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Part I
The Stability Theory
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ImEx schemes

Goal Time Step ODE:

where given initial data and: 

If,        stiff, try IMEX: 

IMplicit EXplicit

• where                            (NOT unique!)

• Convention:        stiff,      non-stiff, 

Example:
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• Occurs when        is difficult to treat implicitly.

Example 1: Variable coefficient diffusion, try splitting

(IMplicit)

(EXplicit)

•

•

• Old idea [Duglous, Dupont, 1971]

• For large enough, simple Euler scheme has NO time step restriction. 
(Unconditionally stable); same type of approach as convex-concave splittings. 

Not trivial to avoid 

diffusive time step.

Difficulty: Both      ,      are stiff
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Difficulty: Both      ,      are stiff

Example 2: (Original motivation) Incompressible Navier-Stokes

,

Boundary conditions:

To avoid saddle-point problem, split Stokes operator:
[S., Rosales 2011], see also [Henshaw, 1994], [Johnston, Liu 2002, 2004] and [Liu, Liu, 
Pego, 2010]

BC:

BC:

Formulation allows for:

(IMplicit)

(EXplicit)

(EXplicit)
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Assumptions and Outline:

Consider multistep IMEX: 

IMplicit EXplicit

• Assume that BOTH       and      are (possibly) stiff. 

1) Sufficient conditions for Unconditional Stability.  

2) Necessary conditions for Unconditional Stability.

3) Applications: Including the dispersive shallow 

water equations.

Done by 
defining an 
unconditional 
stability 
diagram.

• Assume       symmetric, negative definite. (such as previous examples)

, , for all 
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ODE Stability:

Numerical stability : 

Spectrum
(Property of matrix only)

Absolute stability region
(Property of time-stepping scheme ONLY)

Decouple! 

Stability: Necessary and sufficient
• Allows design of time-stepping for classes of problems (matrices).
• Unconditional stability is easy to analyze (       must contain a cone).

Difficulties for IMEX
• Matrices do not commute, necessary and sufficient conditions more difficult. 
• No decoupling. Our approach introduces a stability diagram.

Time step
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Multistep IMEX

Multistep IMEX takes form:

• is the order, i.e. time stepping error scales

• so that the scheme is explicit in

• Coefficients are not independent. Satisfy order conditions. 

Example: Euler (SBDF1) Example: Semi-implicit backward differentiation 3

[Crouzeix, 1980], [Ascher, Ruuth, Wetton, 1995]
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Unconditional stability

Multistep IMEX takes form:

Unconditional stability:

Solutions         remain uniformly bounded for all      and             .  

• Not a trivial property due to the explicit term (demanding a lot!). 

• Property depends on BOTH coefficients                    AND

• “Easier” to analyze when                commute (not assumed here)

• For a proposed splitting                one may to choose 

ICERM, Jan. 10, 2022 D. Shirokoff



Unconditional stability diagram

Quick derivation: seek solutions of form

Nonlinear eigenvalue problem:

With polynomial coeff.:
(not independent – order conditions)

Dot         through by                    yields

where

(p – a real number, some freedom to choose)
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Have                 , then sufficient for stability.

Unconditional stability diagram

Then, if knew eigenvector                    for a fixed    

Could compute

Then if all solutions to

Don’t know                   . Instead define unconditional stability region

Some similarity to diagrams defined in [Frank, Hundsdorfer, Verwer, 1997], [Koto, 2009]

Worst case when

Big simplification.
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Shape of Unconditional Stability Diagram:
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U. Stability: Nec. & suff. Conditions

Sufficient condition:

Let all allowable by      ,     .

Right:          for two 

popular IMEX schemes

If then IMEX scheme is unconditionally stable. 

Necessary condition:

Generalized eigenvalues

Is necessary for unconditional stability.
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Remarks:

For computations can be written as a numerical range (chebfun):

1) The set

where

2) If matrices are normal and commute, then         is the convex hull 

of                         , i.e. necessary and sufficient are almost the same.

3) The sufficient condition using       is weaker than other 

unconditional stability criteria, i.e. [Akrivis et. al, 1998, 1999, 2003].

4) Choose time-stepping coefficients for a fixed set of matrices.

5) Everything is “easily” computable.
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Time-stepping coefficients with big 

Small Smaller Even smaller

Small regions limit the unconditionally stable matrix splittings

We would like to have BIG regions (if possible).

How? General idea for new coefficients:
1. Use 

2. Implies want            small when       on (or in) unit circle.   

3. Using order conditions, implies need roots of            close to 1. 
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New IMEX coefficients

• One parameter family,                   , reduce to SBDF             . 

• Orders

• Defined by polynomial coefficients. 

where 

(Coefficients are zero stable)
For order r = 2, some similarity to [Akrivis, Karakatsani, 2003] 
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For New IMEX coefficients

SBDF2

Big

Bigger

Huge (asymptotic circle)

Circle: 

Centre 

Radius

Regions can be made 
arbitrarily large (Real part < 1)
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Part II
Idealized Examples
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For order,               use any value  

Implications/Examples 

Consider:

Where:

Numerical range:

Choice of     :

guarantees

Get unconditional stability.
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Example: New IMEX, variable diffusion

Satisfies the sufficient 
condition for 
unconditional stability.   

Spectral discretization in 
space N = 64 modes.   
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Variable diffusion: SBDF Limited 2nd Order
Given

Splitting

Either spectral or finite difference spatial discretization.

New IMEX coefficients, 3-5th order schemes unconditionally stable: 
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Example: New IMEX, Variable diffusion

Exact solution:

CFL = 

BLUE REGION 
NOT Possible 
with SBDF!
Regardless 
of how one 
chooses      . 

(Explicit schemes)
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Nonlinear problem 

Nonlinear 
Diffusion
Example

Combine:

Splitting:

Avoids nonlinear implicit terms – with a constant in time linear implicit term! 
- Similarity in flavor to Rosenbrock methods (but no Jacobian here)
- Avoiding implicit nonlinear terms also see: [Duchemin, Eggers, 2014], [Bruno, Cubillos, 
2016] and [Bruno, Cubillos, 2017] on quasi-unconditional stability, for compressible Euler. 

Use new formulas for parameters.
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Nonlinear diffusion in a periodic domain 

Top: Ref. Sol. BDF2 65,000 time steps (run overnight)
Bottom: 32 time steps (a few seconds)

Visual inspection
(N = 1283 Fourier modes)
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Anomalous diffusion: decay of peak

Gray: Ref. Sol. BDF2 65,000 time steps (run overnight).
Dashed: 256 time steps (< minute), several digits of accuracy.
Red: 64 time steps (seconds), a few digits of accuracy.

Slope of 
Linear diffusion
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Nonlinear diffusion: convergence test

CFL = 
(Explicit schemes)

Manufactured
Solution
Test
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Part III
Dispersive Shallow Water Equations
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Workhorse for 
ocean 
modeling.

Shallow water equations

– water 
depth ( > 0)

– free surface height

– bathymetry 

Shallow water equation 
regime of validity:

Expand Euler equations in (formal) 
powers of      , introduce:

– depth avg. velocity (2d)

Higher corrections 
=  more physics.
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Wave tank experiments

Courtesy of Wooyoung Choi’s Lab – NJIT, 
Department of mathematical science 
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Dispersive shallow water equations (DSWE)

Shallow water equation 
regime of validity:

(truncated to order 4)

See: [Rayleigh 1876]; [Serre 1953]; 
[Su, Gardner 1969]; [Green, Naghdi 1976]

Additional physics:
• Shallow water equations (SWE) hyperbolic – contain shocks. 
• DSWE – add dispersion effects to SWE (which can regularize shock) can create additional 

oscillations, e.g., more waves; valid for O(1) nonlinearities (not just weakly nonlinear). 

Linearization (about constant state): Dispersion 
relation
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Dispersive shallow water equations (DSWE)

Shallow water equation 
regime of validity:

(truncated to order 4)

Difficulty 1:
Nonlinear, and ``Mixed’’ space-time derivative terms, e.g., 

Difficulty 2?
RHS has term                                                     , explicit treatment could be very stiff? 

Numerics

See: [Rayleigh 1876]; [Serre 1953]; 
[Su, Gardner 1969]; [Green, Naghdi 1976]
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Goal – adopt matrix-free methods where we avoid constructing      . 
e.g., address “Difficulty” #1 (in previous slide)

Bring all time derivatives to left hand side, where

DSWE: Structure of the time derivative

Numerical work for SWE with dispersion:
[Li, Choi, Hyman 2004]; [Choi, Goullet, Jo 2011]; [Khakimzyanov Dutykh
Fedotova Mitsotakis, 2020] (effectively 1d); [Patel Kumar Rajni 2020].

(bathymetry)

(dispersion due to the surface)

Nonlinear and time-dependent operator.
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DSWE Constraint form

Constraint.

Consider two time stepping schemes. Although unrelated, their efficacy will be related: 
1) ``standard’’ conceptual approach:

2) Implicit-explicit (ImEx) multistep methods – avoid a fully implicit treatment of G.

Evolution.

Explicit time-stepping 
(e.g., Runge-Kutta)

Fully implicit solve 
via matrix-free 
method (e.g., PCG).

Spatial discretizations (MOL) 
→ Differential algebraic 
equation (index-1).

[Ignore this 
(for now)]

Key challenge: Find a preconditioner

Key challenge: Zero stability (linear implicit)
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ImEx linear multistep for index-1 DAEs
Theoretical tool to formulate schemes for DAEs (e.g., [Hairer Wanner, Vol. II], see also 
[Constantinescu, Sandu 2010]; ImEx LMMs [Crouzeix, 1980], [Ascher, Ruuth, Wetton, 1995]):

However, in our case G is stiff (and non-linear). We differ in that we look at ImEx schemes 
applied to the constraint equation:

IMplicit EXplicit

EXplicit

• Where                           .    Choice is NOT unique!

• Convention:         stiff,        non-stiff. Generally 
not conventional to apply ImEx to the constraint. 

What we want is to take 
linear and constant coefficient

Discretize, then take:
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ImEx linear multistep for index-1 DAEs

(after taking               )Linear multistep
ImEx scheme

Where

Example: Semi-implicit 
backward differentiation 3

So what can go wrong?
Answer: Zero-stability, e.g., stability with 

Require: solutions        uniformly bounded for all     .

• Not a trivial property due to the explicit stiff terms

• Property depends on BOTH coefficients AND splitting.
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Zero-stability criteria

Substituting: 

and

Simplified case:  Assume      is time-independent (but can vary in space)

Into:  (*)

Yields the following zero-stability criteria

Define:

Then (*) yields stable dynamics if: 
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Zero-stability criteria
Need generalized eigenvalues

You need the eigenvalues clustered near 1 → Just like preconditioning 
Caveat: Need bounds (bounds become fundamentally worse/impossible at 3rd order 
without simultaneously choosing time-stepping schemes!)

ICERM, Jan. 10, 2022 D. Shirokoff



Key Goal: Find 

For both:
1) Runge-Kutta with preconditioner.
2) IMEX time-stepping for DAE

Need to find 

Caveat: IMEX DAEs more stringent than RK with preconditioner (eig. val. must lie in 
region around 1).

• Easy to ``invert’’;

• Ensure bound/clustering of generalized eigenvalues
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(Include boundary conditions in definition for non-periodic case)

Where: consists of two contributions:

1) (depends only on water depth)

2) (bathymetry)

Algebraic constraint is: Goal: See an 

Operators have variational forms defined on the Hilbert space: 

Mathematical preliminaries
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Introduce new variables: and

Key observation (look for a sums of squares):

Choice of A: Use variational techniques
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``Estimated’’ 
quantities:

With implicit operator/preconditioner:

With coefficients:

Obtain a bound:

Choice of A: Use variational techniques

Formula:
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Significance of the result
Consider the generalized eigenvalues:

1) Eigenvalue bound (are real in the right half plane)

Substitute into:

Significance --> the bounds are sufficient to make SBDF2 zero-stable (e.g., SBDF2 will work); 
For higher order SBDF methods, need to simultaneously splitting and time stepping 
schemes [cf. Seibold, S, Zhou 2019]

2) Eigenvalue bound implies the conditioning number bound:

No discretization in space (hence is mesh independent for suitable discrete operators) 
Quantities can be ``estimated’’; est. # iterations on preconditioned CG
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Some numerical results:

ImEx –
convergence 
(2d test 
problem)

CPU run time for RK2 vs ImEx.

Iteration 
method:
Convergence vs. 
iterations.
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Some physical results:
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#1. Model (scalar) ODEs:

Are useful for analyzing stability of:

Still provide necessary conditions when the matrices do not commute. 

#2. Characterization of multistep methods. Fundamental barriers to getting 3rd order 
(elliptic problems); 2nd order (advection/wave problems); similar in spirit but 
(fundamentally different) Dahlquist barriers.

#3. Approaches avoid stiff implicit nonlinear terms (beyond 2nd order). 

#4. Applications: New approaches for DAEs, and preconditioners for DSWE (avoid full 
treatment of mixed space-time derivatives).

Ref. (i)  Theory paper: SINUM, 55:5 (2017), 2336-2360
(ii) Practice paper: JCP, 376:1 (2019), 295-321 
(iii) DSWE manuscript in late stages of preparation. 

Conclusions and Outlook:
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Thank You!
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