national competitiveness agenda. Because NASA aero-
nautics has historically been a principal driver of computational engineering research and
development, the current situation represents an opportunity for the NASA aeronautics
program to resume its role as a leading advocate for high performance computational engi-
neering at the national level. We outline a sample set of Grand Challenge problems which
are used to illustrate the potential benefits a reinvigorated program could produce, and use
these examples to identify critical barriers to progress and required areas of investment.
We conclude by noting that other communities have spent significant e�orts in formulating
the case for increased investment in high performance computing activities, and that a
similar roadmap will be required for the engineering community.

I. Introduction

In 1976, the ILLIAC IV supercomputer went into production use at the NASA Ames Research Center.
Although the performance of this machine was below original design expectations, the ILLIAC IV never-

theless constituted the most powerful supercomputer in the world at the time,1 and gave NASA researchers
an order of magnitude more computational power than had previously been available. The driving appli-
cations in the agency at that time were none other than computational fluid dynamics (CFD), and NASA
quickly became the high-performance computing (HPC) leader in this field, thanks in part to visionary lead-
ership, state-of-the-art facilities, and forward thinking education and hiring practices.2 The rapid pace of
development and early success of CFD within the NASA aeronautics program led to the creation of the Nu-
merical Aerodynamic Simulator (NAS), which hosted a variety of leading edge supercomputers over the 80’s
and 90’s. When the US Government developed a comprehensive multi-agency program for high-performance
computing under the High-Performance Computing and Communication Program in the 1990’s (HPCCP),

�Professor, Department of Mechanical Engineering, University of Wyoming, AIAA Associate Fellow.
†Associate Professor, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Member AIAA.
‡Professor, Department of Applied Physics and Applied Mathematics, Columbia University.
§Research Professor, Department of Aerospace Engineering & Engineering Mechanics, University of Cincinnati, AIAA As-

sociate Fellow.
Copyright c⇥ 2007 by Dimitri J. Mavriplis. Published by the American Institute of Aeronautics and Astronautics, Inc. with

permission.

1 of 36

American Institute of Aeronautics and Astronautics Paper 2007-4084

2007

Mathematical
Challenges for the
Department of
Energy

January 2008

2008

2010
2010

2011
2012

2016

Some reports predicated on
scalable implicit

solvers …

among
many others
from DOE, NSF,
NASA, NRC, etc. (reports outlined in red

added in 2002 update)

Motivation #1
Many simulation opportunities are multi-scale
! Multiple spatial scales

! interfaces, fronts, layers
! thin relative to domain

size, d << L
! Multiple temporal scales

! fast waves
! small transit times

relative to convection or
diffusion, t << T

! Analyst must isolate dynamics of interest and model the rest in a
system that can be discretized over more modest range of scales

! Often involves filtering out of high frequency modes, quasi-
equilibrium assumptions, etc.

! May lead to infinitely “stiff” subsystem requiring implicit
treatment

Richtmeyer-Meshkov instability, c/o A. Mirin, LLNL

CS

Math

Applications

Common
technologies
respond

Many
applications

drive

e.g., DOE’s SciDAC* portfolio is multi-scale

* Scientific Discovery through Advanced Computing

Examples of scale-separated features
of multiscale problems

! Gravity surface waves in global climate
! Alfvén waves in tokamaks
! Acoustic waves in aerodynamics
! Fast transients in detailed kinetics chemical

reaction mechanisms
! Bond vibrations in protein folding (?)

Explicit methods are restricted to marching out the long-scale dynamics on
short scales. Implicit methods can “step over” or “filter out” with
equilibrium assumptions the dynamically irrelevant short scales, ignoring
stability bounds. Accuracy requirements must still be satisfied; with long
time steps, one can use high-order temporal integration schemes.

Methods that are not fully nonlinearly
implicit may fail, even if stable

î
í
ì

>-+
£

ºº÷
ø
ö

ç
è
æ

¶
¶

¶
¶

=
¶
¶

critcrit

crit
xx ssssk

ss
sux

x
uux

xt
u

||,)|(|
||,

)(;)(;),(2/1
0

0

k
k

kkaa

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

UUU

UUU

=--

--
+
-

+
-

++
++

+

)](

)([
1
1

1
2/1

11
12/1

1

a

an

Linearly implicit, nonlinearly explicit:

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

UUU

UUU

=--

--
+
-

++
-

++
+

+
+

+

)](

)([
1
1

11
2/1

11
1

1
2/1

1

a

an

Linearly and nonlinearly implicit:

history at
station 10

history at
station 10

Oscillatory

Non-
oscillatory

Accuracy as a function of timestep –
GLF23 with gradient-dependent diffusivity

For sufficiently small timestep, the nonlinearly implicit and linearly implicit with
lagged diffusivity converge on the same result, but the nonlinear implicit permits
timesteps 104 times larger with same accuracy (c/o S. Jardin, PPPL).

lin implicit, nonlin explicit

fully nonlinearly implicit

Explicit methods do not weak scale;
(review weak vs. strong scalability)

! “Strong scaling”
! execution time decreases in

inverse proportion to the number
of processors

! fixed size problem overall
! often instead graphed as

reciprocal, “speedup”

poorlog T

log p
good

N constant

Slope
= -1

T

p

good

poor

N µ p

Slope
= 0

! “Weak scaling”
! execution time remains constant,

as problem size and processor
number are increased in
proportion

! fixed size problem per processor
! also known as “Gustafson scaling”

Runtimes of explicit methods grow under weak
scaling due to CFL stability constraints

" Illustrate for CFL-limited
hyperbolic and parabolic eqns

" Parallel wall clock time
ddPST //1 aa+µ

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h computational mesh cell size
τ computational time step size
τ=O(ha) stability bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) ideal parallel wall clock time
= (T/τ)(PS)/P µ T S1+α/d Pα/d

(since 1/τ µ 1/ha = na = Na/d = (PS)a/d)

3 months10 days1 dayExe. time

105´105´105104´104´104103´ 103´103Domain

" Example: explicit wave
problem in 3D (a=1, d=3)

27 years3 months1 dayExe. time

105´ 105104´ 104103´ 103Domain

" Example: explicit diffusion
problem in 2D (a=2, d=2)

“blackboard”

! Interfacial coupling
! Ocean-atmosphere coupling

in climate
! Core-edge coupling in

tokamaks
! Fluid-structure vibrations

in aerodynamics
! Boundary layer-bulk

phenomena in fluids
! Surface-bulk phenomena in

solids

! Bulk-bulk coupling
! Radiation-hydrodynamics
! Magneto-hydrodynamics

Motivation #2
Many simulation requirements are multi-physics

SST Anomalies, c/o A. Czaja, MIT

! Coupled systems may admit destabilizing modes not
present in either system alone

! Model problem
! Exact solution

)1)(exp(1

)exp()(

0,)0(,

0

0

0
2

--+

-
=

>=+-=

tu
tutu

tuuuuu

l
l

l
l!

)(
),()(,

,)(,
,1,0,),(

11

11

1
2

++

++

+

=
£<=-=

£<==

=D=»

kDk

kkkRkDD

kkkkRRR

kkk

tuU
ttttutuuu

tttUtuuu
ktkttuU

l!

!

"! Numerical approx.
! Phase 1 (“R”)
! Phase 2 (“D”)
! Overall advance

! Phase 1 solution
! Phase 2 solution
! Overall advance

tU
tUU

tttutu
ttU

Utu

k
kk

kkRD

kk

k
R

D-
D-

=

--=
--

=

+

+

1
)exp(

))(exp()()(
)(1

)(

1

1

l
l

Well defined for
all time if l > u0

Operator splitting can destabilize multiphysics

Can blow up in
finite time!

! Example from Estep et al. (2007), l = 2, u0 = 1
! 50 time steps, phase 1 subcycled inside phase 2

Operator splitting can destabilize multi-physics

)1)(exp(1

)exp()(

0,)0(,

0

0

0
2

--+

-
=

>==+

tu
tutu

tuuuuu

l
l

l
l!

tU
tUU

tttutu
ttU

Utu

k
kk

kkRD

kk

k
R

D-
D-

=

--=
--

=

+

+

1
)exp(

))(exp()()(
)(1

)(

1

1

l
l

1 “R” per “D” 5 “R” per “D” 10 “R” per “D”

Continuous Discrete

This is a prototype for a Fourier mode of a
reaction-diffusion PDE

! Diffusive time-scale depends only on the wavenumber,
whereas reactive time-scale changes with amplitude

! Besides opening the possibility of finite-time blow-up for a
problem that is well defined for all time, operator splitting
leaves a first-order error, independent of integration errors
for the two phases independently

! See Estep et al. (2007) for additional examples of splitting
multiple components in one domain, multiple domains, etc.

0),(),0(, 0
2 >==- txuxuuauu xxt

Giovanni Russo noted in Monday’s panel that additive
(F=F1+F2) and component (u=(v,w)T) splitting of u’=F(u)
can be placed in correspondence.

2022
note:

! Climate prediction
! Subsurface contaminant

transport or petroleum
recovery, and seismology

! Medical imaging
! Stellar dynamics, e.g.,

supernovae
! Nondestructive evaluation

of structures

! Uncertainty can be in
! constitutive laws
! initial conditions
! boundary conditions

Motivation #3
Many simulation opportunities face uncertainty

Subsurface property estimation, c/o Roxar

! UQ, sensitivity, optimization, parameter estimation,
boundary control all require the ability to apply the inverse
action of the Jacobian – available in all Newton-like
implicit methods – and can also use its adjoint

Multi-solve efficiently via adjoints

! Forward operator equation
! Desired functional of solution
! Define adjoint operator

uvLvLu

gvL

uu
fuL

,,

,)(

*

*

=

=

=

=

!!

fv

LuvuvL

uu
vL

,

,,

,)(
*

*

==

==

=

!!

!! Once we solve for v given ℓ
! Then desired output …

… reduces to a mere inner
product for each forcing f

Significance for multi-solve problems
! For one solution of the adjoint problem (per output

functional desired) one can evaluate many outputs per
input to the forward problem at a cost of one inner
product each
! Rather than solving the forward problem for each input

! Part of the price to be paid in coding (ability to solve
with linearized adjoint) is often included in the price
paid to take the forward problem implicit
! Caveat: a key shortcut for solving with L when L is a Jacobian,

namely the matrix-free application of L (see later), is not directly
available for L*

! Instead of one function evaluation per matvec, it takes a number of
function evaluations corresponding to the number of significant
singular values

Significance for inverse problems
! Inverse problems are often formulated as PDE-

constrained optimization problems
! objective function (mismatch of model output and “true” output)
! equality constraints (PDE)
! possible inequality constraints

! Can be cast as nonlinear rootfinding problem
! Form (augmented) Lagrangian
! Take gradient of Lagrangian with respect to design variables, state

variables, and Lagrange multipliers
! Obtain large nonlinear rootfinding problem (so-called KKT system)

! Solving with Newton requires the Jacobian of gradient,
which is the Hessian of Lagrangian
! Makes use of the Jacobian of PDE system and its adjoint P

Comparing nonlinear explicit and implicit methods

Explicit Naïvely Implicit

Reliability robust when stable uncertain

Performance predictable data-dependent

Concurrency O(N) limited

Synchronization once per step many times per step

Communication nearest neighbor* global, in principle

Workspace O(N) O(N w), e.g., w=5/3

Complexity O(N) O(N c), e.g., c=7/3

* plus the estimation of the stable step size

Components of scalable solvers for PDEs

! Subspace solvers
! elementary smoothers
! incomplete factorizations
! full direct factorizations

! Global linear preconditioners
! Schwarz and Schur DD methods
! multigrid

! Linear accelerators
! Krylov methods

! Nonlinear rootfinders
! Newton-like methods

alone unscalable:
either too many
iterations or too
much fill-in

opt. combins. of
subspace solvers

mat-vec algs.

vec-vec algs.
+ linear solves

Newton-Krylov-Schwarz:
a PDE applications “workhorse”

Newton
nonlinear solver

asymptotically quadratic

0)(')()(=+» uuFuFuF cc d
uuu c dl+=

Krylov
accelerator

spectrally adaptive

FuJ -=d
}{minarg

},,,{ 2
FJxu

FJJFFVx
+=

ºÎ !

d

Schwarz
preconditioner
parallelizable

FMuJM 11 -- -=d

i
T
ii

T
ii RJRRRM 11)(-- å=

“Secret sauce” #1:
iterative correction, w/ each step O(N)

! The most basic idea in iterative methods for Ax = b

! Evaluate residual accurately, but solve approximately,
where is an approximate inverse to A

! A sequence of complementary solves can be used, e.g.,
with first and then one has

)(1 AxbBxx -+¬ -

)]([1
1

1
2

1
2

1
1 AxbABBBBxx --++¬ ----

2B1B

1-B

RRARRB TT 11
2)(-- =

)(1AB-
! Optimal polynomials of lead to various

preconditioned Krylov methods
! Scale recurrence, e.g., with ,

leads to multilevel methods

smoother

Finest Grid

First Coarse Grid
coarser grid has fewer cells

(less work & storage)

Restriction
transfer from
fine to coarse
grid

Recursively apply this
idea until we have an
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse
to fine grid

“Secret sauce” #2:
treat each error component in optimal subspace

c/o R. Falgout, LLNL

“Secret sauce” #3:
skip the Jacobian

! In the Jacobian-Free Newton-Krylov (JFNK) method
for F(u) = 0 , a Krylov method solves the linear Newton
correction equation, requiring Jacobian-vector
products

! These are approximated by the Fréchet derivatives

(where is chosen with a fine balance between
approximation and floating point rounding error) or by
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

! One still builds the Krylov space on a true F′(u) (to
within floating point limitations)

)]()([1)(uFvuFvuJ -+» e
e

e
Carl Jacobi

Jacobian-free preconditioning

" Krylov iteration is expensive in memory and in
function evaluations, so subspace dimension k must be
kept small in practice, through preconditioning the
Jacobian with an approximate inverse, so that the
product matrix has low condition number in

" Given the ability to apply the action of to a
vector, preconditioning can be done on either the left,
as above, or the right, as in, e.g., for matrix-free:

)]()([1 11 uFvBuFvJB -+» -- e
e

bBxAB 11)(-- =
1-B

Jacobian-free NK is not necessarily matrix-free

! To evaluate the linear residual, we use the true F’(u) , giving a
true Newton step and asymptotic quadratic Newton
convergence

! To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics
in the system and respects the limitations of the parallel
computer architecture and the cost of various operations:
! Jacobian blocks decomposed for parallelism (Schwarz)
! Jacobian of lower-order discretization
! Jacobian with “lagged” values for expensive terms
! Jacobian stored in lower precision
! Jacobian of related discretization
! operator-split Jacobians
! physics-based preconditioning

Secret sauce #4:
use the user’s solver to precondition

" Almost any code to solve F(u) = 0 computes
a residual and invokes some process to
compute an update to u based on the
residual

" This map defines a (usually weakly)
converging nonlinear method

" “Solver” M is, in effect, a user-supplied
preconditioner and can be applied directly
within a Jacobian-free Newton context

" This is the “physics-based preconditioning”
strategy discussed in the DOE trilab E3

report

uuFM k d!)(:
uuu kk d+¬+1

Nonlinear implicitness is usually easy to
add to linear implicitness

! Linear versus nonlinear problems
! solving linear systems often constitutes 90% of the running

time of a large PDE simulation
! the nonlinearity is often a fairly straightforward outer loop,

in that it introduces no new types of messages or
synchronizations not already present in Krylov-Schwarz, and
has overall many fewer synchronizations than the
preconditioned Krylov method or other linear solver inside it

! We can wrap Jacobian-free Newton based on the true
residual outside
! as a clean up of first-order splitting errors or errors from

other convenient approximations

Example of physics-based preconditioning:
1D shallow water system (Knoll-K, 2004)

Underlined terms cause fast gravity surface wave with speed (gh)1/2

Semi-implicit discretization to step over the wave stability limit is

Solve discretized momentum equation for time-advanced flux:

momentumcontinuity

Substitute into discretized continuity equation:

Solving this linear parabolic equation for hn+1 across the
domain and substitute into the equation for (uh)n+1 pointwise

Example of physics-based preconditioning:
1D shallow water system, cont.

Voila! A single scalar parabolic solve is sufficient to update
both fields, but leaves a linearization error

To turn this into a preconditioner for a fully implicit treatment,
we need a map from residuals to updates:

continuity residual momentum residual

parabolic solve for 𝛿 h

Pointwise update for 𝛿 uh

Example of Jacobian-free Newton-Krylov:
fast spin-up of ocean circulation model

! State vector, u(t)
! Propagation operator (this is any

code) F (u,t): u(t) = F (u(0),t)
! here, single-layer quasi-geostrophic ocean

forced by surface Ekman pumping,
damped with biharmonic hyperviscosity

! Task: find state u that repeats every
period T (assumed known)

! Difficulty: direct integration (DI) to
find steady state may require
thousands of years of physical time

! Innovation: pose as Jacobian-free
NK rootfinding problem, F(u) = 0,
where F(u) º u - F (u(0),T)
! Jacobian is dense, would never think of

forming!

converged streamfunction

difference between DI and
NK (10-14)

Example: fast spin-up of ocean circulation model
using Jacobian-free Newton-Krylov

2-3 orders of
magnitude
speedup of
Jacobian-free
NK relative to
Direct
Integration
(DI)

OGCM:
Helfrich-
Holland
integrator

Implemented
in PETSc as an
undergraduate
research
project

Back to 2022

What has changed in time integration?

! Many tasty new apples on the tree and delicious new
entrees at the picnic!

! A “Cambrian explosion” of operator splitting methods
that exploit natural separations on the 2x2 state space of
{ stiff | nonstiff } and { linear | nonlinear } terms in order
to achieve solutions of desired temporal accuracy at
lower cost relative to fully implicit solvers

(from Sandu, 2022) (from Constantinescu, 2022)

Is monolithic nonlinear implicitness obsolete?
" From an idealistic numerical analyst’s perspective, perhaps

! Other methods with the same or lower asymptotic cost can achieve higher
order error by exploiting equation structure

! In a variety of systems amenable to rigorously quantifying errors, cost-
benefit analysis favors more surgical approaches

! Opportunities from new mathematics should influence future software
development starting today

" From a practical perspective, no
! Understanding of equation structure in complex dynamically evolving

systems may be incomplete
! Such systems, if set up to run for days on thousands of cores, can ill afford

unanticipated losses of stability
! Many workhorse codes currently suffering from first-order splitting error

need to be retrofitted with monolithic nonlinear implicit solvers, as an
“on-ramp” to and backstop for more sophisticated approaches

We don’t have an arms race, but a love fest
" The new tasty apples still have some dependency on

nonlinearly implicit solvers
! Apart from constant coefficient splitting (e.g., to exploit optimal

Poisson solvers) there are few reasons to restrict the implicit parts
to be linear

" Implicit solvers have good customers in sophisticated
operator-split, multi-stage integrators
! As the sophisticated integrators are advancing, so are the

components of the nonlinearly implicit solvers needed to support
them

! Some of these components, e.g., Krylov solvers, linear
preconditioners, nonlinear preconditioners are immediately
transferable

To conclude … about nonlinear preconditioning
from recent talk at IPAM J

http://helper.ipam.ucla.edu/publications/bdcrc2020/bdcrc2020_17523.pdf

We’re committed to making full nonlinear implicitness a practical
component in timestepping strategies for complex

multiscale, multiphysics, multicomponent problems

