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Parallel Computing
in brief

Why parallel?
state of the art hardware:
» multicore computers

> high performance clusters

success stories:
» numerical analysis

» simulation of flows and turbulence

practical drawback:
management of distribution of resources and data
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ideal Speed_up: Parallel Computing
linear in the number of cores in brief

limiting factors in reality:
» longest non-parallelizable part (critical chain)
» communication overhead

» locking of data

kinds of parallelism:
> fine grained
(synchronize/communicate data in short intervalls)
> coarse grained
(occasionally synchronize/communicate data)

» embarrassing
(nearly no communication between tasks)
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Parallel Computing

Traditionally 3 main approaches: in brief

1. Parallelization on the level of arithmetic
— fine-grained /shared memory,
— limited to one machine

2. Embarassing parallelism of zero-dimensional objects
— scales up to number of instances

3. Modular approaches
— basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting
e.g.
» gfan
» talk of Lars Kastner using polymake and MPTOPCOM
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Tasks in parallel setting (classically):

1. design a mathematical algorithm et
implement mathematical algorithm

locate and exploit its parallelization potential

manage data exchange

AR A

manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:
> concentrate on 1 and 2
> give some thought to 3, allow help from system

> leave 4 and 5 to the system
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Fan/Graph-Traversals:
> GIT-fan (Bshm, FK, Rahn, Reinbold): _—

» Mori chamber decomposition of cone of movable
divisors of My 6
» 12,5 minutes on 640 cores

» tropical varieties (Bendle, Bohm, Rahn):
» tropical Grassmannian Gz g

» less than 20 minutes on 768 cores

Coverings:
» smoothness test (Béhm, Decker FK, Rahn, Ristau,
Pfreundt) — see below
» desing. of 2-dim. schemes/Z (FK, Gaube, Schober,
Ristau)
» order zeta functions (FK, Maglione, Schober, Voll)
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GPI-Space (Fraunhofer ITWM)

GPI-Space
» originally designed with applications in finite element
methods in mind

» separation of coordination and computation layers

» distributed, robust, scalable Run-Time-System
(resource management, scheduler)

» application independent global memory layer

> Petri net based workflow engine
(automated parallel execution, dependency tracking)

biggest advantage:
Parallelisation without modification to the backend
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Petri net:

GPI-Space

J —@

®_,.H

PORIInON
OO

v

directed graph

v

2 kinds of vertices: places (circle) and transitions (box)

v

places hold marked tokens

transitions contain functional units

v



The singular locus |

First for plane curves:

parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

GPI-Space

Sample
application
Smoothness Test
The problem
Hironaka's v *
Technical Side
Timings

links.



The singular locus | parallel slgorithms

A. Friihbis-Kriiger

First for plane curves:

The problem
Hironaka's v *
Technical Side
Timings

links.

V(f) singular at p € C> < not a unique
tangent direction at p



The singular locus | parallel slgorithms

A. Friihbis-Kriiger

First for plane curves:

The problem
Hironaka's v *
Technical Side
Timings

links.

V(f) singular at p € C> < not a unique
tangent direction at p

& tangent space to X at p
not of dimension 1



The singular locus |

First for plane curves:

V/(f) singular at p € C?

=

not a unique
tangent direction at p

tangent space to X at p
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First for plane curves:

V/(f) singular at p € C?

=

-

3
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The problem
Hironaka's v ™
Technical Side
Timings

links.

not a unique
tangent direction at p

tangent space to X at p
not of dimension 1

BX1 (P) =0= 3X2 (P)
Jacobian matrix J of f
at p of rank <1
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Jacobian Criterion
Let all components of V(fi,...,fn) be of dimension d

Then:
V(f,...,fm) sing. in pe C" & dimg Tp(X) > d

The problem
< rank of Jacobian matrix
Jof (A...,fm) atp
<n-—d

singular locus:

Sing(X) := {pe X | X singular at p}
= V(f,...,fmand (n —dim(X)) —

minors of Jacobian matrix J)
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numerical Godeaux-Surface (from current research/
surface with prescribed properties):

13 variables, dimension 2, 22 polynomials
= approx. 55 Mio. minors

The problem

Jacobian Criterion tests : Sing(X) ==107

» thatis: 1 € I 4+ ((n — d) minors von J) 7

» Groebner Basis computations: all minors as input (size
of pairset!)

» certificate of smoothness or singularity after all
computations
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The setting

K algebraically closed field

fyeooofr €EK[x1,...,xp] and X = V(f,...,f)
Ix = 1(X) C K[x1,...,xs] vanishing ideal

Goal:

Test whether X is singular
without computation of singular locus!

parallel algorithms
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Hironaka(1964):
resolution of singularities in characteristic zero

» finitely many blow-ups in 'good’ centers

» termination criterion without Jacobian criterion imetizfs 2

Hironaka's measure for distance to smoothness at p:

v (X, p) = (ordp(g1), .. .,ordp(gs))

where

> g1,--.,8s minimal standard basis von IxOan p w.r.t.
local degree ordering, sorted by increasing order.

» ordy(gi) =max{k € Z | g € mgnwp}
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V*(Xa P) = (Ordp(gl)a s 7ordp(gs))

Lemma (Hironaka)
X singular at p
= v*(X,p) >ex (1,...,1)
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defined a moment ago:
V*(Xa p) = (Ordp(gl)a s 7ordp(gs))

Hironaka's v *

Lemma (Hironaka)
X singular at p
= v*(X,p) >ex (1,...,1)
~———
n—dim(X)

practical problem:
standard basis locally at each point impossible
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First entry of v*: order of ideal at p

ord,(!) := min{ord,(h) | h € I}

We know:

Hironaka's v *

ordp(/) =1 == 3hel:ordp(h)=1

= e first entry of v*(X,p) is 1
e V/(h) smooth hypersurface locally at p
X C V(h)

locus of order > 2 of X:

f
a—’_!léiés,lgjsm)

A(lL)=V({A,... 1 o
j
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we have seen:

ordp(/) =1 == 3h € | : V(h) smooth and X C V(h) near p

Hironaka's v *

Choose V/(h) locally at p as new ambient space

= no longer working in K[x],
but locally at p at least isomorphic
to K[[y1, ..., yn-1]] (Cohen structure theorem)

Transfer to (K[x1,...,xs]/(h))g possible
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Sketch of approach:

» Choose appropriate V/(h) und D(g) covering X
(g suitably chosen derivative of h)

Hironaka's v*
» on each D(g) consider: X N D(g) C V(h)N D(g)
> repeat previous construction (slightly modified):
» dim(V/(h)) = n—1, drop in codimension
» derivatives w.r.t. local systems of parameters in

V(h) N D(g)
» provides covering of X N D(g) by new
V(h7 hneu) N D(gneu)

> iterate
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Observation:
» number of charts increases, while codimension drops

» sufficiently small codimension makes Jacobian criterion
feasable

Hironaka's v *

> in practice: hybrid approach using descent in ambient
space and Jacobian criterion

Challenges:
» choose large neighbourhoods for new ambient space
» keep number of charts low/use easily computable charts
> consistent choice of local system of parameters

» derivatives w.r.t. a system of parameters
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Challenges call for parallel approach:

» choose large neighbourhoods for new ambient space
= check whether everything is covered

» keep number of charts low/use easily computable charts
= let fastest charts win

Technical Side
> derivatives w.r.t. a system of parameters
—> potentially expensive computations

We really need a powerful parallelization environment:
» with good scheduling
» with good resource management
» without too much technical overhead

> robust against huge variations in computing time and
size
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9877,
it 1 omer T e e Com e e e = A CH T
sach server (the frammork scales up to several thousands of cores on WPC ctusters)

/ define standard configuration for smoothness certificate
5 conngYoken sc = configure_smoothtest();
> // set option to do a projective
descend to a relative codimension of 2
relative Jacobi criterion with

b2

compre-nencpapa 42.

and
(1% svhosmuant mpplisation oF th
ts)

2 minors in thy comput

sult = smoothtest(I, gc, 50);
1:starting base sdpa components on menekiki 37932 23838
I3 starting top level gspe logging demutiplexer on nenekikt

=> accepting registration on <<nenekiki:40396>>, SOCKET
<<nenekiki-\006abdS

alagsntt oot pemek NS a2l z300s 0 ont{rl elontey pat i neok IS 1032

23888 with parent orchestrator
I: starting compute workers (master agent-nenekiki 37932 23888-0, 16/host,
unlimited, © SHM) with t agent-nenekiki 37932 23888-0 on rif entry point

compute-nenekiki 3793
compte-nenekid 3793
comput

compute-ner

s (master agent-nenekiki 37932 23888-6, 1/host,
unique, © SHM) with parent gen[ nenekiki 37632 236660 on rif entry point
Reneiiict 37952 23608, nenepapa 47617 58751

[}

compute-nenepapa 42.

- *singular*  Bot L62

singu! (singular Demo:run Wrap Narrow)
Hit RET to continue demo

compute-nenekiki 3793

compute-nenekid 3793'

compute-nenekiki 3793.

ComptenenckRs 3755,

gspc-monitor (auf nenekiki) 0’0
Add emiteers _Save Text Log
Execution Monitor | Logging

s
10

10
10

10
10
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6851

356

8- la)
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160
140 - O P
= Hirom's
100 ngs
80
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204 256



LI n ks a nd Refe rences parallel algorithms

A. Friihbis-Kriiger

https://github.com/singular-gpispace/framework
https://www.mathematik.uni-kl.de/

~ boehm /singulargpispace
J. Bohm, W. Decker, A. Friihbis-Kruger, F.-J. Pfreundt,
M. Rahn, L. Ristau: Towards Massively Parallel
Computations In Algebraic Geometry, to appear in ke
Foundations of Computational Mathematics (2021)
W. Decker, G.-M. Greuel, G. Pfister, H. Schonemann:
SINGULAR — A computer algebra system for polynomial
computations
http://www.singular.uni-kl.de
Fraunhofer ITWM / F.-J. Pfreundt, M. Rahn, et al.:
GPl-space
http://www.gpi-space.de



Thank you!
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