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There are no “Conclusions” to this talk.



Take-away message (charitable version):

 The world is messy:

 – Models are messy

– Development histories are messy



Take-away message (not-so-charitable version):

 The developers of this code are amateurs:

 – We were (and are) not experts in time stepping

– We failed to anticipate future directions when coming
   up with the original design

In particular: There is no “holistic design”.



Introduction:

What and why?
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The what and the why
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The what and the why

Brief recap on the Earth mantle:

● It makes up the largest
component of Earth (~80%)

● It is solid

● It flows on long time
scales

● Thermal gradients drive
convection

● It is probably Earth's component we understand the least

● Yet, it has a large impact on basically everything else

● It's relevance lies in the interaction with the rest of Earth
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The what and the why

“Big” questions one may ask about the mantle in relation to 
other systems:

● Mantle vs. Lithosphere (the “crust”): 
How does mantle convection interact with plate tectonics?
How does mantle convection affect natural resources?

● Mantle vs. Atmosphere: How does carbon cycle in the Earth?
Mantle vs. Oceans: How does water cycle in the Earth?
→ Does mantle convection affect the habitability of planets?

● Mantle vs. Core: How is heat transported from core to surface?
→  impact on the magnetic field
→  thermal history of Earth
→  history of the inner core



Part I:

“Classical” mantle convection
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The model

Thermal convection is described by the relatively “simple” 
Boussinesq approximation (or variations):

This is not dissimilar from a typical “model problem”.

−∇⋅[2 ηϵ(u)]+∇ p=gρ(T )

                                         ∇⋅u=0

∂T
∂ t

+u⋅∇T−κΔT=γ+α(∂ p∂ t
+u⋅∇ p)+η(∇ u)2
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Challenges: Problem size

For (global) convection in the earth mantle:

• Depth: ~35 – 2890 km

• Volume: ~1012 km3

• Resolution required: <10 km

• Uniform mesh: ~109 cells

• Using Taylor-Hood (Q
2
/Q

1
) elements: 33B unknowns

• At 100k-1M DoFs/processor: 30k-300k processors!

Consequence: We need adaptive mesh refinement.
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Challenges: Model complexity

However, in reality:
● All coefficients depend

nonlinearly on
  –  pressure
  –  temperature
  –  strain rate
  –  chemical composition

● Dependency is not continuous

Moreover:
● Viscosity varies by at least 106

● Material is compressible
● Geometry depends on solution
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Solutions

Among the mathematical techniques we use are:
● “Higher” order time stepping schemes
● Higher order finite elements
● Fully adaptive, dynamically changing 3d meshes
● Iterate out the nonlinearity via fixed-point and Newton methods
● Silvester/Wathen-style block preconditioners with F-GMRES
● Algebraic or geometric multigrid for the elliptic part
● Parallelization using MPI, threads, and tasks

To make the code usable by the community:
● Use object-oriented programming, build on external tools
● Make it modular, separate concerns
● Extensive documentation
● Extensive and frequent testing
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Time discretization

Recall the model:

−∇⋅[2ηϵ(u)]+∇ p=gρ(T )

                                         ∇⋅u=0

∂T
∂ t

+u⋅∇T−κΔT=γ+α( ∂ p∂ t +u⋅∇ p)+η(∇ u)2
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Time discretization

Overall algorithm:

While (T<T
end

):

● Solve Stokes equation

● From velocity, compute time step

● Solve for temperature field

● Advance time
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Time discretization for the temperature

Time equation:

Considerations:

● Adaptive mesh refinement → no high-order multistep methods

● Variable time step size → no high-order multistep methods

● Segregated solver → velocity not available at intermediate 
times → what to do about RK methods?

● Spatial error dominant (?) → high order not necessary (?)

Our choice: BDF2

∂T
∂ t

+u⋅∇T−κΔT=γ+α(∂ p∂ t
+u⋅∇ p)+η(∇ u)2
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Time discretization for the temperature

BDF2 applied to

results in

Considerations:

● We need an efficient linear solver for the discretized system

● The matrix is non-symmetric

● Treat advection as explicit instead:

∂T
∂ t

+u⋅∇T−κΔT=γ+α(∂ p∂ t
+u⋅∇ p)+η(∇ u)2

αnT
n
+un⋅∇ T n−κΔT n=F (un−1 ,T n−1 , un−2 ,T n−2

)

αnT
n
−κΔT n=−un⋅∇T *

+F (un−1 ,T n−1 , un−2 ,T n−2
)
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Time discretization for the temperature

Semi-implicit BDF2:

Consequences:

● The matrix is now symmetric

● Efficient linear solvers are easy to construct

● But: We now have a time step restriction

αnT
n
−κΔT n=−un⋅∇T *

+F (un−1 ,T n−1 , un−2 ,T n−2
)

k n  ≤ C BDF2 minK∈T  
hK

‖u‖L∞(K )
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Time discretization for the temperature

CFL condition – the struggle is real:

Questions:

● What is C
BDF2

?

● What is h
K
 on unstructured 3d meshes with curved edges?

● How does all of this relate to the eigenvalues of the matrix?

After much experimentation:

● Choose h
K
 as the diameter of K

● Choose C
BDF2

=0.085 → quite small actually

k n  ≤ CBDF2 min K∈T  
hK

‖u‖L∞(K )
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Time discretization for the temperature

After much agony, change of mind – go back to fully implicit:

Considerations:

● Need to work harder to solve linear system

● But no longer time-step restricted; choose

Because the Stokes solve is so expensive, the larger time step 
easily balances the more expensive temperature solve.

αnT
n
+un⋅∇ T n−κΔT n=F (un−1 ,T n−1 , un−2 ,T n−2

)

k n  = 1⋅minK∈T  
hK

‖u‖L∞ (K )



Part II:

What then? – Compositional fields
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Compositional fields

Juliane Dannberg comes along (2012):

We also want to track chemical compositions:

−∇⋅[2 ηϵ(u)]+∇ p=gρ(T )

                                         ∇⋅u=0

∂T
∂ t

+u⋅∇T−κΔT=γ+α(∂ p∂ t
+u⋅∇ p)+η(∇ u)2

∂c1

∂ t
+u⋅∇ c1−κΔ c1=q1(u , p ,T , c⃗ )

...
∂ cN
∂ t

+u⋅∇ cN−κΔ cN=qN (u , p ,T , c⃗)



23/43

 

Chemical compositions

Considerations:

● Originally meant to track compositions → zero right hand sides

● Then mineral compositions → chemical reactions

● Then also other quantities (melting, accumulated strains, level 
sets, …) → many many such fields

● Would like to solve in a coupled fashion, but too memory 
expensive

● Solving advection equations suddenly becomes expensive

● Solve in segregated fashion, treat rhs explicitly
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Time discretization

Overall algorithm:

While (T<T
end

):

● Solve Stokes equation

● From velocity, compute time step

● Solve for temperature field with implicit BDF2

● Solve for compositional field 1 with implicit BDF2, explicit rhs

● …

● Solve for compositional field N with implicit BDF2, explicit rhs

● Advance time



Part III:

What then? – Stiff source terms
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Stiff source terms

John Naliboff, Juliane Dannberg, et al. come along (2017):

“compositional field” is elastic stress, which decays quickly in time:

−∇⋅[2 ηϵ(u)]+∇ p=gρ(T )

                                         ∇⋅u=0

∂T
∂ t

+u⋅∇T−κΔT=γ+α(∂ p∂ t
+u⋅∇ p)+η(∇ u)2

∂c1

∂ t
+u⋅∇ c1−κΔ c1=q1(u , p ,T , c⃗ )

...
∂ cN
∂ t

+u⋅∇ cN−κΔ cN=qN (u , p ,T , c⃗)
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Stiff source terms

Considerations:

● Elastic stress relaxes on a time scale faster than the flow → 
“multirate” system

● Impossible to resolve this time scale in a coupled scheme

● Treat rhs via operator splitting:
– currently uses Lie splitting
– currently integrates pointwise ODE with a fixed micro timestep 
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Time discretization

Overall algorithm:

While (T<T
end

):

● Solve Stokes equation

● From velocity, compute time step

● Solve for temperature field with implicit BDF2

● Solve for compositional field 1, implicit BDF2, operator splitting

● …

● Solve for compositional field 1, implicit BDF2, operator splitting

● Advance time



Part IV:

What then? – Free surfaces
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Free surfaces

Then Ian Rose and Timo Heister come along (2014):

● We also want to deform the surface of the domain

● Evaluate residual stresses at the surface, move nodes at 
boundary and in domain

● Requires one Laplace solve

Then Anne Glerum comes along (2020):

● Diffuse the surface to mimic erosion
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Free surfaces

Equations now:
−∇⋅[2 ηϵ(u)]+∇ p=gρ(T )

                                         ∇⋅u=0

∂T
∂ t

+u⋅∇T−κΔT=γ+α(∂ p∂ t
+u⋅∇ p)+η(∇ u)2

∂c1

∂ t
+u⋅∇ c1−κΔ c1=q1(u , p ,T , c⃗ )

...
∂ cN
∂ t

+u⋅∇ cN−κΔ cN=qN (u , p ,T , c⃗)

∂h
∂ t

−AΔ h=r (u , p)
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Time discretization

Overall algorithm:

While (T<T
end

):

● Solve Stokes equation

● From velocity, compute time step

● Solve for temperature field with implicit BDF2

● Solve for compositional field 1, implicit BDF2, operator splitting

● …

● Solve for compositional field 1, implicit BDF2, operator splitting

● Solve for surface deformation

● Advance time



Part V:

What then? – Surface evolution
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Realistic surfaces

Derek Neuharth et al. come along (2021):

“Real” surface models are too complicated to re-implement in 
ASPECT. Couple with an external code: FastScape
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Time discretization

Overall algorithm:

While (T<T
end

):

● Solve Stokes equation

● From velocity, compute time step

● Solve for temperature field with implicit BDF2

● Solve for compositional field 1, implicit BDF2, operator splitting

● …

● Solve for compositional field 1, implicit BDF2, operator splitting

● Solve for surface deformation, couple with FastScape

● Advance time



Part VI:

What then? – Particles
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Compositional fields

Rene Gassmoeller comes along (2013?):

Fields are expensive. We want to track particles move along with 
the flow.
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Free surfaces

Equations now: −∇⋅[2ηϵ(u)]+∇ p=gρ(T )

                                         ∇⋅u=0

∂T
∂ t

+u⋅∇T−κΔT=γ+α(∂ p∂ t
+u⋅∇ p)+η(∇ u)2

∂c1

∂ t
+u⋅∇ c1−κΔ c1=q1(u , p ,T , c⃗ )

...
∂ cN
∂ t

+u⋅∇ cN−κΔ cN=qN (u , p ,T , c⃗)

∂h
∂ t

−AΔ h=r (u , p)

dx i(t )

dt
=u(xi(t ))         

dpi , j(t )

dt
=s(u , p ,T , c⃗ , p⃗i)
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Compositional fields

Considerations:

● Velocity affects particle locations

● Sometimes particle properties affect flow equations

● Computationally quite different from field-based methods

● Efficiency requires CFL<=1 → Particles transported at most one 
cell per time step

● Evaluation of rhs is very expensive

● Do one explicit Euler/RK4 step per (macro) step
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Time discretization

Overall algorithm:

While (T<T
end

):

● Solve Stokes equation

● From velocity, compute time step

● Solve for temperature field with implicit BDF2

● Solve for compositional field 1, implicit BDF2, operator splitting

● …

● Solve for compositional field 1, implicit BDF2, operator splitting

● Solve for surface deformation, couple with FastScape

● Advance cell positions and properties

● Advance time
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Conclusions

ASPECT has turned out to be a very
good tool to do interesting science!

● We can produce lots of colorful
pictures → something must be
right!

● But is this the right approach?
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Questions I don’t know the answer to

Question 1: What would be the costs of a better approach?

● Coupled solvers will require more
memory, likely more computations

● How would one even approach 
integrating multiple modalities 
(solving in the bulk, on the surface, 
particles, external codes)?
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Questions I don’t know the answer to

Question 2: What would be the benefits of a better approach?

● How big is the time discretization
error?

● What is the dominant contribution
to the overall error?

● What is the error anyway?
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Conclusions

Aspect – Advanced Solver for Problems in Earth's ConvecTion:

http://aspect.geodynamics.org/
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