
parallel algorithms

A. Frühbis-Krüger
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Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)
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Parallelism in Algorithmic Algebraic Geometry

Traditionally 3 main approaches:

1. Parallelization on the level of arithmetic
−→ fine-grained/shared memory,
−→ limited to one machine

2. Embarassing parallelism of zero-dimensional objects
−→ scales up to number of instances

3. Modular approaches
−→ basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting
e.g.:

I gfan

I talk of Lars Kastner using polymake and MPTOPCOM
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Separating computation and coordination layer

Tasks in parallel setting (classically):

1. design a mathematical algorithm

2. implement mathematical algorithm

3. locate and exploit its parallelization potential

4. manage data exchange

5. manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:

I concentrate on 1 and 2

I give some thought to 3, allow help from system

I leave 4 and 5 to the system
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Success stories along these lines

Fan/Graph-Traversals:

I GIT-fan (Böhm, FK, Rahn, Reinbold):

I Mori chamber decomposition of cone of movable
divisors of M0,6

I 12,5 minutes on 640 cores

I tropical varieties (Bendle, Böhm, Rahn):

I tropical Grassmannian G3,8
I less than 20 minutes on 768 cores

Coverings:

I smoothness test (Böhm, Decker FK, Rahn, Ristau,
Pfreundt) – see below

I desing. of 2-dim. schemes/Z (FK, Gaube, Schober,
Ristau)

I order zeta functions (FK, Maglione, Schober, Voll)
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What we used: GPI-space

GPI-Space (Fraunhofer ITWM)

I originally designed with applications in finite element
methods in mind

I separation of coordination and computation layers

I distributed, robust, scalable Run-Time-System
(resource management, scheduler)

I application independent global memory layer

I Petri net based workflow engine
(automated parallel execution, dependency tracking)

biggest advantage:
Parallelisation without modification to the backend
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Petri nets

Petri net:

I directed graph

I 2 kinds of vertices: places (circle) and transitions (box)

I places hold marked tokens

I transitions contain functional units
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I places hold marked tokens
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The singular locus I

First for plane curves:

V (f ) singular at p ∈ C2 ⇔ not a unique
tangent direction at p

⇔ tangent space to X at p
not of dimension 1

⇔ ∂f
∂x1

(p) = 0 = ∂f
∂x2

(p)

⇔ Jacobian matrix J of f
at p of rank < 1
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The singular locus II

Jacobian Criterion

Let all components of V (f1, . . . , fm) be of dimension d

Then:
V (f1, . . . , fm) sing. in p ∈ Cn ⇔ dimC Tp(X ) > d

⇔ rank of Jacobian matrix
J of (f1 . . . , fm) at p
< n − d

singular locus:

Sing(X ) := {p ∈ X | X singular at p}
= V (f1, . . . , fm and (n − dim(X ))−

minors of Jacobian matrix J)
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A real-life example – the problem

numerical Godeaux-Surface (from current research/
surface with prescribed properties):

13 variables, dimension 2, 22 polynomials
=⇒ approx. 55 Mio. minors

Jacobian Criterion tests : Sing(X ) == ∅ ?

I that is: 1 ∈ I + 〈(n − d) minors von J〉 ?

I Groebner Basis computations: all minors as input (size
of pairset!)

I certificate of smoothness or singularity after all
computations
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The setting

K algebraically closed field

f1, . . . , fr ∈ K[x1, . . . , xn] and X = V (f1, . . . , fr )

IX = I (X ) ⊂ K[x1, . . . , xn] vanishing ideal

Goal:

Test whether X is singular
without computation of singular locus!
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Hironaka’s Approach

Hironaka(1964):

resolution of singularities in characteristic zero

I finitely many blow-ups in ’good’ centers

I termination criterion without Jacobian criterion

Hironaka’s measure for distance to smoothness at p:

ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

where

I g1, . . . , gs minimal standard basis von IXOAn
K,p

w.r.t.
local degree ordering, sorted by increasing order.

I ordp(gi ) = max{k ∈ Z | gi ∈ mk
An
K ,p
}
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Hironaka’s Approach II

defined a moment ago:
ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

Lemma (Hironaka)

X singular at p

⇐⇒ ν∗(X , p) >lex (1, . . . , 1)︸ ︷︷ ︸
n−dim(X )

practical problem:
standard basis locally at each point impossible
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Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Locus of Order 1

First entry of ν∗: order of ideal at p

ordp(I ) := min{ordp(h) | h ∈ I}

We know:

ordp(I ) = 1 =⇒ ∃h ∈ I : ordp(h) = 1

=⇒ • first entry of ν∗(X , p) is 1

•V (h) smooth hypersurface locally at p

X ⊂ V (h)

locus of order ≥ 2 of X :

∆(Ix) = V (〈f1, . . . , fs ,
∂fi
∂xj
| 1 ≤ i ≤ s, 1 ≤ j ≤ n〉)
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Local System of Parameters

we have seen:

ordp(I ) = 1 =⇒ ∃h ∈ I : V (h) smooth and X ⊂ V (h) near p

Choose V (h) locally at p as new ambient space

=⇒ no longer working in K[x ],
but locally at p at least isomorphic
to K[[y1, . . . , yn−1]] (Cohen structure theorem)

Transfer to (K[x1, . . . , xn]/〈h〉)g possible
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Subsequent Entry of ν∗

Sketch of approach:

I Choose appropriate V (h) und D(g) covering X
(g suitably chosen derivative of h)

I on each D(g) consider: X ∩ D(g) ⊂ V (h) ∩ D(g)
I repeat previous construction (slightly modified):

I dim(V (h)) = n − 1, drop in codimension
I derivatives w.r.t. local systems of parameters in

V (h) ∩ D(g)
I provides covering of X ∩ D(g) by new

V (h, hneu) ∩ D(gneu)

I iterate
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Algorithmic Aspects

Observation:

I number of charts increases, while codimension drops

I sufficiently small codimension makes Jacobian criterion
feasable

I in practice: hybrid approach using descent in ambient
space and Jacobian criterion

Challenges:

I choose large neighbourhoods for new ambient space

I keep number of charts low/use easily computable charts

I consistent choice of local system of parameters

I derivatives w.r.t. a system of parameters
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Parallel, but not embarassingly parallel

Challenges call for parallel approach:

I choose large neighbourhoods for new ambient space
=⇒ check whether everything is covered

I keep number of charts low/use easily computable charts
=⇒ let fastest charts win

I derivatives w.r.t. a system of parameters
=⇒ potentially expensive computations

We really need a powerful parallelization environment:

I with good scheduling

I with good resource management

I without too much technical overhead

I robust against huge variations in computing time and
size
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The Algorithm as a Petri-Net
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A screenshot
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Campedelli-Fläche – Timings
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Campedelli-Fläche – Speed-Up versus cores
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Links and References

I https://github.com/singular-gpispace/framework

I https://www.mathematik.uni-kl.de/
˜ boehm/singulargpispace

I J. Böhm, W. Decker, A. Frühbis-Krüger, F.-J. Pfreundt,
M. Rahn, L. Ristau: Towards Massively Parallel
Computations In Algebraic Geometry, to appear in
Foundations of Computational Mathematics (2021)

I W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann:
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