
LLNL-PRES-830663
This work was perf ormed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract DE-AC52-
07NA27344. Lawrence Livermore National Security, LLC

ICERM Workshop on Holistic Design of Time-Dependent PDE Discretizations, Jan. 11, 2022

Carol S. Woodward (LLNL), Daniel R. Reynolds(SMU), David J. Gardner (LLNL), and Cody J. Balos (LLNL)

The SUNDIALS Suite of Time Integrators and Nonlinear Solvers:
Its Capabilities, Design, and Role in Ushering New Methods Into
Scientific Applications

2
LLNL-PRES-830663

Outline

 Why numerical software libraries are important
 Overview of the SUNDIALS library capabilities
 Overview of the SUNDIALS library design and use
 Examples of use
 The xSDK extreme-scale software development kit
 Concluding remarks

3
LLNL-PRES-830663

As we look toward the future, we expect greater capability along
with disruptive changes in high performance computing systems

 Extreme levels of concurrency
— Very high node and core counts
— Increasingly deep memory hierarchies

 Additional complexities
— Hybrid architectures
— Manycore, GPUs, multithreading
— Relatively poor memory latency and bandwidth
— Challenges with fault resilience
— Must conserve power – limit data movement
— New (not yet stabilized) programming models
— Etc.

4
LLNL-PRES-830663

New capabilities will enable new computational
science opportunities
Enough computational power to enable

 Multirate, multiscale, multicomponent, multiphysics simulations

 Uncertainty quantification and sensitivities for all simulations

 Simulations involving stochastic quantities

 Optimization over full-featured simulations

 Coupling of simulations and data analytics

Beyond interpretive simulations … working toward predictive science

5
LLNL-PRES-830663

Increasing complexity of future computational science
problems leads to increasing complexity of software

problem
complexity,
number of
developers

co
m

pu
te

r s
ize

,
pr

ob
le

m
 si

ze

software
lifetime

1 core

small
cluster

extreme-scale

petsascale

years
months

decades

Slide courtesy of L. McInnes (ANL)

6
LLNL-PRES-830663

Scientific software development encounters challenges
from both the technical and sociological arenas

Technical
 All parts of the cycle can be under research
 Requirements change throughout the

lifecycle as knowledge grows
 Importance of reproducibility
 Verification complicated by floating point

representation
 Funding good software practices, like

testing and documentation is hard to get
 The real world is messy, so is the software

Sociological
• Competing priorities and incentives
• Limited resources
• Perception of overhead with deferred benefit
• Need for interdisciplinary interactions

Science through computing is only as good as the software that produces it!

Some slide material courtesy of L. McInnes (ANL)

7
LLNL-PRES-830663

Despite challenges, opportunities abound for
numerical software development improvements

 Better design, software practices, and tools are available

 Better software architectures: toolkits, libraries, frameworks

 Open-source software, community collaboration

 Greater recognition that good software practices can increase productivity

Working toward: community software ecosystems for high-performance CSE

Some slide material courtesy of L. McInnes (ANL)

8
LLNL-PRES-830663

Software libraries facilitate progress in computational
science and engineering

Software library: a high-quality,
encapsulated, documented, tested, and
multiuse software collection that provides
functionality commonly needed by
application developers

 Organized for the purpose of being
reused by independent (sub)programs

 User needs to know only

— Library interface (not internal details)

— When and how to use library
functionality appropriately

Key advantages of software libraries
• Contain complexity
• Leverage library developer expertise
• Reduce application coding effort
• Encourage sharing of code, ease distribution of

code

Slide courtesy of L. McInnes (ANL)

9
LLNL-PRES-830663

Why is reusable scientific software important for the
math community?
 Allows us to verify algorithmic properties more easily

 Provides an insertion path for our work into scientific applications

 Broadens the impact of our work

 Can motivate new directions of research

Improves
developer

productivity

More efficient,
robust, reliable,

sustainable software
Better science

10
LLNL-PRES-830663

The 1980s and 1990s produced significant strides in the solution of ordinary differential equations and differential/algebraic equations:
 Stiff integrators that allow for changing step sizes

 Fully adaptive step and order integrators
 Novel Newton–Krylov methods allowing for matrix-free solvers

 Efficient and robust software implementations (ODEPACK -> CVODE, IDA -> SUNDIALS)

LLNL has had a long history of software development for
time integrators

11
LLNL-PRES-830663

 SUNDIALS is a software library consisting of ODE and
DAE integrators and nonlinear solvers

 Written in C with interfaces to Fortran

 Designed to be incorporated into existing codes

 Nonlinear and linear solvers and all data use is fully
encapsulated from the integrators and can be user-
supplied

 All parallelism is encapsulated in vector and solver
modules and user-supplied functions

 Freely available; released under the BSD 3-Clause
license (>120,000 downloads in 2021)

 Detailed user manuals are included with each package

 Online documentation at readthedocs.org

SUite of Nonlinear and DIfferential-
ALgebraic Solvers

https://computing.llnl.gov/casc/sundials

12
LLNL-PRES-830663

 CVODE, IDA, and their sensitivity analysis variants (forward and adjoint), CVODES and IDAS, are based on linear multistep
methods
— CVODE solves ODEs, �̇�𝑦 = f(t, y)

— IDA solves DAEs, 𝐹𝐹(𝑡𝑡, 𝑦𝑦, �̇�𝑦) = 0
— Adaptive in both order and step sizes

— Both packages include stiff BDF methods
— CVODE includes nonstiff Adams-Moulton methods

 ARKODE is designed to work as an infrastructure for developing adaptive one-step, multistage time integration methods

— Originally designed to solve
𝑀𝑀(𝑡𝑡) may be the identity or any nonsingular (and optionally time-dependent) mass matrix (e.g., FEM)

— Includes multistage embedded methods which give rise to adaptive time steps
— Three steppers: ARKStep (explicit, implicit, and additive IMEX Runge-Kutta methods), ERKStep (streamlined ERK

implementation), and MRIStep (multirate infinitesimal step methods)

— XBraid wrappers for methods from ARKStep which provide ARK methods to the XBraid parallel-in-time package

SUNDIALS offers packages with linear multistep and
multistage methods

13
LLNL-PRES-830663

KINSOL solves systems of nonlinear algebraic
equations, F(u) = 0

 Newton Solvers: update iterate via

— Get update by solving:

— Inexact method approximately solves this equation

 Dynamic linear tolerance selection for use with iterative linear solvers

 Can separately scale equations and unknowns

 Backtracking and line search options for robustness

 KINSOL also solves fixed point and Picard iterations with acceleration

14
LLNL-PRES-830663

The MRIStep (multirate infinitesimal step) module is our newest
module in ARKODE and is still expanding in capability
 The new MRIStep module supports 2nd, 3rd, and 4th order multirate

methods
 The slow time scale is integrated with implicit, explicit, or IMEX methods
 The slow time scale uses a user-defined ∆t for the slow operator that

can be varied between slow steps
 The fast time scale can call ARKStep and thus allows for explicit, implicit,

or IMEX integration (user-supplied fast integrator is also supported)
 The fast time scale can use adaptive or fixed time step sizes
 Supports user-defined method tables for both time scales
 Currently available

— 2nd and 3rd order multirate MIS methods

— 4th order multirate MRI-GARK methods, explicit and solve decoupled implicit
(Sandu, SINUM, 2019)

— 3rd and 4th order multirate with IMEX splitting at the slow time scale
(Chinomona and Reynolds, SISC, 2021)

Comparison of 3rd and 4th order IMEX-MRI methods in
SUNDIALS with 1st and 2nd order splitting approaches
on a 1D advection-diffusion-reaction test. The IMEX-
MRI methods show greater accuracy and efficiency.
Figure courtesy of R. Chinomona (SMU).

See Daniel Reynolds’ talk from Monday

15
LLNL-PRES-830663

Many time integrators and nonlinear solvers can be
implemented in ways that allow for very flexible software

 Most methods can be written in terms of operations on data, rather than assuming exactly what
the data looks like and how it is laid out in memory

 Implicit time integrators can be made more efficient through control of properties of the
nonlinear and linear solver, but these properties can be encapsulated away from the integrator

 Nonlinear solvers can be made more efficient through control of properties of the subsidiary
linear solver, but these properties can be encapsulated

 Linear solvers may require detailed data information:
— Iterative: only needs action of the linear operator on a matrix rather than the full matrix
— Direct: Requires the matrix in specific formats

 Libraries can be designed to minimize need to interact with linear system data and thus allow for
the application or linear solver to control the data layout

16
LLNL-PRES-830663

SUNDIALS uses modular design and control inversion to interface
with application codes, external solvers, & encapsulate parallelism

 Control passes between the integrator, solvers, and application code as the integration progresses

 Nonlinear and linear solver modules are designed for generic systems

Time integrator and nonlinear
solver are agnostic of vector data
layout and specific solvers used

Application /
discretization
framework:

RHS Function, f
RHS Jacobian, Jf

Preconditioner, P

Linear solver

Time integrator

Nonlinear solver

z

x

z0, F, JF

Axm, P-1rm

Application Code

yn+1t0, y0, f, Jf

A, x0, b

Generic Solver
Interfaces

zm

F(zm), JF(zm)

xm, rm

17
LLNL-PRES-830663

In developing SUNDIALS we adhered to basic guiding principles
in setting up interfaces between integrators, solvers, and users

 Application Program Interfaces (APIs) for vectors, matrices, linear solvers, nonlinear solvers, and
time integrators are based on the minimal required functionality; these encapsulate all parallelism
— Although written in C, SUNDIALS is set up like C++ classes with a content structure and a set of

operations
— SUNDIALS allows users to supply custom versions of data structures and solvers

 Allow for the user to control as much as possible about the integrators and solvers
— Include optional calls to allow for control of many features
— Ensure the user controls specifics of third-party solvers
— Assume as little information about parallelism as possible

 Keep the SUNDIALS packages easy to use
— Intuitive interfaces
— Detailed user documentation
— User-friendly build system
— Simple example programs

 Don’t slow down the most common cases to cover all rare cases

The SUNDIALS team gutted and
redid the underlying software
architecture over the last several
years. While these guidelines seem
obvious, reminders at many
decision points were needed.

18
LLNL-PRES-830663

 Several NVector implementations are released with SUNDIALS:

— CUDA, HIP, SYCL, RAJA (CUDA and HIP backends), and OpenMPDEV
(target offload) vectors provide on-node GPU support

— Parallel, ParHyp, PETSc, and Trilinos modules are MPI distributed

— ManyVector and MPIPlusX modules provide support for hybrid
computation

 Seems like a lot to support but…

— vectors are simple and a lot of code can be reused

— once the GPU platforms mature, can hopefully reduce options

 It is straightforward to implement a problem-specific NVector tailored
to an application

SUNDIALS packages modify solution data only through the
methods in the NVector data class

N_Vector
Interface

Vectors
Parallel
(MPI)

SYCL

PETSc

RAJA

MPIPlusXOpenMP
DEV

Serial

HIP

CUDA

ManyVector ParHyp
(hypre)

Trilinos
(Tpetra)

OpenMP Pthreads

19
LLNL-PRES-830663

SUNNonlinearSolver
API

Nonlinear Solver Modules

FIXED POINTNEWTON PETSC SNES

SUNMatrix API
Matrix Modules

SPARSEDENSE MAGMA CUSOLVER

SUNLinearSolver
API

Linear Solver Modules

SPTFQMR

DENSE

SUPERLU_MT

SPFGMR

KLU

SPGMR

LAPACK BAND

SPBCG

BAND

SUPERLU_DIST

PCG

LAPACK DENSE

CUSOLVER MAGMA Ginkgo

Matrix and solver implementations supply a minimum set of
functionality in order to be used underneath the time integrators

20
LLNL-PRES-830663

Nonlinear solvers and matrix-free iterative linear solvers derive GPU support from vectors

SUNNonlinearSolver
API

Nonlinear Solver Modules

FIXED POINTNEWTON PETSC SNES

SUNMatrix API
Matrix Modules

SPARSEDENSE MAGMA CUSOLVER

SUNLinearSolver
API

Linear Solver Modules

SPTFQMR

DENSE

SUPERLU_MT

SPFGMR

KLU

SPGMR

LAPACK BAND

SPBCG

BAND

SUPERLU_DIST

PCG

LAPACK DENSE

CUSOLVER MAGMA Ginkgo

Matrix and solver implementations supply a minimum set of
functionality in order to be used underneath the time integrators

21
LLNL-PRES-830663

SUNDIALS package use: first instantiate the subsidiary
structures and solvers then pass to the integrator

 Initialize parallelism if needed
 Create simulation context
 Construct the initial state vector
 Call a Create function for the integrator – instantiates the integrator
 Call an Init function – specifies the problem (requires f function pointer(s)) and initial state
 Set integration tolerances
 Create a matrix object if needed
 Create linear solver, if needed, then set any linear solver optional inputs
 Attach the linear solver module to the integrator
 Create nonlinear solver
 Attach the nonlinear solver then set any nonlinear solver optional inputs
 Advance the solution in time – call to the integrator; this may be in a loop
 Get optional outputs
 Call relevant destructors for the solution vector, the integrator, and any algebraic solvers

22
LLNL-PRES-830663

 The user needs to construct an initial condition vector

 If using one of the SUNDIALS provided vectors, notethat each provided module has a unique set of
“constructors”, e.g.

— N_Vector N_VNew_Serial(sunindextype length, SUNContextsunctx);

— N_Vector N_VMake_Cuda(sunindextype length, realtype *h_vdata, realtype *d_vdata , SUNContext sunctx);

— N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector x , SUNContextsunctx);

 Once an application creates a vector for their data, they fill it with the initial conditions for the problem and
supply it to the integrator, who “clones” it to create its workspace.

 For PETSc, hypre, and Trilinos, the corresponding SUNDIALS NVector wrapper constructors take the native
vector structure as their only input.

Supplying the Initial Condition Vector(s)

23
LLNL-PRES-830663

Once the problem data is encapsulated in a vector, all that remains for basic SUNDIALS usage is
specification of the IVP itself:

 CVODE and ARKODE specify the IVP through right-hand side function(s):

int (*RhsFn)(realtype t, N_Vector y, N_Vector ydot, void *user_data)

 IDA specifies the IVP through a residual function:

int (*ResFn)(realtype t, N_Vector y, N_Vector ydot, N_Vector r,
void *user_data)

 The *user_data pointer enables problem-specific data to be passed through the SUNDIALS integrator
and back to the RHS/residual routine (i.e., no global memory).

Supplying the IVP to the Integrator – RHS/Residual Functions

24
LLNL-PRES-830663

CVODE/ARKODE RHS Functions

Example:
cvDisc_dns.c

25
LLNL-PRES-830663

Initializing the Integrators – ARKODE

/* Create fast solver memory structure and specify IMEX problem */
void *inner_mem = ARKStepCreate(ffe, ffi, T0, y, sunctx);
if(check_retval((void *)inner_mem, “ARKStepCreate”, 0)) return(1);

/* Set up fast integrator as normal */
int retval = ARKStepSet...(inner_mem, ...);
if(check_retval(&retval, “ARKStepSet...”, 1)) return(1);

/* Create the inner stepper object wrapper */
int retval = ARKStepCreateMRIStepInnerStepper(inner_mem, stepper);
if(check_retval(&retval, “ARKStepCreateMRIStepInnerStepper”, 1)) return(1);

/* Create slow solver memory structure and specify multirate problem */
void *arkode_mem = MRIStepCreate(fse, fsi, T0, y, *stepper, sunctx);
if(check_retval((void *)inner_mem, “ARKStepCreate”, 0)) return(1);

Multirate with IMEX at fast time scale

/* Create fast solver memory structure and specify IMEX problem */
void *arkode_mem = ARKStepCreate(fe, fi, T0, y, sunctx);
if(check_retval((void *)arkode_mem, “ARKStepCreate”, 0)) return(1);

/* Create solver memory structure and specify implicit problem */
void *arkode_mem = ARKStepCreate(NULL, f, T0, y, sunctx);
if(check_retval((void *)arkode_mem, “ARKStepCreate”, 0)) return(1);

/* Create solver memory structure and specify explicit problem */
void *arkode_mem = ARKStepCreate(fe, NULL, T0, y, sunctx);
if(check_retval((void *)arkode_mem, “ARKStepCreate”, 0)) return(1);

IMEX (top), implicit (middle), explicit (bottom)

26
LLNL-PRES-830663

After constructing the integrator, additional options may be supplied through various “Set”
routines (example from ark_heat1D_adapt.c):

Supplying Options to the Integrators

27
LLNL-PRES-830663

Once all options have been set, the integrator is called to advance the solution toward tout.

Advancing the Solution

CVODE

IDA

ARKODE

28
LLNL-PRES-830663

Retrieving Output from the Integrators

Scalar-valued solver statistics from
cvAdvDiffReac_kry.c

29
LLNL-PRES-830663

 1D Advection-Reaction PDE solved with an IMEX
method from ARKODE

 Reactions treated implicitly; advection treated explicitly
 Nonlinear solver is either a “Task-local” Newton solve

(solve per spatial node) + direct inversion or a Global
Newton solve

Software package flexibility allows for solver and
programming model assessments

(Above) Weak scaling on 1, 4, 16, 64, and 256 Summit nodes, each with 6
MPI tasks per node (1 MPI task per GPU); MPI-only uses 40 MPI tasks per
node. Annotations show speedup over the MPI+Serial vector. Greatest
speedup achieved when using the CUDA vector and CUDA for the RHS

Task-local Newton Global Newton

Task-local with CUDA Task-local serial

Balos, Gardner, W., and Reynolds, 2021

Execution time breakdowns with and without CUDA with
the Task-local solve; Choice of solver can have a significant

impact on where time is spent within a simulation

30
LLNL-PRES-830663

MEUMAPPS-SS phase field code was able to try new integrators
easily once they had a single RHS function to call

 MEUMAPPS-SS is a phase-field code for simulating
microstructure evolution during phase transformations

 Solves the Allen-Cahn and diffusion equations
— Pseudo-spectral spatial discretization
— First order, fixed step implicit-explicit time integration

 Utilizes Kokkos for performance portability

 Interfaced ARKODE with test application solving the Cahn-
Hilliard benchmark problem:
— Wrapped physics evaluations into a single function
— Linear terms treated implicitly; nonlinear terms explicitly
— Uses an application-specific linear solver
— Uses SUNDIALS native vectors (CUDA and HIP)

 Adaptive 3rd order IMEX method in ARKODE provides a nice
speedup over the native method in the relevant error regime

Timing results on Ascent at ORNL (NVIDIA V100 GPUs) comparing the
native fixed-step, first-order time integration method and adaptive, high-
order methods from ARKODE with errors calculated using a small-time-step
reference solution. In the application-relevant error regime, ARKODE is 10-
20x faster at the same error levels. (Figure and results courtesy of Steve
DeWitt of ORNL.)

𝜕𝜕𝑐𝑐
𝜕𝜕𝑡𝑡 = ∇ � 𝑀𝑀 ∇

𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐 − 𝜅𝜅∇2𝑐𝑐

𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐 = 2𝜌𝜌𝑠𝑠 𝑐𝑐 − 𝑐𝑐𝛼𝛼 𝑐𝑐𝛽𝛽 − 𝑐𝑐

2
− 𝑐𝑐 − 𝑐𝑐𝛼𝛼 2 𝑐𝑐𝛽𝛽 − 𝑐𝑐

PFHub Benchmark 1a: Deterministic simulation of spinodal
decomposition using the Cahn-Hilliard equation

Slide courtesy of David Gardner (LLNL)

31
LLNL-PRES-830663

DOE’s climate nonhydrostatic dynamical core used ARKODE’s
flexibility to test method options

 E3SM is the US DOE’s new climate code. In developing the
nonhydrostatic dynamical core for the atmospheric model, it
was initially unclear as to the best time integration approach.

 Non-hydrostatic models: compressible Navier Stokes
supporting acoustic (sound) waves which have a negligible
effect on climate, travel much faster than convection

 Spatial discretization is spectral elements in horizontal and
second order mimetic FD in the vertical with vertical remaps;
2D parallel decomposition stores full vertical column(s) on
single MPI task

 Application applies a hyperviscosity term to stabilize the
discretization; first order split from dynamic system

 Applied horizontally explicit / vertically implicit (HEVI)
splittings and IMEX integrators

 Developed accuracy criterion to determine “better” methods

Solve 5 hyperbolic equations:

We split the system so that if 𝑦𝑦 = 𝑢𝑢,𝑣𝑣,𝑤𝑤,𝜙𝜙,Θ, 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑇𝑇

then

the stiff part of the operator is:

𝑠𝑠 𝑦𝑦 = 0, 0,−𝑔𝑔 1 − 𝜇𝜇 ,𝑔𝑔𝑤𝑤, 0, 0 𝑇𝑇

32
LLNL-PRES-830663

ARKODE was interfaced with the HOMME-NH dynamical core to
test numerous integrator options

 “Taught" ARKODE how to perform vector arithmetic directly on pre-
allocated vector objects

 Implemented a system for ARKODE to “check out" and “check in"
temporary vectors, in lieu of standard allocation / deallocation.

 IMEX/HEVI Splittings: Repurposed existing physics routines to
provide the IMEX splitting(s): fE and fI

 HOMME-NH:

— Tridiagonal linear systems for vertical velocity on each MPI task
— Post-process result for update

 Tried 22 IMEX methods including recently developed ARK methods
— Steyer: IMKG methods using Kinnmark & Gray’s 1984 results to

increase explicit stability while limiting both tables to only 2
stored stages at any time (Steyer, Vogl, Taylor, Guba, 2019)

— Reynolds: O(Dt3), 5-stage method for max. imaginary axis
coverage (Vogl, Steyer, Reynolds, Ullrich, and W., 2020)

All ARK methods converged at
expected order on linear gravity
wave test without hyperviscosity and
first order with hyperviscosity

 Developed recommendation for methods to use in E3SM
and metrics for testing new methods
— Steyer’s methods were fastest
— Reynolds’ method: most accuracy but 25% slower

 ARKODE was added to E3SM as a testing vehicle

Vogl, Steyer, Reynolds, Ullrich, and W., JAMES, 2020

33
LLNL-PRES-830663

Work with Pele project shows role libraries have in helping
applications transition between programming models
 The Pele codes use AMReX for structured grid adaptive mesh refinement within reacting flow

simulations and SUNDIALS integrators to evolve the combustion mechanism w/in each grid cell

 PelePhysics: Interfaces to CVODE and ARKODE, batched solvers allow for integrating
mechanisms with stiff integrators on an array of GPUs with differing programming models
(CUDA, HIP, SYCL). This infrastructure is available to both PeleC and PeleLM

 PeleLM: Uses CVODE; solver options – iterative w/ and w/o preconditioners or direct batched

 PeleC: Less stiff problems; evaluating options with explicit integrator in ARKODE and CVODE

PeleLM Profiles Runtimes for PeleC pre-mixed flame test on two
Summit nodes (12 GPUs) using ARKODE. Saw
44% reduction in runtime w/ algorithm choices.

Comparisons of linear solvers with
PelePhysics using CVODE on Eagle
(V100) system showing runtime benefits
of MAGMA linear solvers.

Bottom figures and results courtesy of Lucas Esclapez, Marc Day, and Jon Rood

Through introduction of CUDA in AMReX and SUNDIALS, the lion’s
share of the PeleLM port to CUDA was completed. Once running
with GPUs, the chemistry integration went from being significantly
dominant to 41% of runtime. Speedups of ~6x observed on Summit.

34
LLNL-PRES-830663

Software libraries are not enough: the xSDK effort was started
to address challenges with using multiple libraries at once

Next-generation scientific simulations require
combined use of packages
 Installing multiple independent software packages

is error prone
— Need consistency of compiler (+version,

options), 3rd-party packages, etc.
— Namespace and version conflicts make

simultaneous build/link of packages difficult
 Multilayer interoperability requires careful design

xSDK history: Work began in ASCR/BER
partnership, IDEAS project (Sept 2014)

Needed for multiscale, multiphysics
integrated surface-subsurface hydrology
models

Program Managers:
Thomas Ndousse-Fetter (ASCR)

Paul Bayer & David Lesmes (BER)

Prior to the xSDK effort, could not build required libraries into a
single executable due to many incompatibilities

35
LLNL-PRES-830663

xSDK (Extreme-scale Scientific Software Kit) brings together
many DOE libraries for improved cohesiveness

 Provides infrastructure and interoperability for independently developed mathematical libraries to support
ExascaleComputing Project (ECP) applications

 Achieves cohesiveness through a set of community policies adapted by all member libraries for seamless build,
improved software quality, sustainability, and portability

 Provide regular releases and documentation, including testing on a variety of platforms, including key platforms
at Argonne’s Leadership Computing Facility (ALCF), NERSC at LBNL, and Oak Ridge’s Leadership Computing Facility
(OLCF)

 Each xSDK member package uses or can be used with one or more xSDK packages, and the connecting interface is
regularly tested for regressions.

 Each member package maintains a spack package that is in turn used by the xSDK spack package to aid installation
of the full xsdk. (Spack is a package manager: https://spack.io/).

https://spack.io/

36
LLNL-PRES-830663

• Original xSDK math libraries: hypre, PETSc,
SuperLU, Trilinos

• Added Dec 2017: MAGMA, MFEM, SUNDIALS
• Added Dec 2018: AMReX, deal.II, DTK, Omega_h,

PHIST, PLASMA, PUMI, SLEPc, STRUMPACK,
TASMANIAN

• Added Nov 2019: ButterflyPACK, Ginkgo,
libEnsemble, preCICE

• Added Nov 2020: heFFTe, SLATE

xSDK Version 0.7.0 was released in November 2021

Tested on key machines at ALCF, NERSC, OLCF,
also Linux, Mac OS X

November 2021
• 24 math libraries
• 2 domain

components
• 16 mandatory xSDK

community policies
• Spack xSDK installer

Slide material courtesy of the xSDK project

37
LLNL-PRES-830663

xSDK: https://xsdk.info
Building the foundation of an extreme-scale scientific software ecosystem

xSDK community policies: Help address challenges in interoperability and sustainability of software
developed by diverse groups at different institutions

xSDK compatible package: must satisfy the mandatory xSDK
policies (M1, ..., M16)
Topics include: configuring, installing, testing, MPI usage, portability, contact and version
information, open source licensing, namespacing, and repository access

Also specify recommended policies, which currently are
encouraged but not required (R1, ..., R8)
Topics include: public repository access, error handling, freeing system resources, and library
dependencies, documentation quality

xSDK member package:
(1) Must be an xSDK-compatible package, and
(2) it uses or can be used by another package in the xSDK, and the

connecting interface is regularly tested for regressions.

xSDK policies 0.6.0: Oct 2020
• Facilitate combined use of

independently developed packages

Impact:
• Improved code quality, usability, access,

sustainability

• Foundation for work on deeper levels of
interoperability and performance
portability

We encourage feedback and
contributions!

https://github.com/xsdk-project/xsdk-community-policies

Slide material courtesy of the xSDK project

https://xsdk.info/
https://xsdk.info/
https://github.com/xsdk-project/xsdk-community-policies

38
LLNL-PRES-830663

xSDK community policies
now also on github:
https://github.com/xsdk-project/xsdk-community-policies

Mandatory xSDK policies:

M1. Support portable installation through Spack.
(includes xSDK Spack variant guildelines)

M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the development team.
M6. Respect system resources and settings made by other previously called
packages.
M7. Come with an open source license.
M8. Provide a runtime API to return the current version number of the
software.
M9. Use a limited and well-defined symbol, macro, library, and include file
name space.
M10. Provide an accessible repository (not necessarily publicly available).
M11. Have no hardwired print or IO statements.
M12. Allow installing, building, and linking against an outside copy of
external software.
M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64-bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be
sustainable.
M16. Have a debug build option.

Recommended xSDK policies:

R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to
test for memory corruption issues.
R3. Adopt and document consistent system for error
conditions/exceptions.
R4. Free all system resources it has acquired as soon as
they are no longer needed.
R5. Provide a mechanism to export ordered list of library
dependencies.
R6. Provide versions of dependencies.
R7. Have README, SUPPORT, LICENSE, and CHANGELOG
file in top directory.
R8. Provide sufficient documentation to support use and
further development.

We welcome feedback. What policies make
sense for your software?

https://xsdk.info/policies

Slide material courtesy of the xSDK project

https://github.com/xsdk-project/xsdk-community-policies
https://github.com/xsdk-project/xsdk-community-policies
https://xsdk.info/policies

39
LLNL-PRES-830663

Several deeper interoperabilities exist and are maintained
between member packages

Slide material courtesy of the xSDK project

40
LLNL-PRES-830663

• Second release of example codes (xsdk-examples v.
0.2.0) is available in a github repository:
https://github.com/xsdk-project/xsdk-examples

• The example codes are a demonstration of
interoperability between xSDK libraries and provide
training for xSDK library users interested in using
these capabilities.

• Building and running the example codes will enable
better testing of the xSDK in future releases.

• Spack package and build systems were created and
successfully tested for all example codes.

• Newest examples exhibit interoperabilities in GPU
environments (CUDA for now)

The xSDK maintains several multi-library example codes
demonstrating interoperability

Slide material courtesy of the xSDK project

https://github.com/xsdk-project/xsdk-examples

41
LLNL-PRES-830663

The xSDK uses a Gitlab continuous integration setup to regularly
test interoperable compilation and deeper interoperabilities

 Using Gitlab CI (pipeline) infrastructure at https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines

 Regularly run multiple tests per pipeline on latest Spack development branch: spack install xsdk
— Linux with GNU and Intel compilers
— Linux KNL with Intel compilers
— MacOS with Clang/gfortran compilers

 Testing for xSDK release additionally includes key platforms at ALCF, NERSC, and OLCF

 Have started regular testing of development version of subsets of xSDK libraries

 Working towards a plan to improve xSDK testing with view towards sustainability

Slide material courtesy of the xSDK project

https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines

42
LLNL-PRES-830663

Several Exascale Computing Project applications use multiple
numerical libraries in their simulation frameworks

 Simulations for better understanding
complex flow physics in wind farms (ExaWind)

— Uses AMReX, Trilinos, hypre

— Plans to use SUNDIALS, MAGMA, SuperLU

 High-Fidelity Whole Device Model of Magnetically
Confined Fusion Plasma (WDMApp)

— Core-edge coupled turbulence simulation
in a realistic tokamak geometry

— Color contours represent perturbed plasma density.

— Uses hypre, PETSc, MAGMA, SLEPc, SuperLU
Courtesy: A. Bhattacharjee (PPPL)

Courtesy: M. Sprague et al (NREL)

Slide material courtesy of the xSDK project

43
LLNL-PRES-830663

Applications in Center for Efficient Exascale Discretizations
ECP project also use multiple xSDK libraries

 xSDK highly relevant for CEED

 CEED uses or plans to use the following libraries in various applications:
— MFEM, MAGMA, hypre, PETSc, SUNDIALS, SuperLU, Ginkgo, PUMI and STRUMPACK

fully implicit mass transport Electromagnetic wave scattering
(tokamak fusion modeling)Laser-driven radiating Kevin-Helmholtz

instability using a high-order multi-material
ALE radiation-hydrodynamics discretization Courtesy: Tzanio Kolev (LLNL)

44
LLNL-PRES-830663

 Multiratemethods
— IMEX-MRI (Chinomona and Reynolds)
— MRI-GARK methods (Sandu)
— Custom fast integrators in the multirate stepper, including an example that shows use of

CVODE as the fast, inner stepper
 Support for SYCL-based direct linear solvers for use on Intel GPUs
 New performance assessment layer and performance assessments with Caliper
 Planned: greater interoperability to discretization and other solver packages

— AMReX (structured adaptive mesh refinement package) – multifab-based vector for
SUNDIALS

— Chombo (structured adaptive mesh refinement package) – Chombo vector for SUNDIALS
— MFEM (Modular finite element methods) – integrators already available from MFEM, new

GPU-based examples
— Gingko (sparse solvers for HPC systems) – interfaces to batched iterative methods in

development
— PETSc – updating interfaces to SUNDIALS integrators from PETSc

What’s new in SUNDIALS?

45
LLNL-PRES-830663

 Software libraries are needed to help simulations achieve predictive capabilities
— Complexity of many realistic models makes it essential for most work groups to

adopt expertise from outside
— Libraries can ease the transition to much more sophisticated and efficient

methods and implementations
 Time integration falls in the middle of the scientific software stack – used by

applications and uses solvers
— Packages must be able to work with other packages, whether they be

applications, discretizations, or solvers
— Making as few assumptions as possible about data allows for a lot of flexibility but

restricts scope
 Softwarepracticalities are important considerations when developing new methods

— Flexible softwaredesigns make incorporating more methods feasible
— Complexity of implementations impacts maintenanceefforts

 Community policies and regular testing help to ensure package compatibilities

Concluding Remarks

Flexibility is essential!

46
LLNL-PRES-830663

 Visit the SUNDIALS website
https://computing.llnl.gov/projects/sundials

 SUNDIALS tutorial (from 2020): At top of presentations list at
the SUNDIALS publications page:
https://computing.llnl.gov/projects/sundials/publications

 Download from the SUNDIALS website:
https://computing.llnl.gov/projects/sundials/sundials-software

 Download the tarball from the SUNDIALS GitHub page:
https://github.com/LLNL/sundials/releases

 Install SUNDIALS using Spack “spack install sundials”

 View online documentation on all SUNDIALS packages at
readthedocs.org:
https://sundials.readthedocs.io/en/latest/

Where to learn more and get the software

 Visit the xSDK website:
https://xsdk.info

 xSDK Community Policies:
https://github.com/xsdk-project/xsdk-community-policies

 xSDK examples github repository:
https://github.com/xsdk-project/xsdk-examples

 xSDK Gitlab CI (pipeline) infrastructure:
https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines

 Install xSDK using Spack “spack install xsdk”

 Spack package manager Github:
https://spack.io/

 Spack tutorial on readthedocs.org:
https://spack-tutorial.readthedocs.io/en/latest/

https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials/publications
https://computing.llnl.gov/projects/sundials/sundials-software
https://github.com/LLNL/sundials/releases
https://sundials.readthedocs.io/en/latest/
https://xsdk.info/
https://github.com/xsdk-project/xsdk-community-policies
https://github.com/xsdk-project/xsdk-examples
https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines
https://spack.io/
https://spack-tutorial.readthedocs.io/en/latest/

47
LLNL-PRES-830663

Acknowledgements

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research.

computing.llnl.gov/sundials

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

	Slide Number 1
	Outline
	As we look toward the future, we expect greater capability along with disruptive changes in high performance computing systems
	New capabilities will enable new computational science opportunities
	Increasing complexity of future computational science problems leads to increasing complexity of software
	Scientific software development encounters challenges from both the technical and sociological arenas
	Despite challenges, opportunities abound for numerical software development improvements
	Software libraries facilitate progress in computational science and engineering
	Why is reusable scientific software important for the math community?
	LLNL has had a long history of software development for time integrators
	SUite of Nonlinear and DIfferential-ALgebraic Solvers
	SUNDIALS offers packages with linear multistep and multistage methods
	KINSOL solves systems of nonlinear algebraic equations, F(u) = 0
	The MRIStep (multirate infinitesimal step) module is our newest module in ARKODE and is still expanding in capability
	Many time integrators and nonlinear solvers can be implemented in ways that allow for very flexible software
	SUNDIALS uses modular design and control inversion to interface with application codes, external solvers, & encapsulate parallelism
	In developing SUNDIALS we adhered to basic guiding principles in setting up interfaces between integrators, solvers, and users
	SUNDIALS packages modify solution data only through the methods in the NVector data class
	Slide Number 19
	Slide Number 20
	SUNDIALS package use: first instantiate the subsidiary structures and solvers then pass to the integrator
	Supplying the Initial Condition Vector(s)
	Supplying the IVP to the Integrator – RHS/Residual Functions
	CVODE/ARKODE RHS Functions
	Initializing the Integrators – ARKODE
	Supplying Options to the Integrators
	Advancing the Solution
	Retrieving Output from the Integrators
	Software package flexibility allows for solver and programming model assessments
	MEUMAPPS-SS phase field code was able to try new integrators easily once they had a single RHS function to call
	DOE’s climate nonhydrostatic dynamical core used ARKODE’s flexibility to test method options
	ARKODE was interfaced with the HOMME-NH dynamical core to test numerous integrator options
	Work with Pele project shows role libraries have in helping applications transition between programming models
	Software libraries are not enough: the xSDK effort was started to address challenges with using multiple libraries at once
	xSDK (Extreme-scale Scientific Software Kit) brings together many DOE libraries for improved cohesiveness
	Slide Number 36
	xSDK: https://xsdk.info �Building the foundation of an extreme-scale scientific software ecosystem
	xSDK community policies�now also on github:�https://github.com/xsdk-project/xsdk-community-policies
	Several deeper interoperabilities exist and are maintained between member packages
	The xSDK maintains several multi-library example codes demonstrating interoperability
	The xSDK uses a Gitlab continuous integration setup to regularly test interoperable compilation and deeper interoperabilities
	Several Exascale Computing Project applications use multiple numerical libraries in their simulation frameworks
	Applications in Center for Efficient Exascale Discretizations ECP project also use multiple xSDK libraries
	Slide Number 44
	Slide Number 45
	Where to learn more and get the software
	Acknowledgements
	Slide Number 48

