ImEx Stability with Applications to the Dispersive Shallow Water Equations

David Shirokoff

ICERM January 10, 2022

In Collaboration with:

Rodolfo Rubén Rosales (MIT) Benjamin Seibold (Temple) Dong Zhou (CalState LA) Wooyoung Choi (NJIT) Linwan Feng (NJIT)

DMS-2012268 DMS-1719693

ICERM, Jan. 10, 2022

Theory paper: SINUM, 55:5 (2017), 2336-2360 Practice paper: JCP, 376:1 (2019), 295-321

Part I The Stability Theory

ImEx schemes

Goal Time Step ODE:

$$\boldsymbol{u}_t = L\boldsymbol{u} + \boldsymbol{f}(t)$$

where given initial data and: $L \in \mathbb{R}^{N imes N}$ $oldsymbol{u}(t), oldsymbol{f}(t) \in \mathbb{R}^N$

If,
$$L$$
 stiff, try IMEX: $u_t = Au + Bu + f(t)$
IMplicit EXplicit

- where L = A + B (NOT unique!) Example:
- Convention: A stiff, B non-stiff,

 $\frac{1}{k}(\boldsymbol{u}_{n+1} - \boldsymbol{u}_n) = A\boldsymbol{u}_{n+1} + B\boldsymbol{u}_n$

ICERM, Jan. 10, 2022

Difficulty: Both ${\it A}$, ${\it B}$ are stiff

• Occurs when B is difficult to treat implicitly.

Example 1: Variable coefficient diffusion, try splitting

$$u_{t} = (d(x)u_{x})_{x} = \alpha u_{xx} + ((d(x) - \alpha)u_{x})_{x}$$

• $Au = \alpha u_{xx}$ (IMplicit)
• $Bu = ((d(x) - \alpha)u_{x})_{x}$ (EXplicit) Not trivial to avoid diffusive time step.

- Old idea [Duglous, Dupont, 1971]
- For α large enough, simple Euler scheme has NO time step restriction.
 (Unconditionally stable); same type of approach as convex-concave splittings.

Difficulty: Both \boldsymbol{A} , \boldsymbol{B} are stiff

Example 2: (Original motivation) Incompressible Navier-Stokes

$$\mathbf{u}_t = \mu \nabla^2 \mathbf{u} - \nabla p - (\mathbf{u} \cdot \nabla) \mathbf{u} + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0$$

Boundary conditions: $\mathbf{u} = 0$

To avoid saddle-point problem, split Stokes operator:

[S., Rosales 2011], see also [Henshaw, 1994], [Johnston, Liu 2002, 2004] and [Liu, Liu, Pego, 2010]

$$\mathbf{u}_{t} = \mu \nabla^{2} \mathbf{u} - \nabla p(\mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{u} + \mathbf{f}$$
BC: $\mathbf{n} \times \mathbf{u} = 0$, $\nabla \cdot \mathbf{u} = 0$.

$$\nabla^{2} p = \nabla \cdot (\mathbf{f} - (\mathbf{u} \cdot \nabla) \mathbf{u})$$
BC: $\mathbf{n} \cdot \nabla p = \mathbf{n} \cdot (\mu \nabla^{2} \mathbf{u} + \mathbf{f} - (\mathbf{u} \cdot \nabla) \mathbf{u}) + \lambda \mathbf{n} \cdot \mathbf{u}$
Formulation allows for:

$$\mu \nabla^{2} \mathbf{u} \quad (\mathbf{IMplicit})$$

$$\nabla p(\mathbf{u}) \quad (\mathbf{EXplicit})$$

$$(\mathbf{u} \cdot \nabla) \mathbf{u} \quad (\mathbf{EXplicit})$$

Assumptions and Outline:

Consider multistep IMEX: $u_t = Au + Bu + f(t)$ IMplicit EXplicit

- Assume that BOTH A and B are (possibly) stiff.
- Assume A symmetric, negative definite. (such as previous examples) $A^T=A$, $\langle m{x},Am{x}
 angle < 0$, for all $m{x}
 eq 0$
- 1) Sufficient conditions for *Unconditional Stability*.
- 2) Necessary conditions for *Unconditional Stability*.
- 3) Applications: Including the dispersive shallow water equations.

Done by defining an unconditional stability diagram.

ICERM, Jan. 10, 2022

ODE Stability:

Numerical stability : $u_t = Au$ Decouple!Absolute stability region
(Property of time-stepping scheme ONLY)
(*)Spectrum
(Property of matrix only)
(Property of matrix only)(*) $u_t = \lambda u$ [k Time step
 $\mathcal{A} := \{k\lambda \in \mathbb{C} : (*) \text{ bounded}\}$ $\sigma(A) := \{\lambda : Au = \lambda u, u \neq 0\}$

Stability: Necessary and sufficient $[k\sigma(A) \subseteq \mathcal{A}]$

- Allows design of time-stepping for classes of problems (matrices).
- Unconditional stability is easy to analyze (\mathcal{A} must contain a cone).

Difficulties for IMEX $oldsymbol{u}_t = Aoldsymbol{u} + Boldsymbol{u}$

- Matrices do not commute, necessary and sufficient conditions more difficult.
- No decoupling. Our approach introduces a stability diagram.

Multistep IMEX

Multistep IMEX takes form: [Crouzeix, 1980], [Ascher, Ruuth, Wetton, 1995]

$$\frac{1}{k}\sum_{j=0}^{r}a_{j}\boldsymbol{u}_{n+j} = \sum_{j=0}^{r}\left(c_{j}A\boldsymbol{u}_{n+j} + b_{j}B\boldsymbol{u}_{n+j} + b_{j}\boldsymbol{f}_{n+j}\right)$$

- \mathcal{T} is the order, i.e. time stepping error scales $\mathcal{O}(k^r)$
- $b_r = 0$ so that the scheme is explicit in B
- Coefficients are not independent. Satisfy order conditions.

Example: Euler (SBDF1)

Example: Semi-implicit backward differentiation 3

$$\frac{1}{k}(\boldsymbol{u}_{n+1} - \boldsymbol{u}_n) = A\boldsymbol{u}_{n+1} + B\boldsymbol{u}_n$$

$$c_2 = 1, c_1 = 0, c_0 = 0$$

 $a_2 = 3/2, a_1 = -2, a_0 = 1/2$
 $b_2 = 0, b_1 = 2, b_0 = -1$

ICERM, Jan. 10, 2022

Unconditional stability

Multistep **IMEX** takes form:

$$\frac{1}{k}\sum_{j=0}^{r}a_{j}\boldsymbol{u}_{n+j} = \sum_{j=0}^{r}\left(c_{j}A\boldsymbol{u}_{n+j} + b_{j}B\boldsymbol{u}_{n+j} + b_{j}\boldsymbol{f}_{n+j}\right)$$

Unconditional stability:

Solutions : $oldsymbol{u}_n$ remain uniformly bounded for all $oldsymbol{n}$ and $\ k>0$.

- Not a trivial property due to the explicit term (demanding a lot!).
- Property depends on **BOTH** coefficients (a_j, b_j, c_j) **AND** (A, B)
- "Easier" to analyze when (A, B) commute (not assumed here)
- For a proposed splitting (A, B) one may to choose (a_j, b_j, c_j)

Unconditional stability diagram

Quick derivation: seek solutions of form $oldsymbol{u}_n = z^n oldsymbol{v} \qquad oldsymbol{v} \in \mathbb{C}^N$

$$\frac{1}{k}\sum_{j=0}^{r}a_{j}\boldsymbol{u}_{n+j} = \sum_{j=0}^{r}\left(c_{j}A\boldsymbol{u}_{n+j} + b_{j}B\boldsymbol{u}_{n+j}\right)$$

Nonlinear eigenvalue problem:

$$\left(\frac{1}{k}a(z) - c(z)A - b(z)B\right)\boldsymbol{v} = 0 \quad (*)$$

With polynomial coeff.: $a(z) = \sum_{j=0}^{r} a_j z^j$ $b(z) = \sum_{j=0}^{r} b_j z^j$ $c(z) = \sum_{j=0}^{r} c_j z^j$ (not independent – order conditions)

Dot (*) through by
$$(-A)^{p-1}v$$
 yields
 $a(z) = y(c(z) - \mu b(z))$ where $\mu = \frac{\langle v, (-A)^p v \rangle}{\langle v, (-A)^{p-1} b v \rangle}$
(p - a real number, some freedom to choose)
 $\mu = \frac{\langle v, (-A)^{p-1} B v \rangle}{\langle v, (-A)^p v \rangle}$

Unconditional stability diagram

Then, if knew eigenvector $\, oldsymbol{v} \in \mathbb{C}^N \,$ for a fixed $\, k > 0 \,$

Could compute
$$y = -k \frac{\langle \boldsymbol{v}, (-A)^p \boldsymbol{v} \rangle}{\langle \boldsymbol{v}, (-A)^{p-1} \boldsymbol{v} \rangle}, \quad \mu = \frac{\langle \boldsymbol{v}, (-A)^{p-1} B \boldsymbol{v} \rangle}{\langle \boldsymbol{v}, (-A)^p \boldsymbol{v} \rangle}$$

Then if all solutions to

$$a(z) = y(c(z) - \mu b(z)) \quad (**)$$

Have |z| < 1 then sufficient for stability.

Don't know $oldsymbol{v} \in \mathbb{C}^N$. Instead define **unconditional stability** region

$$\begin{aligned} \mathcal{D} &:= \{ \mu \in \mathbb{C} : (**) \text{ stable } \forall y < 0 \} \\ &= \{ \mu \in \mathbb{C} : \mu b(z) = c(z) \text{ stable} \} \end{aligned}$$
 Worst case when $y \to -\infty$.
Big simplification.

Some similarity to diagrams defined in [Frank, Hundsdorfer, Verwer, 1997], [Koto, 2009]

Shape of Unconditional Stability Diagram:

Theorem 1 (SBDF) The set \mathcal{D} is simply connected, contains the origin $0 \in \mathcal{D}$, and has a boundary parameterized by the curve

$$\partial \mathcal{D} = \left\{ \begin{aligned} \frac{z^r}{z^r - (z-1)^r} &: |z| = 1, \text{ arg } z_0 \leq \arg z \leq 2\pi - \arg z_0 \\ \end{aligned} \right\},$$

where: $z_0 = 1,$ for order $r = 1,$ and
 $z_0 = \frac{1}{1 - 2\cos(\pi/r)e^{i\pi/r}},$ for orders $2 \leq r \leq 5.$

The right-most m_r and left-most m_l points of $\partial \mathcal{D}$ are on the real axis where:

for
$$r = 1$$
, $m_l = -1$ and $m_r = 1$,
for $2 \le r \le 5$, $m_l = -(2^r - 1)^{-1}$ and $m_r = (1 + 2^r \cos^r(\pi/r))^{-1}$.

Proof 1 $\mathcal{D} = \varphi^{-1}(\mathcal{T})$ is the image of a triangle \mathcal{T} under the conformal mapping $\varphi(z) = (\frac{z}{z-1})^{1/r}$ and a correctly chosen branch cut.

ICERM, Jan. 10, 2022

U. Stability: Nec. & suff. Conditions

Right: \mathcal{D} for two popular **IMEX** schemes

Sufficient condition:

Let $W_p := \{ \langle v, (-A)^{p-1} B v \rangle : \langle v, (-A)^p v \rangle = 1 \}$ all allowable μ by A, B. If $W_p \subseteq \mathcal{D}$ then **IMEX** scheme is unconditionally stable. **Necessary condition:** $\sigma((-A)^{-1}B) = \{ \mu \in \mathbb{C} : \mu(-A)u = Bu, u \neq 0 \}$ Generalized eigenvalues

 $\sigma((-A)^{-1}B) \subseteq \overline{\mathcal{D}} \cup \{1\}$ Is necessary for unconditional stability.

Remarks:

1) The set $W_p := \left\{ \langle v, (-A)^{p-1} B v \rangle : \langle v, (-A)^p v \rangle = 1 \right\}$

For computations can be written as a *numerical range (chebfun):* $W(X) := \{ \langle \boldsymbol{x}, X \boldsymbol{x} \rangle : \| \boldsymbol{x} \| = 1, \boldsymbol{x} \in \mathbb{C}^n \}$ where $X = (-A)^{\frac{p}{2}-1} B (-A)^{-\frac{p}{2}}$

2) If matrices are normal and commute, then W_p is the convex hull of σ((-A)⁻¹B), i.e. necessary and sufficient are *almost* the same.
3) The sufficient condition using D is weaker than other unconditional stability criteria, i.e. [Akrivis et. al, 1998, 1999, 2003].

- 4) Choose time-stepping coefficients for a fixed set of matrices.
- 5) Everything is "easily" computable.

Small regions limit the unconditionally stable matrix splittings (A, B)We would like to have **BIG** regions (if possible).

How? General idea for new coefficients:

- 1. Use $\mathcal{D} = \{\mu \in \mathbb{C} : \mu b(z) = c(z) \text{ stable}\}$
- 2. Implies want b(z) small when z on (or in) unit circle.
- 3. Using order conditions, implies need roots of c(z) *close* to 1.

New IMEX coefficients

- One parameter family, $0 < \delta \leq 1$, reduce to SBDF $\delta = 1$.
- Orders $1 \le r \le 5$
- Defined by polynomial coefficients.

(Implicit coefficients) $c(z) = (z - 1 + \delta)^r$ (Explicit coefficients) $b(z) = (z - 1 + \delta)^r - (z - 1)^r$ (Derivative coefficients) $a(z) = \sum_{j=1}^r \frac{f^{(j)}(1)}{j!}(z - 1)^j$ where $f(z) = (\ln z)(z - 1 + \delta)^r$

(Coefficients are zero stable) For order r = 2, some similarity to [Akrivis, Karakatsani, 2003]

Part II Idealized Examples

Implications/Examples

Example: New IMEX, variable diffusion

$$u_t = (d(x)u_x)_x + f(x,t) \quad d(x) = 4 + 3\cos(2\pi x)_x$$
$$A_h u \approx \sigma u_{xx} \qquad B_h u \approx ((d(x) - \sigma)u_x)_x$$

Spectral discretization in space N = 64 modes.

Satisfies the sufficient condition for unconditional stability.

 $W_p \subseteq \mathcal{D}$

Variable diffusion: SBDF Limited 2nd Order

Given

n $u_t = \left(d(x)u_x\right)_x + f(x,t)$

Splitting
$$A_h u \approx \sigma u_{xx}$$
 $B_h u \approx \left((d(x) - \sigma) u_x \right)_x$

Either spectral or finite difference spatial discretization.

Theorem 2 (Limitations on SBDF) Fix d(x) > 0. First and second order: there always exists σ that guarantees unconditional stability. Third order (or higher): SBDF is **NOT** in general stable for any σ . However, a modified scheme (δ, σ) is **ALWAYS** unconditionally stable.

New IMEX coefficients, 3-5th order schemes unconditionally stable:

$$\sigma = d_{min} \qquad \delta < 2\left(1 - \left(1 - \frac{d_{min}}{d_{max}}\right)^{\frac{1}{r}}\right), \quad for \ 1 \le r \le 5.$$
$$d_{min} = \min_{x \in \Omega} d(x), \quad d_{max} = \max_{x \in \Omega} d(x).$$

Example: New IMEX, Variable diffusion

	Num.	k	Error	Rate	Error	Rate	Error	Rate	Error	Rate	Error	Rate
	Steps		r = 1		r=2		r = 3		r = 4		r = 5	
	5	1	7.9e+00	-	4.7e+01	-	3.4e+02	-	9.0e+02	-	8.8e + 02	-
	10	2^{-1}	3.4e + 00	1.2	6.7e+01	-0.5	4.9e+02	-0.5	2.2e+03	-1.3	4.3e+03	-2.3
BLUE REGION	20	2^{-2}	4.3e+00	-0.4	2.4e+01	1.5	5.6e + 02	-0.2	3.7e + 03	-0.7	6.3e + 03	-0.5
NOT Possible	40	2^{-3}	1.3e+00	1.7	$3.5e{+}01$	-0.5	5.4e + 02	0.1	6.3e + 03	-0.8	5.8e + 04	-3.2
with SPDEL	80	2^{-4}	6.9e-01	1.0	7.1e+00	2.3	1.3e+01	5.4	7.4e+02	3.1	6.0e + 03	3.3
	160	2^{-5}	2.7e-01	1.4	1.0e+00	2.8	1.1e+01	0.2	$5.3e{+}01$	3.8	5.7e + 01	6.7
Regardless	320	2^{-6}	2.2e-01	0.3	6.0e-01	0.8	2.5e+00	2.2	2.8e+00	4.2	7.1e+00	3.0
of how one	640	2^{-7}	2.9e-01	-0.4	5.3e-01	0.2	6.3e-01	2.0	1.5e-01	4.3	4.0e-01	4.1
$choose \sigma$	1280	2^{-8}	2.5e-01	0.2	2.2e-01	1.3	5.0e-02	3.7	3.6e-02	2.1	2.5e-02	4.0
	2560	2^{-9}	1.6e-01	0.6	5.6e-02	2.0	4.9e-03	3.4	3.5e-03	3.4	2.8e-04	6.4
	5120	2^{-10}	9.1e-02	0.8	1.2e-02	2.2	8.5e-04	2.5	2.0e-04	4.1	1.0e-05	4.8
	1.0e+04	2^{-11}	4.8e-02	0.9	2.8e-03	2.1	1.3e-04	2.7	1.1e-05	4.2	3.8e-07	4.7
	2.0e+04	2^{-12}	2.5e-02	1.0	6.7e-04	2.1	1.8e-05	2.9	6.1e-07	4.2	1.3e-08	4.9
	$4.1e{+}04$	2^{-13}	1.2e-02	1.0	1.6e-04	2.0	2.4e-06	2.9	3.6e-08	4.1	1.1e-09	3.5
	8.2e + 04	2^{-14}	6.3e-03	1.0	4.0e-05	2.0	3.0e-07	3.0	2.2e-09	4.0	1.4e-09	-
	1.6e + 05	2^{-15}	3.1e-03	1.0	9.8e-06	2.0	3.8e-08	3.0	2.3e-10	3.3	2.8e-09	-

CFL = $k \le 2^{-18}$ (Explicit schemes)

Exact solution: $u^* = \sin(20t)e^{\sin(2\pi x)}$ $t_f = 5$

Nonlinear problem $\rho_t + \nabla \cdot (\boldsymbol{V}\rho) = 0 \quad \text{(Conservation of mass)}$ $\boldsymbol{V} = -\frac{\tilde{\kappa}}{\tilde{\mu}} \nabla p \quad \text{(Darcy's law)}$ Nonlinear Diffusion Example $p = p_0 \rho^{\gamma}$ (Eqn. of state) $\rho_t = \nabla \cdot \left(\rho^{\gamma} \nabla \rho\right)$ Combine: $\mathbf{B}\boldsymbol{u} \approx \nabla \cdot \left(\left(\rho^{\gamma}(\boldsymbol{x}) - \sigma \right) \nabla \boldsymbol{u} \right)$ Splitting: $oldsymbol{A}_holdsymbol{u}pprox\sigma u_{xx}$

Use new formulas for parameters.

Avoids nonlinear implicit terms – with a constant in time linear implicit term!

- Similarity in flavor to Rosenbrock methods (but no Jacobian here)

- Avoiding implicit nonlinear terms also see: [Duchemin, Eggers, 2014], [Bruno, Cubillos, 2016] and [Bruno, Cubillos, 2017] on quasi-unconditional stability, for compressible Euler.

Nonlinear diffusion in a periodic domain

Visual inspection (N = 128³ Fourier modes) Top: Ref. Sol. BDF2 65,000 time steps (run overnight) Bottom: 32 time steps (a few seconds)

Anomalous diffusion: decay of peak

Gray: Ref. Sol. BDF2 65,000 time steps (run overnight). Dashed: 256 time steps (< minute), several digits of accuracy. Red: 64 time steps (seconds), a few digits of accuracy.

Nonlinear diffusion: convergence test

Manufactured	Num.	k	Error	Rate									
Solution Test	Steps		r = 1		r=2		r = 3		r=4		r = 5		
	8	2^{-3}	1.0e+00	-	8.3e-01	-	6.4e-02	-	9.7e-02	-	3.4e-04	-	
	16	2^{-4}	7.7e-01	0.4	3.8e-01	1.1	3.4e-02	0.9	2.2e-02	2.1	8.1e-04	-1.2	
	32	2^{-5}	5.0e-01	0.6	8.3e-02	2.2	8.6e-03	2.0	1.9e-03	3.6	1.2e-04	2.7	
	64	2^{-6}	2.6e-01	0.9	1.5e-02	2.4	1.4e-03	2.6	1.2e-04	4.0	7.6e-06	4.0	
	128	2^{-7}	1.3e-01	1.0	3.6e-03	2.1	1.9e-04	2.8	6.6e-06	4.2	3.0e-07	4.7	
	256	2^{-8}	6.4e-02	1.0	8.6e-04	2.1	2.5e-05	2.9	3.8e-07	4.1	1.3e-08	4.5	
	512	2^{-9}	3.2e-02	1.0	2.1e-04	2.0	3.2e-06	3.0	2.2e-08	4.1	6.2e-09	-	
	1024	2^{-10}	1.6e-02	1.0	5.2e-05	2.0	4.0e-07	3.0	9.8e-10	4.5	1.2e-08	-	
	2048	2^{-11}	7.8e-03	1.0	1.3e-05	2.0	5.0e-08	3.0	6.9e-10	-	2.4e-08	-	
·													

$\begin{array}{l} {\rm CFL=} \ k \leq 2^{-18} \\ {\rm (Explicit \ schemes)} \end{array}$

k	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}	2^{-10}	2^{-11}	2^{-12}
$r=1, R_k$	1.22	1.58	1.52	1.28	1.14	1.07	1.03	1.02	1.01
$r=2, R_k$	0.39	5.12	2.06	2.02	1.96	1.95	1.96	1.97	1.98
$r = 3, R_k$	1.38	3.54	1.63	8.52	2.83	2.74	2.81	2.88	2.93

 $R_k := \log_2 \left(\|\rho_{4k}(t_f) - \rho_{2k}(t_f)\|_{\infty,h} / \|\rho_{2k}(t_f) - \rho_k(t_f)\|_{\infty,h} \right)$

Part III Dispersive Shallow Water Equations

Wave tank experiments

Courtesy of Wooyoung Choi's Lab – NJIT, Department of mathematical science

ICERM, Jan. 10, 2022

Dispersive shallow water equations (DSWE)

See: [Rayleigh 1876]; [Serre 1953]; [Su, Gardner 1969]; [Green, Naghdi 1976]

 $\eta_t + \nabla \cdot (\eta \boldsymbol{u}) = 0$

Shallow water equation regime of validity:

$$\beta \equiv \frac{\bar{h}}{\lambda} \ll 1$$

$$\underbrace{\boldsymbol{u}_{t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \zeta}_{\text{SWE terms}} = \frac{1}{\eta} \nabla \left\{ \frac{1}{3} \eta^{3} \left(\nabla \cdot \boldsymbol{u}_{t} + \boldsymbol{u} \cdot \nabla (\nabla \cdot \boldsymbol{u}) - (\nabla \cdot \boldsymbol{u})^{2} \right) + \frac{1}{2} \eta^{2} \left(\boldsymbol{u}_{t} \cdot \nabla h + (\boldsymbol{u} \cdot \nabla)^{2} h \right) \right\} \\ - \left\{ \frac{1}{2} \eta \left(\nabla \cdot \boldsymbol{u}_{t} + \boldsymbol{u} \cdot \nabla (\nabla \cdot \boldsymbol{u}) - (\nabla \cdot \boldsymbol{u})^{2} \right) + \left(\boldsymbol{u}_{t} \cdot \nabla h + (\boldsymbol{u} \cdot \nabla)^{2} h \right) \right\} \nabla h$$

Additional physics:

 $O(eta^2)$ (truncated to order 4)

Dispersion

- Shallow water equations (SWE) hyperbolic contain shocks.
- DSWE add dispersion effects to SWE (which can regularize shock) can create additional oscillations, e.g., more waves; valid for O(1) nonlinearities (not just weakly nonlinear).

Linearization (about constant state):

$$m{u}(m{x},t) = \hat{m{u}}e^{\imath\omega t - \imathm{k}\cdotm{x}}$$
 $\eta(m{x},t) = h_0 + \hat{\zeta}e^{\imath\omega t - \imathm{k}\cdotm{x}}$ relation

ICERM, Jan. 10, 2022

Dispersive shallow water equations (DSWE)

See: [Rayleigh 1876]; [Serre 1953];
[Su, Gardner 1969]; [Green, Naghdi 1976]

$$\eta_t + \nabla \cdot (\eta u) = 0$$

Shallow water equation
regime of validity:
 $\beta \equiv \frac{\bar{h}}{\lambda} \ll 1$
 $u_t + u \cdot \nabla u + \nabla \zeta = \frac{1}{\eta} \nabla \left\{ \frac{1}{3} \eta^3 \left(\nabla \cdot u_t \right) + u \cdot \nabla (\nabla \cdot u) - (\nabla \cdot u)^2 \right\} + \frac{1}{2} \eta^2 \left(u_t \cdot \nabla h + (u \cdot \nabla)^2 h \right) \right\}$
SWE terms
 $- \left\{ \frac{1}{2} \eta \left(\nabla \cdot u_t \right) + u \cdot \nabla (\nabla \cdot u) - (\nabla \cdot u)^2 \right\} + \left(u_t \cdot \nabla h + (u \cdot \nabla)^2 h \right) \right\} \nabla h$
Numerics
Difficulty 1:
Nonlinear, and ``Mixed'' space-time derivative terms, e.g., $\sim \eta^{-1} \nabla (\eta^3 \nabla \cdot u_t)$
Difficulty 2?
RHS has term $\eta^{-1} \nabla (u \cdot \nabla (\nabla \cdot u))$, explicit treatment could be very stiff?

ICERM, Jan. 10, 2022

DSWE: Structure of the time derivative

$$\eta_t + \nabla \cdot (\eta u) = 0,$$

$$\mathcal{G}u_t + \eta u \cdot \nabla u + \eta \nabla \zeta = \nabla \left\{ \frac{1}{3} \eta^3 \left(u \cdot \nabla \left(\nabla \cdot u \right) - \left(\nabla \cdot u \right)^2 \right) + \frac{1}{2} \eta^2 \left(u \cdot \nabla \right)^2 h \right\}$$

$$- \eta \left\{ \frac{1}{2} \eta \left(u \cdot \nabla \left(\nabla \cdot u \right) - \left(\nabla \cdot u \right)^2 \right) + \left(u \cdot \nabla \right)^2 h \right\} \nabla h,$$

Bring all time derivatives to left hand side, where

$$\mathcal{G} \equiv \mathcal{N}_{\eta} + K_{\eta,h} - \begin{bmatrix} \mathcal{N}_{\eta} \equiv \eta I - \nabla \frac{1}{3} \eta^{3} \nabla \cdot, & \text{(dispersion due to the surface)} \\ \mathcal{K}_{\eta,h} \equiv -\nabla \left(\frac{1}{2} \eta^{2} \nabla h^{T} \cdot \right) + \frac{1}{2} \eta^{2} \nabla h (\nabla \cdot) + \eta \nabla h (\nabla h^{T} \cdot) & \text{(bathymetry)} \end{bmatrix}$$

Nonlinear and time-dependent operator.

Goal – adopt matrix-free methods where we avoid constructing \mathcal{G} . e.g., address "Difficulty" #1 (in previous slide)

Numerical work for SWE with dispersion:

[Li, Choi, Hyman 2004]; [Choi, Goullet, Jo 2011]; [Khakimzyanov Dutykh Fedotova Mitsotakis, 2020] (effectively 1d); [Patel Kumar Rajni 2020].

DSWE Constraint form
Evolution.
$$\eta_t + \nabla \cdot (\eta u) = 0$$
,
 $U_t + \eta \nabla \zeta + \nabla (\eta u u) = F(\eta, u, h)$.
Constraint. $U - \mathcal{G}u = 0$,
 $\mathcal{G} \equiv \mathcal{N}_{\eta} + K_{\eta,h}$. [Ignore this
(for now)]

Consider two time stepping schemes. Although unrelated, their efficacy will be related: 1) ``standard'' conceptual approach:

 $\begin{aligned} \eta_t + \nabla \cdot (\eta u) &= 0, & \text{Explicit time-stepping} \\ \boldsymbol{U}_t + \eta \nabla \zeta + \nabla (\eta u u) &= F(\eta, u, h), & (\text{e.g., Runge-Kutta}) \\ \text{Key challenge: Find a preconditioner} & \boldsymbol{U} - \mathcal{G} u &= 0, & \text{Fully implicit solve} \\ \text{wia matrix-free} \\ \text{method (e.g., PCG).} \end{aligned}$

2) Implicit-explicit (ImEx) multistep methods – avoid a fully implicit treatment of G.

$$\begin{split} w_t &= f(w, u, t) \\ g(w, u) &= 0. \end{split} \begin{array}{l} w &= (\eta, U)^T \\ f &= (-\nabla \cdot (\eta u), \ -\eta \nabla \zeta - \nabla (\eta u u) + F)^T \\ g &= U - \mathcal{N}_\eta u - K_{\eta,h} u, \end{aligned} \begin{array}{l} \text{Spatial discretizations (MOL)} \\ & \rightarrow \text{ Differential algebraic} \\ \text{equation (index-1).} \\ \text{Spatial discretizations (MOL)} \end{array}$$

ICERM, Jan. 10, 2022

ImEx linear multistep for index-1 DAEs

Theoretical tool to formulate schemes for DAEs (e.g., [Hairer Wanner, Vol. II], see also [Constantinescu, Sandu 2010]; ImEx LMMs [Crouzeix, 1980], [Ascher, Ruuth, Wetton, 1995]):

$$w_t = f(w, u, t),$$
 Discretize, then take
 $\epsilon u_t = U - Gu$ $\epsilon \to 0.$

However, in our case G is stiff (and non-linear). We differ in that we look at ImEx schemes applied to the constraint equation:

$$w_t = f(w, u, t),$$

$$\epsilon u_t = -\mathcal{A}u - \mathcal{B}u + U$$

IMplicit EXplicit

• Where $\mathcal{G} = \mathcal{A} + \mathcal{B}$, Choice is NOT unique!

What we want is to take \mathcal{A} linear and constant coefficient

• Convention: \mathcal{A} stiff, \mathcal{B} non-stiff. Generally not conventional to apply ImEx to the constraint.

ImEx linear multistep for index-1 DAEs

Linear multistep (after taking
$$\epsilon \to 0$$
)
IMEX scheme
$$\frac{1}{\Delta t} \sum_{j=0}^{s} a_{j} w^{n+j} = \sum_{j=0}^{s} b_{j} f(w^{n+j}, u^{n+j}, t^{n+j}),$$

$$0 = \sum_{j=0}^{s} c_{j} (U^{n+j} - Au^{n+j}) - b_{j} Bu^{n+j}.$$
 Where $\mathcal{G} = \mathcal{A} + \mathcal{B}$,

So what can go wrong?

Answer: Zero-stability, e.g., stability with $\ \Delta t \ = \ 0$

$$0 = \sum_{j=0}^{s} c_j \left(U^{n+j} - A u^{n+j} \right) - b_j B u^{n+j}.$$

Require: solutions u_n uniformly bounded for all n.

- Not a trivial property due to the explicit stiff terms
- Property depends on **BOTH** coefficients **AND** splitting.

Example: Semi-implicit backward differentiation 3 $c_2 = 1, c_1 = 0, c_0 = 0$ $a_2 = 3/2, a_1 = -2, a_0 = 1/2$ $b_2 = 0, b_1 = 2, b_0 = -1$

Zero-stability criteria

Simplified case: Assume \mathcal{G} is time-independent (but can vary in space) Substituting: $\mathcal{G}u = \lambda \mathcal{A}u$ and $u^n = z^n v$

Into: (*)
$$\sum_{j=0}^{r} c_j A u^{n+j} + b_j (G - A) u^{n+j} = 0$$

Yields the following zero-stability criteria

Define: $\mathcal{D} := \{ \mu \in \mathbb{C} : c(z) + (\mu - 1)b(z) \text{ has stable roots} \}$ $c(z) := z^r + c_{r-1}z^{r-1} + \dots c_0$ $b(z) := b_{r-1}z^{r-1} + \dots b_0.$

Then (*) yields stable dynamics if: $\operatorname{eig}\left(\mathcal{A}^{-1}\mathcal{G}\right)\in\mathcal{D}$

ICERM, Jan. 10, 2022

Zero-stability criteria

You need the eigenvalues clustered near 1 \rightarrow Just like preconditioning Caveat: Need bounds (bounds become fundamentally worse/impossible at 3rd order without simultaneously choosing time-stepping schemes!)

Key Goal: Find \mathcal{A}

For both:

Runge-Kutta with preconditioner.
 IMEX time-stepping for DAE

Need to find \mathcal{A}

- Easy to ``invert";
- Ensure bound/clustering of generalized eigenvalues

 $\mathcal{G}u = \lambda \mathcal{A}u$

Caveat: IMEX DAEs more stringent than RK with preconditioner (eig. val. must lie in region around 1).

Strategy: Calculus of variations approach to study and bound generalized eigenvalues.

Mathematical preliminaries

Algebraic constraint is: $U - \mathcal{G}u = 0$, Goal: See an $\mathcal{A} = \sigma I - \alpha \nabla \nabla \cdot$ Where: $\mathcal{G} \equiv \mathcal{N}_{\eta} + K_{\eta,h}$ consists of two contributions: 1) $\mathcal{N}_{\eta} \equiv \eta I - \nabla \frac{1}{3} \eta^{3} \nabla \cdot$ (depends only on water depth) 2) $\mathcal{K}_{\eta,h} \equiv -\nabla \left(\frac{1}{2} \eta^{2} \nabla h^{T} \cdot \right) + \frac{1}{2} \eta^{2} \nabla h (\nabla \cdot) + \eta \nabla h (\nabla h^{T} \cdot)$ (bathymetry)

Operators have variational forms defined on the Hilbert space:

$$\|\boldsymbol{u}\|_{\operatorname{div}}^2 := \int_{\Omega} \|\boldsymbol{u}\|^2 + (\nabla \cdot \boldsymbol{u})^2 \, \mathrm{d}\boldsymbol{x}, \quad H_{\operatorname{div}}(\Omega) := \left\{\boldsymbol{u} \mid \|\boldsymbol{u}\|_{\operatorname{div}} < \infty\right\}$$

(Include boundary conditions $(n \cdot u = 0 \text{ on } \partial \Omega)$ in definition for non-periodic case)

$$(f,g) \coloneqq \int_{\Omega} f(x)^T g(x) \, \mathrm{d}x \quad \Longrightarrow \quad (v, \mathcal{N}_{\eta} u) = (\mathcal{N}_{\eta} v, u) \quad (u, \mathcal{K}_{\eta,h} u) = (\mathcal{K}_{\eta,h} u, u)$$

ICERM, Jan. 10, 2022

Choice of A: Use variational techniques

Introduce new variables: $\phi \ := \
abla \cdot oldsymbol{u}$ and $oldsymbol{w}(oldsymbol{x}) \ = \
abla h(oldsymbol{x})$

$$(\boldsymbol{u}, \mathcal{G}\boldsymbol{u}) = \int_{\Omega} \underbrace{\eta \|\boldsymbol{u}\|^2 + \frac{1}{3}\eta^3 \phi^2}_{(\boldsymbol{u}, \mathcal{N}_{\eta}\boldsymbol{u})} + \underbrace{\eta(\boldsymbol{w}^T \boldsymbol{u})^2 + \eta^2(\boldsymbol{w}^T \boldsymbol{u})\phi}_{(\boldsymbol{u}, \mathcal{K}_{\eta, h}\boldsymbol{u})} \, \mathrm{d}\boldsymbol{x}$$

Key observation (look for a sums of squares):

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

ICERM, Jan. 10, 2022

Choice of A: Use variational techniques

Obtain a bound: $\gamma(oldsymbol{u},\mathcal{A}oldsymbol{u})\leq (oldsymbol{u},\mathcal{G}oldsymbol{u})\leq (oldsymbol{u},\mathcal{A}oldsymbol{u})$

With implicit operator/preconditioner: $\mathcal{A} = \sigma I - \alpha \nabla \nabla \cdot$

With coefficients: $\alpha = \frac{4}{3}\eta_{\max}^3$ $\sigma = \eta_{\max}\left(1 + \frac{4}{3}(\nabla h)_{\max}^2\right)$ ``Estimated''
quantities: $\eta_{\max} := \max_{\boldsymbol{x} \in \Omega} \eta(\boldsymbol{x})$ $\eta_{\min} := \min_{\boldsymbol{x} \in \Omega} \eta(\boldsymbol{x}), \quad (\nabla h)_{\max} = \max_{\boldsymbol{x} \in \Omega} \|\nabla h(\boldsymbol{x})\|$

Formula:
$$\gamma = \min\left\{\left(\frac{\eta_{\min}}{\eta_{\max}}\right)^3, \left(\frac{\eta_{\min}}{\eta_{\max}}\right)\left(1 + \frac{4}{3}(\nabla h)_{\max}^2\right)^{-1}\right\}$$

ICERM, Jan. 10, 2022

Significance of the result

Consider the generalized eigenvalues: $\mathcal{G}u = \lambda \mathcal{A}u$ Substitute into: $\gamma(u, \mathcal{A}u) \leq (u, \mathcal{G}u) \leq (u, \mathcal{A}u)$ 1) Eigenvalue bound (are real in the right half plane) $\gamma \leq \operatorname{eig} \left(\mathcal{A}^{-1}\mathcal{G}\right) \leq 1$

Significance --> the bounds are sufficient to make <u>SBDF2 zero-stable</u> (e.g., SBDF2 will work); For higher order SBDF methods, need to simultaneously splitting and time stepping schemes [cf. Seibold, S, Zhou 2019]

2) Eigenvalue bound implies the conditioning number bound:

$$\kappa \left(\mathcal{A}^{-1} \mathcal{G} \right) \le \gamma^{-1} = \max \left\{ \left(\frac{\eta_{\max}}{\eta_{\min}} \right)^3, \left(\frac{\eta_{\max}}{\eta_{\min}} \right) \left(1 + \frac{4}{3} (\nabla h)_{\max}^2 \right) \right\}$$

No discretization in space (hence is <u>mesh independent</u> for suitable discrete operators) Quantities can be ``estimated''; est. # iterations on preconditioned CG U - Gu = 0.

Some numerical results:

Some physical results:

Conclusions and Outlook:

<u>#1.</u> Model (scalar) ODEs: $u_t = \lambda u + \mu u$

Are useful for analyzing stability of: $oldsymbol{u}_t = Aoldsymbol{u} + oldsymbol{B}oldsymbol{u} + oldsymbol{f}(t)$

Still provide necessary conditions when the matrices **<u>do not</u>** commute.

<u>**#2.</u>** Characterization of multistep methods. Fundamental barriers to getting 3rd order (elliptic problems); 2nd order (advection/wave problems); similar in spirit but (fundamentally different) Dahlquist barriers.</u>

#3. Approaches avoid stiff implicit nonlinear terms (beyond 2nd order).

<u>#4.</u> Applications: New approaches for DAEs, and preconditioners for DSWE (avoid full treatment of mixed space-time derivatives).

Ref. (i) Theory paper: SINUM, 55:5 (2017), 2336-2360 (ii) Practice paper: JCP, 376:1 (2019), 295-321 (iii) DSWE manuscript in late stages of preparation.

Thank You!

