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Time stepping methods with time-filtering

In many legacy codes, well-tested low-order time-stepping modules are
deeply embedded and difficult to change.

Time-filters are a way to non-intrusively improve the time-stepping in
legacy codes. Improvements include:

Damp fluctuating scales without impacting smooth scales

Reduce discrete curvature

Enhance accuracy

Reformulating time-filtered methods as general linear methods,
allows us to use optimization approaches

and error inhibiting conditions
to create highly accurate and (linearly) stable

non-intrusive filters for legacy codes.
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Non-intrusive order enhancement

Consider Layton’s filtered implicit Euler scheme:

y (1) = un + ∆tF (y (1))

un+1 = y (1) − 1

3

(
un−1 − 2un + y (1)

)
.

First step is an implicit Euler step
first order, but has nice stability properties

Second step is a linear combination of some steps
this is an anti-diffusive correction that also raises the order.

Adding the ”filtering” step allows us to raise the order without touching
the delicate and mysterious workings of the implicit legacy code.
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Generalization of Layton’s filtered Euler

We can generalize Layton’s filtered Euler method by adding a
”pre-processing” as well as a ”post-processing” step:

ũn = dun−1 + (1− d)un

y (1) = ũn + ∆tF (y (1))

un+1 =
1

3− 2d

(
−un−1 + 2(1− d)un + 2y (1)

)
.

This extra freedom allows an entire family of second order methods that
have implicit Euler as the driver.
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Generalization of Layton’s filtered Euler

With d = 0, this becomes Layton’s implicit Euler filter shown above:

y (1) = un + ∆tF (y (1))

un+1 = y (1) − 1

3

(
un−1 − 2un + y (1)

)
.

With d = 1, this becomes:

y (1) = un−1 + ∆tF (y (1))

un+1 = 2y (1) − un−1
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Numerical Results

To compare the effect of these filters, consider the simple problem
dy
dy = −10y2 :
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Implicit Euler

Implicit Euler + Layton Filter

Implicit Euler + LF Filter

Implicit Euler compared to Layton’s filter with d = 0 and d = 1.
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General Linear Methods

How to I choose ”good” values of the parameter d?

1 Write the method as a GLM:

y (1) = dun−1 + (1− d)un + ∆tF (y (1))

un+1 =
2d − 1

3− 2d
un−1 +

4(1− d)

3− 2d
un +

2

3− 2d
F
(
y (1)

)
,

2 Construct an optimization code that optimizes certain stability
properties, error constants, while treating the order conditions as
constraints. Based on Ketcheson’s MATLAB code that uses fmincon with sqp option.

3 Optimizing this for linear order:

d =
3−
√

3

3

gives a second order method that is third order for linear problem.
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Methods with implicit Euler core

If we want to add more steps, we can get a third order accurate method
based:

y (1) = −1

2
un−2 + un−1 +

1

2
un

y (2) = y (1) + ∆tF
(
y (2)

)
un+1 =

5

11
un−2 − 15

11
un−1 +

15

11
un +

6

11
y (2)

To identify the order of accuracy and stability, we write such a
method as a GLM.

This third order method is not A-stable: it A(α) region of stability
with α ≈ 71.51.

We gained an order of accuracy by allowing more steps, but we lost
stability properties.
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Producing Time Filters with a GLM approach

How do we we write such a method as a GLM?

Consider the core method with s − 1 stages and k steps:1

yn1 = un

yni =
k∑

`=1

d̃i`u
n−k+l + ∆t

k−1∑
`=1

âi`F (un−k+`) + ∆t
s∑

j=1

aijF (ynj ), 2 ≤ i ≤ s

un+1 = yns =
k∑

`=1

θ̃`u
n−k+` + ∆t

k−1∑
`=1

˜̂b`F (un−k+`) + ∆t
s∑

j=1

b̃jF (ynj )

Note that the final row coefficients are the same as the prior row coefficients

θ̃l = d̃s`,
˜̂b` = âs`, b̃j = asj .

1This is John Butcher’s notation
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Pre-filters and post-filters using a GLM approach

To pre-process the method, we modify un. To do this, we change the
initial stage so that un is replaced by a linear combination of the old
steps

yn1 = un −→ yn1 =
k∑

`=1

d1`u
n−k+`

and then use yn1 instead of un in all the middle stages of the core
method. This propagates throughout the GLM form of the method.

To post-process the method, we simply modify the final line to

un+1 =
k∑

`=1

θ`u
n−k+` + ∆t

k−1∑
`=1

b̂`F (un−k+`) + ∆t
s∑

j=1

bjF (ynj )

where the coefficients θ`, b̂`, bj can be chosen freely.
Choose these coefficients so the method is non-intrusive.
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Time filtering using a GLM approach

The overall method can now be written as

yn1 =
k∑

`=1

d1`u
n−k+`

yni =
k∑

`=1

di`u
n−k+` + ∆t

k−1∑
`=1

âilF (un−k+`) + ∆t
s∑

j=1

aijF (ynj ) 2 ≤ i ≤ s

un+1 =
k∑

`=1

θ`u
n−k+` + ∆t

k−1∑
l=1

b̂`F (un−k+`) + ∆t
s∑

j=1

bjF (ynj ).

where di` = d̃i1d1` + d̃i` for ` = 1, k − 1, and dik = d̃i1d1k , where the
pre-processing coefficients d1` are chosen freely.
and d1`, θ`, b̂`, bj can be chosen for all ` and j .
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What’s the point?

Approach the design of the pre- and post-processor as an
optimization problem (we coded it in MATLAB):

Given the coefficients of the core method, we treat d1`, θ`, b̂`, bj as
free parameters
The equality constraints are given by the order conditions we wish the
new overall GLM to satisfy
Additional requirements (low storage etc.) can be imposed on the
structure of the coefficients
Define our objective function:

1 a maximized linear stability region
2 positivity preserving properties
3 small error constants
4 reducing discrete fluctuations or curvature
5 efficient implementation

New GLMs based on implicit Euler, trapezoid rule, midpoint rule,
BDF methods, fully implicit Runge–Kutta
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Filtering BDF2 to third order

We can filter BDF2 which is second order and A-stable

y (1) = d1u
n−3 + d2u

n−2 + d3u
n−1 + d4u

n (Pre-filter)

y (2) = −1

3
un−1 +

4

3
y (1) +

2

3
∆tF (y (2)) (BDF2)

un+1 = θ1u
n−3 + θ2u

n−2 + θ3u
n−1 + θ4u

n + b∆tF (y (2)) (Post-filter)

This is a third order (stage order q = 2)
four step three stage method
with linear stability region A(α) with α = 89.624719317072476.
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Filtering BDF2 to third order con’t

The method is A(α) stable with α = 89.624719317072476. The linear
stability region is:
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Filtered Trapezoid Rule

Use the implicit trapezoid rule as the core method

y (1) = un

y (2) = un +
1

2
∆tF (y (1)) +

1

2
∆tF (y (2))

un+1 = y (2)

The filtered method takes the form

y (1) =
k∑

`=1

d1`u
n−k+`

y (2) = y (1) +
1

2
∆tF (y (1)) +

1

2
∆tF (y (2))

un+1 =
k∑

`=1

θ`u
n−k+j + 2b̂(y (2) − y (1)).
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Filtered Trapezoid Rule

In the optimization code we can require the filtered scheme (with three or
four steps) to satisfy third or fourth order accuracy conditions, to produce
the P3 filter:

d1 = −0.102545818304193 θ1 = −0.027735512184323
d2 = 0.493175701880453 θ2 = 0.499090224403948
d3 = 0.609370116423740 θ3 = 0.528645287780375

b̂ = 0.721809600017651

and the P4 filter

d1 = 0.105235702866242 θ1 = 0.020438758888459
d2 = −0.433307797383908 θ2 = −0.141286522358621
d3 = 0.929258897474200 θ3 = 0.958522046326348
d4 = 0.398813197043466 θ4 = 0.162325717143815

b̂ = 0.868632639137240
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Filtered Trapezoid Rule

In the optimization code we can require the filtered scheme (with three or
four steps) to satisfy third or fourth order accuracy conditions, to produce
the P3 or P4 filters. On the same problem as before, we verify the order:

∆t Trapezoid Rule + P3 Filter + P4 Filter
5.00e-03 4.41e-06 – 5.02e-07 – 1.24e-07 –
2.50e-03 1.25e-06 1.81 7.47e-08 2.74 9.25e-09 3.74
1.25e-03 3.36e-07 1.89 1.02e-08 2.86 6.35e-10 3.86
8.33e-04 1.53e-07 1.93 3.14e-09 2.91 1.29e-10 3.91
6.25e-04 8.73e-08 1.95 1.34e-09 2.94 4.17e-11 3.94

The cost of this increase accuracy is loss of A-stability.
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Filtered Trapezoid Rule
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Implicit Trapezoid Rule

Trap Rule +P
3
 Filter

Trap Rule +P
4
 Filter
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Filtered fully implicit Runge–Kutta (2,2)

We want a third order A-stable method, and can obtain it from filtering
the fully implicit Runge–Kutta (2,2):
Consider the L-stable fully implicit Lobatto IIIC scheme:

y (1) = un +
1

2
∆tF (y (1))− 1

2
∆tF (y (2))

un+1 = un +
1

2
∆tF (y (1)) +

1

2
∆tF (y (2))

The 2 Step time-filtered scheme can be written as :

û = 0.373461706729200un−1 + 0.626538293270800un

y (1) = û +
1

2
∆tF (y (1))− 1

2
∆tF (y (2))

y (2) = û +
1

2
∆tF (y (1)) +

1

2
∆tF (y (2))

un+1 = a1u
n−1 + a2u

n + a3y
(1) + a4y

(2)

where a1 = −0.075425887737539 a2 = 0.551112405533260 a3 = −0.596071637983322 a4 = 1.120385120187601.

This scheme is third order and A-stable but not L-stable.
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Third order EIS method based on backward Euler

Can we get a third order A-stable method based on implicit Euler?

To do this, we designed an alternating-filter implicit Euler method, that
can be implemented within a legacy code2

y
(1)
n =

23

5
y

(2)
n−1 − 3un − 9

5
y

(1)
n−1 +

6

5
y

(3)
n−1

y
(2)
n = y

(1)
n + ∆tF (y

(2)
n )

y
(3)
n =

5

12
un − 1

12
y

(2)
n − 5

12
y

(3)
n−1 +

13

12
y

(1)
n

un+1 = y
(3)
n + ∆tF (un+1).

This method is A-stable and the implicit stages are simply backward Euler.

Taylor expansions predict that this method is second order, but we designed it to

be error inhibiting so it will be third order.
2Notice that when F of a certain quantity is computed, the correct abscissas must be

included
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Error inhibiting schemes: how do they work?

GLMs can be written as:

V n+1 = DV n + ∆tAF (V n) + ∆tRF (V n+1),

τn =
∑∞

j=1 τj∆t j d
ju(tn)
dt j

so that where

τj =
1

j!
c j − 1

j!
D(c − e)j − 1

(j − 1)!
A(c − e)j−1 − 1

(j − 1)!
Rc j−1

and c is the vector of abscissas (c1, c2, ..., cs) and e is the vector of ones.

If τj = 0 for j = 1, ..., p then

τn = O(∆tp+1) =⇒ En = O(∆tp).
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Error inhibiting schemes: how do they work?

The truncation error enters into the next time-step through the formula

V n+1 = DV n + ∆tAF (V n) + ∆tRF (V n+1),

and usually the truncation error accumulates so that the τn = O(∆tp+1)
grows over 1

∆t timesteps to become O(∆tp).

However, if τp+1 lives in the nullspace of D, then at every step the
truncation error term will be annihilated Dτp+1 = 0,
so the first term in the truncation error will never be allowed to
accumulate, and the global error will be:

En = O(∆tp+1).

(Quasi-consistency theory of Kulikov and Wiener, etc.; Error inhibiting methods by

Ditkowski, Gottlieb, and Grant. )
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Third order EIS method based on backward Euler

y
(1)
n =

23

5
y

(2)
n−1 − 3un − 9

5
y

(1)
n−1 +

6

5
y

(3)
n−1

y
(2)
n = y

(1)
n + ∆tF (y

(2)
n )

y
(3)
n =

5

12
un − 1

12
y

(2)
n − 5

12
y

(3)
n−1 +

13

12
y

(1)
n

un+1 = y
(3)
n + ∆tF (un+1),

can we written as

y
(1)
n =

14

5
un−

1
3 − 9

5
un +

9

5
∆tF (un−

1
3 )− 6

5
∆tF (un)

un+ 2
3 = y

(2)
n = y

(1)
n + ∆tF (y

(2)
n )

y
(3)
n = y

(2)
n +

5

12
∆tF (un)− 13

12
∆tF (y

(2)
n )

un+1 = y
(3)
n + ∆tF (un+1).
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Third order EIS method based on backward Euler

This method can be written using a block method approach:
V n =

[
un−1/3; un

]
V n+1 =

(
14
5 − 9

5
14
5 − 9

5

)
V n + ∆t

(
9
5 − 6

5
9
5 − 47

60

)
F (V n) + ∆t

(
1 0
− 12

5 1

)
F (V n+1)

Truncation error analysis (Taylor series expansions) shows that we can
expect second order solutions, but the truncation error vector lives in the
nullspace of the matrix (

14
5 −9

5
14
5 −9

5

)
so this method gives us third order accurate results.

This is an error inhibiting method.
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Numerical results

How do these methods perform in practice?

We tested these with finite element code for the Navier-Stokes
equations.

This set of problems with Reynolds numbers between 120 and 600.

The EIS-3 method was most stable (apparently A-stability matters)

The EIS-3 method was very accurate (similar to third order methods,
when they converged)

Numerical Results: Simulations by Victor DeCaria (ORNL).
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Numerical Results: Flow past a cylinder

Benchmark test with kinematic viscosity ν = 10−3, final time Tf = 8, and
domain

Ω =
{

(x , y)|0 < x < 2.2, 0 < y < 0.41, and (x − 0.2)2 + (y − 0.2)2 > 0.052
}
.

∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(Tf )

Reference Values
— 3.93625 2.950921575 5.693125 0.47795 -0.1116

IE
0.005 3.93 2.950301672 6.28 0.17604 -0.1005
0.0025 3.9325 2.950371110 6.215 0.30336 -0.1070
0.00125 3.93375 2.950529384 5.7175 0.38229 -0.1114

IE-Pre-2 (one IE solve and one filter per timestep)
0.005 3.935 2.950802171 5.72 0.45978 -0.1111
0.0025 3.935 2.950872330 5.7 0.47413 -0.1120
0.00125 3.93625 2.950889791 5.695 0.47728 -0.1117

IE-Filt( 3−
√

3
3

) (one IE solve and two filters per timestep)
0.005 3.93 2.950839424 5.71 0.46722 -0.1127
0.0025 3.9325 2.950880844 5.695 0.47567 -0.1124
0.00125 3.935 2.950891744 5.6925 0.47762 -0.1120

IE-Pre-Post-3 (one IE solve and two filter per timestep)
0.005 7.825 435.1275230 7.84 205.33324 -5.1966
0.0025 3.935 2.950897874 5.6925 0.47895 -0.1116
0.00125 3.93625 2.950895596 5.6925 0.47833 -0.1116

IE-EIS-3 (two IE solves and two filters per timestep)
0.01 3.93667 2.950816639 5.69667 0.46183 -0.1119
0.005 3.935 2.950884378 5.69333 0.47608 -0.1117
0.0025 3.93667 2.950893844 5.6925 0.47797 -0.1116

( *IE-pre-post-3 did not converged for several time-step sizes.)

Sigal Gottlieb Time-stepping methods ICERM 27 / 32



Numerical Results: Offset Cylinder Test

A body forced internal flow between two offset cylinders: the domain is a unit

cylinder, and there is a small cylinder inside.

( *IE-pre-post-3 did not converge for several time-step sizes.)

Figure 6: The x component of the reference solution shows quasi-periodic behavior.

Figure 7: For �t = 0.0025, IE-Pre-Post-3 is unstable while IE-EIS-3 performs the best.
For �t = 0.00125, IE-Pre-Post-3 becomes stable and is the most accurate solution.

Figure 8: The third order methods are more accurate than their base method, BDF2.
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Numerical Results: Offset Cylinder Test

Figure 9: For both �ts, MP and MP-Pre-Post-2 give essentially the same answer and
MP-Pre-Post-4 is unstable. For �t = 0.0025, MP-Pre-Post-3 is the most accurate, but

is unstable when �t is doubled. IE-Filt( 3�
p

3
3 ) performs the best of the second order

methods. IE-Pre-2 and IE-Filt(0) are essentially the same.

t Ref. IE IE-Pre-2
IE-

Filt(3�
p

3
3

)
IE-EIS-3

10

20

30

Figure 10: Snapshots of the IE based methods with �t = 0.0025 (and �t = 0.005 for
IE-EIS-3). All methods showed improvement over IE. IE-EIS-3 gave the closest results
to the reference solution, as observed, by smaller phase error at t = 30 (for example,
compare the detached vortex shown by IE-EIS-3 versus the attached vortex in the second
order methods.). The IE-Pre-Post-3 simulation failed before the first snapshot could be
generated.
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Conclusions

Time filtering is an approach that can be helpful to improve the
accuracy of methods within legacy codes (and maybe for other
reasons as well)

We re-wrote the time-filtering procedure as a GLM

This approach can be applied to multistep, multi-stage
(Runge–Kutta), or multistep multi-stage methods

We constructed an optimization code that can find the coefficients of
filters with a variety of desirable properties

Combining this approach with the error inhibiting approach led to a
third order A-stable method

We found methods that perform well on some challenging fluids
problems tested by Layton and DeCaria (to appear in JCP).
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Future Work

Use this GLM optimization approach to find methods with other
desirable properties (e.g. positivity, SSP, energy conservation)

Consider nonlinear filtering: can we write this as a GLM? (not exactly)

Time-filtering with variable stepsizes

EIS time-filters with post-processing (Following work by Ditkowski, Gottlieb, and Grant)

Turning the time-filters on and off

Designing more alternating filters (maybe for BDF2)
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Thank you

Thank you!
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