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As we look toward the future, we expect greater capability along
with disruptive changes in high performance computing systems

= Extreme levels of concurrency
— Very high node and core counts ,
— Increasingly deep memory hierarchies -y PR

= Additional complexities
— Hybrid architectures
— Manycore, GPUs, multithreading
— Relatively poor memory latency and bandwidth
— Challenges with fault resilience T
— Must conserve power — limitdata movement i
— New (not yet stabilized) programming models
— Etc.
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New capabilities will enable new computational
science opportunities

Enough computational power to enable

= Multirate, multiscale, multicomponent, multiphysics simulations
= Uncertainty quantification and sensitivities for all simulations

= Simulationsinvolving stochastic quantities

= Optimization over full-featured simulations

= Coupling of simulations and data analytics

‘ Beyond interpretive simulations ... working toward predictive science

. . (""I
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Increasing complexity of future computational science
problems leads to increasing complexity of software
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Slide courtesy of L. Mcinnes (ANL)
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Scientific software development encounters challenges
from both the technical and sociological arenas

Technical Sociological
= All parts of the cycle can be under research * Competing priorities and incentives
= Requirements change throughout the * Limited resources
lifecycle as knowledge grows * Perception of overhead with deferred benefit
= Importance of reproducibility * Need for interdisciplinary interactions

= Verification complicated by floating point
representation

= Funding good software practices, like
testing and documentation is hard to get

= The real world is messy, so is the software

Science through computing is only as good as the software that produces it!

Some slide material courtesy of L. Mclnnes (ANL)
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Despite challenges, opportunities abound for
numerical software development improvements

Better design, software practices, and tools are available

Better software architectures: toolkits, libraries, frameworks

Open-source software, community collaboration

Greater recognition that good software practices can increase productivity

‘ Working toward: community software ecosystems for high-performance CSE

Some slide material courtesy of L. Mclnnes (ANL)
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Software libraries facilitate progress in computational
science and engineering

Software library: a high-quality, Key advantages of software libraries
encapsulated, documented, tested, and

multiuse software collection that provides

functionality commonly needed by
application developers * Reduce application coding effort

e Contain complexity
* Leverage library developer expertise

* Encourage sharing of code, ease distribution of

= Organized for the purpose of being code

reused by independent (sub)programs
= User needs to know only
— Library interface (not internal details)

— When and how to use library
functionality appropriately

Slide courtesy of L. Mcinnes (ANL)
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Why is reusable scientific software important for the
math community?

= Allows us to verify algorithmic properties more easily
= Provides an insertion path for our work into scientificapplications
= Broadens the impact of our work

= Can motivate new directions of research

More efficient, Improves
robust, reliable, |:> developer |:> Better science
sustainable software productivity
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LLNL has had a long history of software development for
time integrators

FORTRAN ANSI C SUNDIALS

Released
()

1972... 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

—CED

cvodes
[ dass| ] 8 daspk S ida ida
>
2 kinsol kinsol
senskinsol

The 1980s and 1990s produced significant strides in the solution of ordinary differential equations and differential/algebraic equations:
= Stiff integrators that allowfor changingstep sizes

= Fullyadaptive step and orderintegrators
= Novel Newton—Krylov methods allowing for matrix-free solvers

= Efficientand robust software implementations (ODEPACK-> CVODE, IDA -> SUNDIALS)

LLNL-PRES-830663
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0 SUite of Nonlinear and DlIfferential-
Sund]als AlLgebraic Solvers

= SUNDIALS is a softwarelibrary consisting of ODE and
DAE integrators and nonlinear solvers

= Written in C with interfacesto Fortran
{ 1! ! 7
= Designed to be incorporated into existing codes | chDE ] cvolnes ] | ARKlone ] ([ ma ] [ was ] [ wnsor |
= Nonlinear and linear solvers and all data use is fully l l } l |
encapsulated from the integrators and can be user- N_Vector SUNMatrix SUNLinearSolver SUNNonlinearSolver
. Interface Interface Interface Interface
supplied ! ! ! L

| Vectors | | Matrices | | Linear Solvers | | Nonlinear Solvers |

= All parallelism is encapsulated in vector and solver
modules and user-supplied functions

= Freely available; released under the BSD 3-Clause
license (>120,000downloadsin 2021)

= Detailed user manuals are included with each package . ;
packag https://computing.linl.gov/casc/sundials

= Online documentation at readthedocs.org
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SUNDIALS offers packages with linear multistep and
multistage methods

= CVODE, IDA, and their sensitivity analysis variants (forward and adjoint), CVODES and IDAS, are based on linear multistep
methods

— CVODE solves ODEs, y = f(t, y)

— IDA solvesDAEs, F(t,y,y)=0

— Adaptivein both orderand step sizes

— Both packages include stiff BDF methods

— CVODE includes nonstiff Adams-Moulton methods

= ARKODE is designed to work as an infrastructure for developingadaptive one-step, multistage timeintegration methods
— Originally designedtosolve My = f;(t,y) + fe(t,y), y(to) = yo
M(t) maybe the identity orany nonsingular (and optionally time-dependent) mass matrix (e.g., FEM)
— Includes multistage embedded methods which give rise to adaptive time steps

— Three steppers: ARKStep (explicit, implicit, and additive IMEX Runge-Kutta methods), ERKStep (streamlined ERK
implementation), and MRIStep (multirate infinitesimal step methods)

— XBraid wrappers for methods from ARKStep which provide ARK methods to the XBraid parallel-in-time package
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KINSOL solves systems of nonlinear algebraic
equations, F(u) =0

= Newton Solvers: update iterate via  v"™' =u"+ s k=0,..,1

— Get update by solving:  J(u")s" = —F(u")  J(u) =

— Inexact method approximately solves this equation

Dynamic linear tolerance selection for use with iterative linear solvers
IF(2*) + T (@)™ <t F ("))

= Can separately scale equations and unknowns

Backtracking and line search options for robustness

KINSOL also solves fixed point and Picard iterations with acceleration

uttt = GuF), k=01, ...

Flu)=Lu— N(u) Gu)=L"'Nu)=u—L'Fu) = u""" ="~ L' Fu")
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The MRIStep (multirate infinitesimal step) module is our newest
module in ARKODE and is still expanding in capability

= The new MRIStep module supports 2™9, 3 and 4t order multirate
methods

= The slow time scale is integrated with implicit, explicit, or IMEX methods

= The slow time scale uses a user-defined At for the slow operator that
can be varied between slow steps

= The fast time scale can call ARKStep and thus allows for explicit, implicit,
or IMEX integration (user-supplied fast integratoris also supported)

= The fast time scale can use adaptive or fixed time step sizes
= Supports user-defined method tables for both time scales
= Currently available

— 2" and 39 order multirate MIS methods

— 4% order multirate MRI-GARK methods, explicit and solve decoupled implicit
(Sandu, SINUM, 2019)

— 3rdand 4™ order multirate with IMEX splitting at the slow time scale
(Chinomonaand Reynolds, SISC, 2021)

Max Error

—e— Lie-Trotter (0.91) —o— IMEX-MRI3b (2.92)
—%— Strang-Marchuk (1.92) —e— IMEX-MRI4 (3.12)
—=— IMEX-MRI3a (2.86)

1072 A

1075 4

1077 A

1079 4

1071

10! 10° 10!
Runtime (s)

Comparison of 3 and 4" order IMEX-MR| methods in
SUNDIALS with 1%t and 29 order splitting approaches
on a 1D advection-diffusion-reaction test. The IMEX-
MRI methods show greater accuracy and efficiency.
Figure courtesy of R. Chinomona (SMU).
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Many time integrators and nonlinear solvers can be
implemented in ways that allow for very flexible software

= Most methods can be written in terms of operations on data, rather than assuming exactly what
the datalooks like and how it is laid out in memory

= |mplicit time integrators can be made more efficient through control of properties of the
nonlinear and linear solver, but these properties can be encapsulated away from the integrator

= Nonlinear solvers can be made more efficient through control of properties of the subsidiary
linear solver, but these properties can be encapsulated

= Linear solvers may require detailed datainformation:
— lterative: only needs action of the linear operator on a matrix rather than the full matrix
— Direct: Requires the matrixin specific formats

= Libraries can be designed to minimize need to interact with linear system data and thus allow for
the application or linear solver to control the data layout
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SUNDIALS uses modular design and control inversion to interface
with application codes, external solvers, & encapsulate parallelism

= Control passes between the integrator, solvers, and application code as the integration progresses

Application Code

<
<
@ tOl Yo, f, Jf 1 Yn+1 ﬁ

Time integrator

@ ZOI FI JF 1

Nonlinear solver

i)

l

Generic Solver
Interfaces

<L A X0 b 1

Linear solver

F(z™), Je(z™)

<
)
<

—

Ax™ P-1rm

>

- Application / I

discretization
framework:

RHS Function, f

RHS Jacobian, J;

\__ Preconditioner,P /

= Nonlinear and linear solver modules are designed for generic systems

F(y) =0

Gy) =y

Axr = b

Time integratorand nonlinear
solver are agnostic of vector data
layout and specific solvers used
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In developing SUNDIALS we adhered to basic guiding principles
in setting up interfaces between integrators, solvers, and users

= Application Program Interfaces (APIs) for vectors, matrices, linear solvers, nonlinear solvers, and
time integrators are based on the minimal required functionality; these encapsulate all parallelism
— Although written in C, SUNDIALS is set up like C++ classes with a content structure and a set of
operations
— SUNDIALS allows users to supply custom versions of data structures and solvers

= Allow for the user to control as much as possible about the integrators and solvers
— Include optional calls to allow for control of many features
— Ensure the user controls specifics of third-party solvers

— Assume as little information about parallelism as possible
The SUNDIALS team gutted and

= Keep the SUNDIALS packages easy to use redid the underlying software
— Intuitive interfaces architecture over the last several
— Detailed user documentation years. While these guidelines seem
— User-friendly build system obvious, reminders at many
— Simple example programs decision points were needed.

= Don’tslow down the most common cases to cover all rare cases
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SUNDIALS packages modify solution data only through the

methods in the NVector data class

= Several NVector implementations are released with SUNDIALS:

— CUDA, HIP, SYCL, RAJA (CUDA and HIP backends), and OpenMPDEV
(target offload) vectors provide on-node GPU support

— Parallel, ParHyp, PETSc, and Trilinos modules are MPI distributed

— ManyVector and MPIPlusX modules provide support for hybrid
computation

= Seems like a lot to support but...
— vectors are simple and a lot of code can be reused

— once the GPU platforms mature, can hopefully reduce options

= |t is straightforward to implement a problem-specific NVector tailored
to an application

N_Vector
Inte iface
Vectors
. | Parallel
Serial (MP)
SYCL HIP
CUDA RAJA
OpenMP
DEV MPIPlusX
( | ParHyp
ManyVector
| e ) (hypre)
Trilinos
PETSc (Tpetra)
OpenMP Pthreads
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Matrix and solver implementations supply a minimum set of
functionality in order to be used underneath the time integrators

Nonlinear Solver Modules

SUNNonlinearSolver
API g [ NEWTON ] [FIXEDPOINT] [PETSCSNES]
Linear Solver Modules

DENSE | [ BAND | [ LAPACKDENSE | [ LAPACKBAND | [ KLU ]
SUNLinearSolver > 7 2 2 N Y e
—p| \ Y 2 \ It ) !
API SUPERLU_MT | | SUPERLU_DIST CUSOLVER MAGMA i Ginkgo |
SPTFQMR SPBCG PCG SPGMR [ SPFGMR ]

Matrix Modules

SUNMatrix API  —

| DEnsE || sparse || mAGmMA | [ cuSOLVER |

. . ( "‘I
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Matrix and solver implementations supply a minimum set of
functionality in order to be used underneath the time integrators

Nonlinear Solver Modules

SUNNonlinearSolver
API [ NEWTON ] [FIXED POINT] [PETSC SNES]
Linear Solver Modules

DENSE | [ BAND | [ LAPACKDENSE | [ LAPACKBAND | [ KLU ]
SUNLinearSolver > 2 > < > <  jSoT=oooo=========
# [ N ( N N r N : . 1
API SUPERLU_MT SUPERLU_DIST CUSOLVER MAGMA : Ginkgo i
SPTFQMR SPBCG PCG SPGMR [ SPFGMR ]

Matrix Modules

SUNMatrix API  —

| DEnsE || sparse || mAGmMA | [ cuSOLVER |

Nonlinear solvers and matrix-free iterative linear solvers derive GPU support from vectors
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SUNDIALS package use: first instantiate the subsidiary
structures and solvers then pass to the integrator

= |nitialize parallelism if needed

= Create simulation context

= Constructtheinitial state vector

= Call a Create function for the integrator—instantiates the integrator

= Call an Init function — specifies the problem (requires f function pointer(s)) and initial state
= Setintegrationtolerances

= Create a matrix objectif needed

= Createlinear solver, if needed, then set any linear solver optional inputs

= Attach the linear solver module to the integrator

= Create nonlinear solver

= Attachthe nonlinear solverthen set any nonlinear solver optional inputs
= Advance the solution in time — call to the integrator; this may be in a loop
= Get optional outputs

= Call relevant destructors for the solution vector, the integrator,and any algebraic solvers

Lawrence Livermore National Laboratory N A‘S@% 21
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Supplying the Initial Condition Vector(s)

= The user needs to constructan initial condition vector

= |f using one of the SUNDIALS provided vectors, notethat each provided module has a unique set of
“constructors”, e.g.

— N_Vector N_VNew_Serial(sunindextype length, SUNContext sunctx);
— N_Vector N_VMake_Cuda(sunindextypelength, realtype *h_vdata, realtype *d_vdata, SUNContext sunctx);

— N_Vector N_VMake_MPIPlusX(MPl_Commcomm, N_Vectorx , SUNContextsunctx);

= Once an application creates a vector for their data, they fill it with the initial conditions for the problem and
supply it to the integrator,who “clones” it to createits workspace.

= For PETSc, hypre, and Trilinos, the corresponding SUNDIALS NVector wrapper constructors take the native
vector structure as their only input.

. . ( "‘I
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Supplying the IVP to the Integrator — RHS/Residual Functions

Once the problem data is encapsulated in a vector, all that remains for basic SUNDIALS usage is
specification of the IVP itself:

= CVODE and ARKODE specify the IVP through right-hand side function(s):
int (*RhsFn)(realtypet, N_Vectory, N_Vectorydot, void *user_data)

= |DA specifies the IVP through a residual function:

int (*ResFn)(realtypet, N_Vectory, N _Vectorydot, N _Vectorr,
void *user_data)

= The *user_data pointer enables problem-specific data to be passed through the SUNDIALS integrator
and back to the RHS/residual routine (i.e., no global memory).
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CVODE/ARKODE RHS Functions

* L]
* RHS function Example:

* The form of the RHS function is controlled by the flag passed as f_data: cvDisc dns.c
* flag RHS1 —> vy -y -

*  flag RHS2 —> vy —5xy

74

static int f(realtype t, N_Vector y, N_Vector ydot, void xf_data)

{
int *flag;

flag = (int %) f_data;

switch(xflag) {

case RHS1:
NV_Ith_S(ydot,@) = -NV_Ith_S(y,0);
break;

case RHS2:
NV_Ith_S(ydot,0) = -5.0xNV_Ith_S(y,0);
break;

by

return(0);

L&. Lawrence Livermore National Laboratory N S.:_oa'\ 24
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Initializing the Integrators — ARKODE

L

/* Create fast solver memory structure and specify IMEX problem */
void *arkode mem = ARKStepCreate(fe, fi, TO, y, sunctx);
if(check_retval((void *)arkode_mem, »”, 0)) return(l);

/* Create solver memory structure and specify implicit problem */
void *arkode mem = ARKStepCreate(NULL, f, TO, y, sunctx);
if(check_retval((void *)arkode_mem, »”, 0)) return(l);

/* Create solver memory structure and specify explicit problem */
void *arkode mem = ARKStepCreate(fe, NULL, TO, y, sunctx);
if(check_retval((void *)arkode_mem, »”,0)) return(1);

/* Create fast solver memory structure and specify IMEX problem */
void *inner_mem = ARKStepCreate(ffe, ffi, TO, y, sunctx);
if(check_retval((void *)inner_mem, “ »?, 0)) return(1);

/* Set up fast integrator as normal */
int retval = ARKStepSet...(inner_mem, ...);
if(check_retval(&retval, “ »”, 1)) return(l);

/* Create the inner stepper object wrapper */
int retval = ARKStepCreateMRIStepInnerStepper(inner_mem, stepper);

if(check_retval(&retval, “ ?, 1)) return(1);

/* Create slow solver memory structure and specify multirate problem */
void *arkode mem = MRIStepCreate(fse, fsi, TO9, y, *stepper, sunctx);
if(check_retval((void *)inner_mem, “ »?,0)) return(1);

Lawrence Livermore National Laboratory
LLNL-PRES-830663

IMEX (top), implicit (middle), explicit (bottom)

Multirate with IMEX at fast time scale
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Supplying Options to the Integrators

After constructing the integrator, additional options may be supplied through various “Set”
routines (example from ark_heat1D_adapt.c):

/* Set routines */

int retval;

retval = ARKStepSetUserData(arkode_mem, (void *) udata); /* Pass udata to user functions */
if (check_flag(&retval, , 1)) return(l);

retval = ARKStepSetMaxNumSteps(arkode_mem, 1000); /* Increase max num steps */
if (check_flag(&retval, , 1)) return(l);

retval = ARKStepSStolerances(arkode_mem, rtol, atol); /* Specify tolerances */
if (check_flag(&retval, , 1)) return(l);

retval = ARKStepSetAdaptivityMethod(arkode_mem, 2, 1, @, NULL); /* Set adaptivity method */
i1f (check_flag(&retval, , 1)) return(l);

retval = ARKStepSetPredictorMethod(arkode_mem, @); /* Set predictor method */
if (check_flag(&retval, , 1)) return(l);

uL. Lawrence Livermore National Laboratory N S.f_oa'l e
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Advancing the Solution

Once all options have been set, the integrator is called to advance the solution toward z_,,.

retval = IDASolve(ida_mem, tout, &tret, yy, yp, IDA_NORMAL); IDA
if (check_retval(&retval, , 1)) return(l);

retval = CVode(cvode_mem, tout, y, &tret, CV_ONE_STEP); CVODE
if (check_retval(&retval, , 1)) return(l);

retval = ARKStepEvolve(arkode_mem, tout, y, &tret, ARK_NORMAL);
if (check_retval(&retval, , 1)) return(l);

ARKODE

retval = MRIStepEvolve(arkode_mem, tout, y, &tret, ARK_ONE_STEP);
if (check_retval(&retval, , 1)) return(l);

ul.. Lawrence Livermore National Laboratory
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Retrieving Output from the Integrators

long int nst, nfe, nsetups, netf, nni;
int retval;

retval = CVodeGetNumSteps(cvode_mem, &nst);
check_retval(&retval, , 1;
Scalar-valued solver statistics from
retval = CVodeGetNumRhsEvals(cvode_mem, &nfe); i£f K
check_retval(&retval , ¥ cvAdvDiffReac_kry.c

retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
check_retval(&retval, , 1);

retval = CVodeGetNumErrTestFails(cvode_mem, &netf);
check_retval(&retval, , 1);

retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
check_retval(&retval, , 1);

ul.. Lawrence Livermore National Laboratory INVYSE s

LLNL-PRES-830663



Software package flexibility allows for solver and

Smmt
programming model assessments i

Task-local Newton Global Newton
= 1D Advection-Reaction PDE solved with an IMEX i// X
B —4— MPI+Serial 5 4x10
method from ARKODE
v 3x 10! e ek Bl 2.3x % 2 .8x
£ 1.ix_”_‘—__‘\‘/‘ E2x10t 2.3x
au au 2 £ 2x100 2.3x 2.7x iy 5 1.6x 1.8x 20 3.7x
—=—=c—+A-w+ Du+vu 1IN e ' . 26 50 —
at ax ( ) g 3.7x 4.2x iy % 101_2-2X - 3.7x 41
av _ Cav + Wi vuz Lo P ' 3.9x ' | 3.3 3.6x
8t B ax il number of Spig;l grid points il 166 number of spl;oi;l grid points 168
ow _ _CH_W N B-w o (Above) Weak scaling on 1, 4, 16, 64, and 256 Summit nodes, each with 6
ot ox € MPI tasks per node (1 MPI task per GPU); MPI-only uses 40 MPI tasks per

. . el . . . node. Annotations show speedup over the MPI+Serial vector. Greatest
* Reactions treated implicitly; advection treated explicitly speedup achieved when using the CUDA vector and CUDA for the RHS

III

= Nonlinear solver is either a “Task-local” Newton solve

(solve per spatial node) + direct inversion or a Global Task-local with CUDA Task-local serial
Newton solve T G

Other

60 60 4

40

Execution time breakdowns with and without CUDA with
the Task-local solve; Choice of solver can have a significant
impact on where time is spent within a simulation

% of execution time
% of execution time

107
number of spatial grid points number of spatial grid points

106 107 108
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MEUMAPPS-SS phase field code was able to try new integrators
easily once they had a single RHS function to call

PFHub Benchmark 1a: Deterministic simulation of spinodal

= MEUMAPPS-SS is a phase-field code for simulating decomposition using the Cahn-Hilliard equation
microstructure evolution during phase transformations
dc of 5
. ) ) 6_ =V-IMV a— — kV“c
= Solves the Allen-Cahn and diffusion equations of _, (t( X )Cz ( 2( ))
. . . . - = c—¢C Cp—C) —(C—C Cp—C
— Pseudo-spectral spatial discretization ac _ “Ps a’/\°B a’ \"B
— Firstorder, fixed step implicit-explicit time integration
10
HH HH ime to solution is x faster * dials (3)
" Utlllzes KOkkOS for performance portablllty w-:th SL:ndiaIIst:han ci[r)r-:r?tsfc::rme | ® zﬂ:d::lz (4)
_ for application-relevant error levels - ® sundials (5)
= |nterfaced ARKODE with test application solving the Cahn- i Lo manalh
- 10
Hilliard benchmark problem: £ ° .e .
— Wrapped physics evaluations into a single function . ¢ o . -
— Linear terms treated implicitly; nonlinear terms explicitly . .
. . . e . Application-relevant error regime ——»
— Uses an application-specific linear solver T | | |
— Uses SUNDIALS native vectors (CUDA and HIP) 07 10 10 L“’érmr o w0t 0l
2
. rd . . . Timing results on Ascent at ORNL (NVIDIA V100 GPUs) comparing the
- Adaptlve 3" order IMEX method in ARKODE prowdes anice native fixed-step, first-ordertime integration method and adaptive, high-
speedup over the native method in the relevant error regime order methods from ARKODE with errors calculated using a small-time-step
reference solution. In the application-relevant error regime, ARKODE is 10-
20x faster at the same error levels. (Figure and results courtesy of Steve
DeWitt of ORNL.)
: : : , \L N
el e b el el el Slide courtesy of David Gardner (LLNL) N ATy 30




DOE’s climate nonhydrostatic dynamical core used ARKODE’s

flexibility to test method options

= E3SM is the US DOE’s new climate code. In developing the
nonhydrostatic dynamical core for the atmospheric model, it
was initially unclear as to the best time integration approach.

= Non-hydrostatic models: compressible Navier Stokes
supporting acoustic (sound) waves which have a negligible
effect on climate, travel much faster than convection

= Spatial discretization is spectral elements in horizontal and
second order mimetic FD in the vertical with vertical remaps;
2D parallel decomposition stores full vertical column(s) on
single MPI task

= Application applies a hyperviscosity term to stabilize the
discretization; first order split from dynamic system

= Applied horizontally explicit / vertically implicit (HEVI)
splittings and IMEX integrators

= Developed accuracy criterion to determine “better” methods

Solve 5 hyperbolic equations:

g (Oom\ v or 0 ( dn
ot \ dn - fﬁf?r';u _f_'fi‘r; " at

du 1 dndu 1

— =—(Vpyxut+20)xu—-Vy(u-u)——— — =V,p
at ( K ) 2 " ( ) dt dn P nk
Jw dn dw

dp o
—— —g(1—p), =|— — ).
ot dt dn a( A (8?’;) / (8-};)
9G] 0 1, O
f_:_vn.(_@u)_(_ (@ﬂ) o="y

— =—u-Vyw—

ot dan dt on
¢ dn dd¢
{_—Q =—u-Vyo— jg
ot dt on

where 7 is hydrostatic pressure, 7 is vertical coordinate, u and w are horizontal
and vertical velocities, # is potential temperature, and ¢ is geopotential.

Key: hydrostatic model and nonhydrostatic terms.

T
We splitthe systemso that ify = (u, v,w,o,0, Z—Z) then
the stiff part of the operatoris:

S(y) = (Or 01 _g(l —‘ll),gW, 0; O)T
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ARKODE was interfaced with the HOMME-NH dynamical core to
test numerous integrator options

1073

— Tridiagonal linear systems for vertical velocity on each MPI task

1077

= “Taught" ARKODE how to perform vector arithmeticdirectly on pre- 1o All ARK methods converged at
allocated vector obiects o expected order on linear gravity
J 2 . wave test without hyperviscosity and
s / . Tvbe
= Implemented a system for ARKODE to “check out"and “check in" @ first order with hyperviscosity
temporary vectors, in lieu of standard allocation / deallocation. % 1ot 7
= IMEX/HEVI Splittings: Repurposed existing physics routinesto £ % 1071
provide the IMEX splitting(s): fE and fl % o g |
= HOMME-NH: E . 5 o
£
£
s
£

— Post-processresult forupdate

= Tried 22 IMEX methodsincludingrecently developed ARK methods T TP

dt E;)
— Steyer: IMKG methods using Kinnmark & Gray’s 1984 results to
increase explicit stability while limitingboth tablesto only 2

stored stages at any time (Steyer, Vogl, Taylor, Guba, 2019) = Developed recommendation for methods to usein E3SM
and metrics for testing new methods

— Steyer’s methods were fastest
— Reynolds’ method: most accuracy but 25% slower

= ARKODE was added to E3SM as a testing vehicle

— Reynolds: O(Dt3), 5-stage method for max. imaginary axis
coverage (Vogl, Steyer, Reynolds, Ullrich,and W., 2020)

Lawrence Livermore National Laboratory Vogl, Steyer, Reynolds, Ullrich, and W., JAMES, 2020 INWS&4 =2
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Work with Pele project shows role libraries have in helping
applications transition between programming models

= The Pele codes use AMReX for structured grid adaptive mesh refinement within reacting flow 1o Comparison of ARKODE Options in PeleC PMF Test
simulations and SUNDIALS integrators to evolve the combustion mechanism w/in each grid cell = SetunrCieans

B Setup/Cleanup
BN RHS time

H PeleC time

= PelePhysics: Interfaces to CVODE and ARKODE, batched solvers allow for integrating 50
mechanisms with stiff integrators on an array of GPUs with differing programming models 540
(CUDA, HIP, SYCL). This infrastructureis available to both PeleC and PeleLM £ |

= PeleLM: Uses CVODE; solver options —iterative w/ and w/o preconditioners or direct batched 201

= PeleC: Less stiff problems; evaluating options with explicit integrator in ARKODE and CVODE P

4th order 4th order 2nd order 2nd order
ARKStep ERKStep ERKStep ERKStep
(defaults) (defaults) (defaults) (I Controller)

PelelM Profiles Runtimes for PeleC pre-mixed flame test on two

732; . Summit nodes (12 GPUs) using ARKODE. Saw
4.4% o7 % 2% . . . . .
8.3% 0.9% O 32% 44% reduction in runtime w/ algorithm choices.
@ Chemistry
Diffusion
Nodal Projection
MPI+OMP @ MAC Projection MPI+CUDA
@ Vel Advection —41.8%

@ Scal. Advection 35.7% —
B GMRES CuSparse B MAGMA . . .
1000 Comparisons of linear solvers with

100 PelePhysics using CVODE on Eagle
(V100) system showing runtime benefits

85.2%

Through introduction of CUDA in AMReX and SUNDIALS, the lion’s
share of the PeleLM port to CUDA was completed. Once running

10

Time to solution
DOD56

with GPUs, the chemistry integration went from being significantly 1 of MAGMA linear solvers.
dominant to 41% of runtime. Speedups of ~6x observed on Summit. 4x512 4x2048 4x8192 4x 32768
Lawrence Livermore National Laboratory Bottom figures and results courtesy of Lucas Esclapez, Marc Day, and Jon Rood N A‘S@% 33
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Software libraries are not enough: the xSDK effort was started
to address challenges with using multiple libraries at once

Next-generation scientific simulations require xSDK history: Work began in ASCR/BER
combined use of packages partnership, IDEAS project (Sept 2014)
= |nstalling multiple independent software packages | Needed for multiscale, multiphysics
is error prone integrated surface-subsurface hydrology
. . _ models
— Need consistency of compiler (+version,
options), 3rd-party packages, etc. — R T

— Namespace and version conflicts make - —
simultaneous build/link of packages difficult ' T/

= Multilayer interoperability requires careful design

Program Managers:
Thomas Ndousse-Fetter (ASCR)
Paul Bayer & David Lesmes (BER)

Prior to the xSDK effort, could not build required libraries into a
single executable due to many incompatibilities

. . ( "‘I
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xSDK (Extreme-scale Scientific Software Kit) brings together _v4

: : : : ~
many DOE libraries for improved cohesiveness xSDK

= Provides infrastructureand interoperability for independently developed mathematicallibraries to support
Exascale Computing Project (ECP) applications

= Achieves cohesiveness through a set of community policies adapted by all member libraries for seamless build,
improved software quality, sustainability, and portability

= Provide regular releases and documentation, including testing on a variety of platforms, including key platforms
at Argonne’s Leadership Computing Facility (ALCF), NERSC at LBNL, and Oak Ridge’s Leadership Computing Facility
(OLCF)

= Each xSDK member package uses or can be used with one or more xSDK packages, and the connectinginterface s
regularly tested for regressions.

= Each member package maintains a spack package that is in turn used by the xSDK spack package to aid installation
of the full xsdk. (Spack is a package manager: https://spack.io/).

. . 5 7l
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https://spack.io/

XSDK Version 0.7.0 was released in November 2021

* Original xXSDK math libraries: hypre, PETSc,
SuperLU, Trilinos

* Added Dec 2017: MAGMA, MIFEM, SUNDIALS

 Added Dec 2018: AMReX, deal.ll, DTK, Omega h,
PHIST, PLASMA, PUMI, SLEPc, STRUMPACK,
TASMANIAN

 Added Nov 2019: ButterflyPACK, Ginkgo,
libEnsemble, preCICE

e Added Nov 2020: heFFTe, SLATE il November 2021

* 24 math libraries

* 2 domain

components

* 16 mandatory xSDK
Tested on key machines at ALCF, NERSC, OLCF, s G polie s
also Linux, Mac OS X | 4

Lawrence Livermore National Laboratory Slide material courtesy of the xSDK project M‘Sgﬁl 36
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o XSDK: https:/ixsdk.info

xSDK

Building the foundation of an extreme-scale scientific software ecosystem

xSDK community policies: Help address challenges in interoperability and sustainability of software
developed by diverse groups at different institutions https://github.com/xsdk-project/xsdk-community-policies

XSDK compatible package: must satisfy the mandatory xSDK
policies (M1, ..., M16)

Topics include: configuring, installing, testing, MPI usage, portability, contact and version
information, open source licensing, namespacing, and repository access

Also specify recommended policies, which currently are
encouraged but not required (R1, ..., R8)

Topics include: public repository access, error handling, freeing system resources, and library
dependencies, documentation quality

xSDK member package:

(1) Must be an xSDK-compatible package, and

(2) it uses or can be used by another package in the xSDK, and the
connectinginterfaceis regularly tested for regressions.

xSDK policies 0.6.0: Oct 2020

* Facilitate combined use of
independently developed packages

Impact:

* Improved code quality, usability, access,
sustainability

* Foundation forworkon deeper levels of
interoperability and performance
portability

We encourage feedback and
contributions!

Lawrence Livermore National Laboratory
LLNL-PRES-830663
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xSDK community policies
now also on github:

https://github.com/xsdk-project/xsdk-community-policies

We welcome feedback. What policies make
C sense for your software?

https://xsdk.info/policies

Mandatory xSDK policies:

1. Support portableinstallation through Spack.
(includes xSDK Spack variant guildelines)

2. Provide a comprehensive test suite.

3. Employ user-provided MPl communicator.

4. Give best effort at portability to key architectures.

5. Provide a documented, reliable way to contact the development team.

6. Respect systemresources and settings made by other previously called
packages.

7. Come with an open source license.

8. Provide a runtime APl to return the current version number of the
oftware.

9. Use a limited and well-defined symbol, macro, library, and include file
name space.

10. Provide an accessible repository (not necessarily publicly available).
11. Have no hardwired print or IO statements.

12. Allow installing, building, and linking against an outside copy of
xternal software.

13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

14. Be buildable using 64-bit pointers. 32 bitis optional.

M15. All xSDK compatibility changes should be
sustainable.

M16. Have a debug build option.

Recommended xSDK policies:

R1. Have a publicrepository.

R2. Possibleto run test suite undervalgrind in order to
test for memory corruptionissues.

R3. Adopt and document consistent system for error
conditions/exceptions.

R4. Free all systemresourcesit has acquired as soon as
they are no longer needed.

R5. Provide a mechanismto export ordered list of library
dependencies.

R6. Provide versions of dependencies.

R7. Have README, SUPPORT, LICENSE, and CHANGELOG
file in top directory.

R8. Provide sufficient documentation to support use and
further development.

Lawrence Livermore National Laboratory
LLNL-PRES-830663
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Several deeper interoperabilities exist and are maintained

between member packages

Current and planned interoperabilities
between xSDK libraries:

Legend:
A = AMReX, B = ButterflyPACK, C =deal.ll,
D = DataTransferKit, E = Ginkgo, F = heFFTe,
G = hypre, H = libEnsemble, | = MAGMA,
J = MFEM, K =0Omega h, L = PETSc,
M = PHIST, N = PLASMA, O = preCICE,
P = PUMI, Q = SLATE, R = SLEPc,
S = STRUMPACK, T =SUNDIALS, U = SuperLU
V = TASMANIAn, W = Trilinos

Key

Yellow Interoperability exists

Interoperability exists and is enabled in
xSDK Spack

Interoperability is planned

Diagonal

A
B
C
D
E
F
G
H
|
J
K
L
M
N
o}
P
Q
R
S
T
U
v
w
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The xSDK maintains several multi-library example codes
demonstrating interoperability

e Second release of example codes (xsdk-examples v.
0.2.0)is available in a github repository:
https://github.com/xsdk-project/xsdk-examples

e The example codes are a demonstration of
interoperability between xSDK libraries and provide
training for xSDK library users interested in using
these capabilities.

e Building and running the example codes will enable
better testing of the xSDKin future releases.

e Spack package and build systems were created and
successfully tested for all example codes.

e Newest examples exhibit interoperabilitiesin GPU
environments (CUDA for now)

Lawrence Livermore National Laboratory Slide material courtesy of the xSDK project I\ A‘S 525,‘, 40
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https://github.com/xsdk-project/xsdk-examples

The xSDK uses a Gitlab continuous integration setup to regularly
test interoperable compilation and deeper interoperabilities

Using Gitlab CI (pipeline) infrastructure at https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines

Regularly run multiple tests per pipeline on latest Spack development branch: spack install xsdk
— Linux with GNU and Intel compilers

— Linux KNL with Intel compilers

— MacOS with Clang/gfortran compilers

Testing for xSDK release additionally includes key platforms at ALCF, NERSC, and OLCF

Have started regular testing of development version of subsets of xSDK libraries

Working towards a plan to improve xSDK testing with view towards sustainability

Lawrence Livermore National Laboratory Slide material courtesy of the xSDK project N A‘S@i‘% 41
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https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines

Several Exascale Computing Project applications use multiple
numerical libraries in their simulation frameworks

= Simulations for better understanding
complex flow physicsin wind farms (ExaWind)

— Uses AMReX, Trilinos, hypre
— Plans to use SUNDIALS, MAGMA, SuperlLU

= High-Fidelity Whole Device Model of Magnetically
Confined Fusion Plasma (WDMApp)

— Core-edge coupled turbulence simulation
in a realistic tokamak geometry

— Color contours represent perturbed plasma density.

— Uses hypre, PETSc, MAGMA, SLEPc, SuperlLU
Courtesy: A. Bhattacharjee (PPPL)

. . 58
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Applications in Center for Efficient Exascale Discretizations
ECP project also use multiple xSDK libraries

= xSDK highly relevant for CEED

= CEED uses or plans to use the following libraries in various applications:
— MFEM, MAGMA, hypre, PETSc, SUNDIALS, SuperLU, Ginkgo, PUMI and STRUMPACK

fully implicit mass transport Electromagnetic wave scattering
Laser-driven radiating Kevin-Helmholtz (tokamak fusion modeling)
instability using a high-order multi-material
ALE radiation-hydrodynamicsdiscretization Courtesy: Tzanio Kolev (LLNL)
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What’s new in SUNDIALS?

Multirate methods
— IMEX-MRI (Chinomona and Reynolds)
— MRI-GARK methods (Sandu)

— Custom fastintegratorsin the multirate stepper, including an example that shows use of
CVODE as the fast, inner stepper

Support for SYCL-based direct linear solvers for use on Intel GPUs
New performance assessment layer and performance assessments with Caliper
Planned: greater interoperability to discretization and other solver packages

— AMReX (structured adaptive mesh refinement package)— multifab-based vector for
SUNDIALS

— Chombo (structured adaptive mesh refinement package) — Chombo vector for SUNDIALS

— MFEM (Modularfinite element methods) — integrators already available from MFEM, new
GPU-based examples

— Gingko (sparse solvers for HPC systems) — interfaces to batched iterative methods in
development

— PETSc— updatinginterfacesto SUNDIALS integrators from PETSc

. . k ’.-I
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Concluding Remarks

= Softwarelibraries are needed to help simulations achieve predictive capabilities

— Complexity of many realistic models makes it essential for most work groups to
adopt expertise from outside

— Libraries can ease the transition to much more sophisticated and efficient
methods and implementations

= Time integration falls in the middle of the scientific software stack— used by
applicationsand uses solvers

— Packages must be able to work with other packages, whether they be
applications, discretizations, or solvers

— Making as few assumptions as possible about data allows for a lot of flexibility but
restricts scope

= Software practicalities are important considerations when developing new methods
— Flexible software designs make incorporating more methods feasible
— Complexity of implementations impacts maintenance efforts Flexibility is essential!
= Community policies and regular testing help to ensure package compatibilities

. . ("“I
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Where to learn more and get the software

Visit the SUNDIALS website
https://computing.linl.gov/projects/sundials

SUNDIALS tutorial (from 2020): At top of presentationslist at
the SUNDIALS publications page:
https://computing.linl.gov/projects/sundials/publications

Download from the SUNDIALS website:
https://computing.linl.gov/projects/sundials/sundials-software

Download the tarball from the SUNDIALS GitHub page:
https://github.com/LLNL/sundials/releases

Install SUNDIALS using Spack “spack install sundials”

View online documentationon all SUNDIALS packages at
readthedocs.org:
https://sundials.readthedocs.io/en/latest/

Visit the xSDK website:
https://xsdk.info

xSDK Community Policies:
https://github.com/xsdk-project/xsdk-community-policies

xSDK examples github repository:
https://qithub.com/xsdk-project/xsdk-examples

xSDK Gitlab Cl (pipeline) infrastructure:
https://gitlab.com/xsdk-project/spack-xsdk/-/pipelines

Install xSDK using Spack “spack install xsdk”

Spack package manager Github:
https://spack.io/

Spack tutorial on readthedocs.org:
https://spack-tutorial.readthedocs.io/en/latest/
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