My research interests include-

- Contact Geometry and Legendrian Knots.
 - Classification problems.
 - Structure problems.
- Interaction between Contact Geometry and Heegaard Floer Theory.
There are two types of knots in an overtwisted contact manifold—namely loose (with overtwisted complement) and non-loose (with tight complement).

Theorem (C., 2020)

Null-homologous Legendrian links can be completely classified by their classical invariants (up to contactomorphism).

Theorem (C., 2020)

If L is a null-homologous loose Legendrian link, then the support genus vanishes.

Theorem (C., 2020)

There are examples of non-loose links with support genus zero.
How can one classify non-loose knots in overtwisted manifolds?

Few non-loose knot/link types are completely classified in overtwisted S^3–

- Non-loose unknots (Eliashberg-Fraser)
- Non-loose torus knots (Etnyre-Min-Mukherjee, in preparation)
- Non-loose Hopf links (Geiges-Onaran)

What can we say about other manifolds?

Theorem (C-Geiges-Onaran, work in progress)

Classification of Hopf links in lens spaces.
Structure Theorem of knots in overtwisted manifolds

Structure theorem of Legendrian knots \rightarrow behavior of Legendrian knots under topological operations.

Theorem (C-Etnyre-Min-Mukherjee)

Suppose L be a non-loose representative of a knot type K in (M, ξ). If $\frac{q}{p} > \text{tb}(L)$ for $q, p > 0$, $L_{p,q}$ is non-loose in (M, ξ).

What about $\frac{q}{p} \leq \text{tb}(L)$?

Theorem (C-Etnyre-Min-Mukherjee)

Suppose L be a non-loose representative of a knot type K in (M, ξ) such that L has non-loose transverse push off. Then if $\frac{q}{p} \leq \text{tb}(L)$, then $L_{p,q}$ is non-loose in (M, ξ).
Legendrian knots and Heegaard Floer theory

- Ozsváth, Szabó and Thurston defined GRID Invariants using combinatorial knot Floer theory.
- Vela-Vick–Wong extended these invariants to the cyclic branched cover and call them “transverse invariant”(2019).
- This transverse invariant in the cyclic branched cover can obstruct decomposable Lagrangian cobordism between Legendrian links in the base space. (C., 2020)