parallel algorithms

A. Friihbis-Kriiger

Parallelism in algebraic geometry
Examples with Singular and GPI-Space

Anne Frihbis-Kriiger
joint work with Janko Bohm SFB/TRR 195
and with Mirko Rahn, Fraunhofer ITWM, Kaiserslautern
(and many others from the SINGULAR and GPI-Space
Teams)

Institut fiir Mathematik
Carl von Ossietzky Universitt Oldenburg

ICERM, 18.02.2021

Why parallel?

Common knowledge |

parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

The problem
Hironaka's v
Technical Side
Timings

inks

Com mon knowled ge | parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

Why parallel?
state of the art hardware:
» multicore computers

> high performance clusters

Common knowledge | parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

Why parallel?
state of the art hardware:
» multicore computers

> high performance clusters

success stories:

Common knowledge | parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

Why parallel?
state of the art hardware:
» multicore computers

> high performance clusters

success stories:

» numerical analysis

Common knowledge | parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

Why parallel?
state of the art hardware:
» multicore computers

> high performance clusters

success stories:
» numerical analysis

» simulation of flows and turbulence

Common knowledge | parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

Why parallel?
state of the art hardware:
» multicore computers

> high performance clusters

success stories:
» numerical analysis

» simulation of flows and turbulence

practical drawback:
management of distribution of resources and data

parallel algorithms

Common knowledge Il

A. Friihbis-Kriiger

Parallel Computing

ideal speed-up:
linear in the number of cores in brief

parallel algorithms

Common knowledge Il

A. Friihbis-Kriiger
ideal Speed—up: Parallel Computing
linear in the number of cores bt

limiting factors in reality:

Common knowledge Il

ideal speed-up:
linear in the number of cores

limiting factors in reality:
» longest non-parallelizable part (critical chain)

parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

Common knowledge Il parallel algorithms

A. Friihbis-Kriiger

ideal Speed_up: Parallel Computing
linear in the number of cores in brief

limiting factors in reality:
» longest non-parallelizable part (critical chain)

» communication overhead

Com mon knowledge I | parallel algorithms

A. Friihbis-Kriiger

ideal Speed_up: Parallel Computing
linear in the number of cores in brief

limiting factors in reality:
» longest non-parallelizable part (critical chain)
» communication overhead

» locking of data

kinds of parallelism:

Com mon knowledge I | parallel algorithms

A. Friihbis-Kriiger

ideal Speed_up: Parallel Computing
linear in the number of cores in brief

limiting factors in reality:
» longest non-parallelizable part (critical chain)
» communication overhead

» locking of data

kinds of parallelism:

> fine grained
(synchronize/communicate data in short intervalls)

Com mon knowledge I | parallel algorithms

A. Friihbis-Kriiger

ideal Speed_up: Parallel Computing
linear in the number of cores in brief

limiting factors in reality:
» longest non-parallelizable part (critical chain)
» communication overhead

» locking of data

kinds of parallelism:
> fine grained
(synchronize/communicate data in short intervalls)
> coarse grained
(occasionally synchronize/communicate data)

Com mon knOWIGdge I | parallel algorithms

A. Friihbis-Kriiger

ideal Speed_up: Parallel Computing
linear in the number of cores in brief

limiting factors in reality:
» longest non-parallelizable part (critical chain)
» communication overhead

» locking of data

kinds of parallelism:
> fine grained
(synchronize/communicate data in short intervalls)
> coarse grained
(occasionally synchronize/communicate data)

» embarrassing
(nearly no communication between tasks)

parallel algorithms

Parallelism in Algorithmic Algebraic Geometry

A. Friihbis-Kriiger

.) Parallel Computing
Traditionally 3 main approaches: in brief
1. Parallelization on the level of arithmetic
— fine-grained/shared memory,
— limited to one machine

Parallelism in Algorithmic Algebraic Geometry el slgorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

Traditionally 3 main approaches:

1. Parallelization on the level of arithmetic
— fine-grained /shared memory,
— limited to one machine

2. Embarassing parallelism of zero-dimensional objects
— scales up to number of instances

Parallelism in Algorithmic Algebraic Geometry el slgorithms

A. Friihbis-Kriiger

Parallel Computing

Traditionally 3 main approaches: in brief

1. Parallelization on the level of arithmetic
— fine-grained /shared memory,
— limited to one machine

2. Embarassing parallelism of zero-dimensional objects
— scales up to number of instances

3. Modular approaches
— basically borrowed idea from number theory

Parallelism in Algorithmic Algebraic Geometry el slgorithms

A. Friihbis-Kriiger

Parallel Computing

Traditionally 3 main approaches: in brief

1. Parallelization on the level of arithmetic
— fine-grained /shared memory,
— limited to one machine

2. Embarassing parallelism of zero-dimensional objects
— scales up to number of instances

3. Modular approaches
— basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting

Parallelism in Algorithmic Algebraic Geometry el slgorithms

A. Friihbis-Kriiger

Parallel Computing

Traditionally 3 main approaches: in brief

1. Parallelization on the level of arithmetic
— fine-grained /shared memory,
— limited to one machine

2. Embarassing parallelism of zero-dimensional objects
— scales up to number of instances

3. Modular approaches
— basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting
e.g.
» gfan
» talk of Lars Kastner using polymake and MPTOPCOM

Separating computation and coordination layer prlel slgorithms

A. Friihbis-Kriiger

Tasks in parallel setting (classically):
. . . GPI-Space
1. design a mathematical algorithm

2. implement mathematical algorithm

Separating computation and coordination layer prlel slgorithms

A. Friihbis-Kriiger

Tasks in parallel setting (classically):
. . . GPI-Space
1. design a mathematical algorithm ’
2. implement mathematical algorithm

3. locate and exploit its parallelization potential

Separating computation and coordination layer

Tasks in parallel setting (classically):

1.

AR A

design a mathematical algorithm

implement mathematical algorithm

locate and exploit its parallelization potential
manage data exchange

manage resources

parallel algorithms

A. Friihbis-Kriiger

GPI-Space

Separating computation and coordination layer prlel slgorithms

A. Friihbis-Kriiger

Tasks in parallel setting (classically):

1.

AR A

. . . GPI-Space
design a mathematical algorithm ’

implement mathematical algorithm
locate and exploit its parallelization potential
manage data exchange

manage resources

Is each of us an expert in all of these tasks?

Separating computation and coordination layer

Tasks in parallel setting (classically):

1.

AR A

Is each of us an expert in all of these tasks? Certainly not.

design a mathematical algorithm

implement mathematical algorithm

locate and exploit its parallelization potential
manage data exchange

manage resources

Using a workflow management system:

» concentrate on 1 and 2

parallel algorithms

A. Friihbis-Kriiger

GPI-Space

Separating computation and coordination layer el slgorithms

A. Friihbis-Kriiger

Tasks in parallel setting (classically):

. . . GPI-Space
1. design a mathematical algorithm

implement mathematical algorithm

locate and exploit its parallelization potential

manage data exchange

AR A

manage resources

Is each of us an expert in all of these tasks? Certainly not.
Using a workflow management system:
> concentrate on 1 and 2

> give some thought to 3, allow help from system

Separating computation and coordination layer el slgorithms

A. Friihbis-Kriiger

Tasks in parallel setting (classically):

1. design a mathematical algorithm et
implement mathematical algorithm

locate and exploit its parallelization potential

manage data exchange

AR A

manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:
> concentrate on 1 and 2
> give some thought to 3, allow help from system

> leave 4 and 5 to the system

Success stories along these lines paraliel algorithms

A. Friihbis-Kriiger

Fan/Graph-Traversals:
» GIT-fan (Bohm, FK, Rahn, Reinbold):

» Mori chamber decomposition of cone of movable
divisors of My 6
» 12,5 minutes on 640 cores

GPI-Space

Success stories along these lines paraliel algorithms

A. Friihbis-Kriiger

Fan/Graph-Traversals:
» GIT-fan (Bohm, FK, Rahn, Reinbold):

» Mori chamber decomposition of cone of movable
divisors of My 6
» 12,5 minutes on 640 cores

GPI-Space

» tropical varieties (Bendle, Bohm, Rahn):

» tropical Grassmannian Gz g
» less than 20 minutes on 768 cores

Success stories along these lines paraliel algorithms

A. Friihbis-Kriiger
Fan/Graph-Traversals:
> GIT-fan (Bshm, FK, Rahn, Reinbold): _—

» Mori chamber decomposition of cone of movable
divisors of My 6
» 12,5 minutes on 640 cores

» tropical varieties (Bendle, Bohm, Rahn):
» tropical Grassmannian Gz g

» less than 20 minutes on 768 cores

Coverings:
» smoothness test (Béhm, Decker FK, Rahn, Ristau,
Pfreundt) — see below
» desing. of 2-dim. schemes/Z (FK, Gaube, Schober,
Ristau)
» order zeta functions (FK, Maglione, Schober, Voll)

What We used GPl—Space parallel algorithms

A. Friihbis-Kriiger

GPI-Space (Fraunhofer ITWM)

GPI-Space
» originally designed with applications in finite element
methods in mind

» separation of coordination and computation layers

What We used GPl—Space parallel algorithms

A. Friihbis-Kriiger

GPI-Space (Fraunhofer ITWM)

GPI-Space
» originally designed with applications in finite element

methods in mind
» separation of coordination and computation layers

» distributed, robust, scalable Run-Time-System
(resource management, scheduler)

GPI-Space (Fraunhofer ITWM)

>

What we used: GPl-space parallel slgorithms

A. Friihbis-Kriiger

GPI-Space
originally designed with applications in finite element
methods in mind

separation of coordination and computation layers

distributed, robust, scalable Run-Time-System
(resource management, scheduler)

application independent global memory layer

Petri net based workflow engine
(automated parallel execution, dependency tracking)

What we used: GPl-space parallel slgorithms

A. Friihbis-Kriiger

GPI-Space (Fraunhofer ITWM)

GPI-Space
» originally designed with applications in finite element
methods in mind

» separation of coordination and computation layers

» distributed, robust, scalable Run-Time-System
(resource management, scheduler)

» application independent global memory layer

> Petri net based workflow engine
(automated parallel execution, dependency tracking)

biggest advantage:
Parallelisation without modification to the backend

Pet rl n ets parallel algorithms

A. Friihbis-Kriiger

Petri net:
GPI-Space

» directed graph

Pet rl n ets parallel algorithms

A. Friihbis-Kriiger

Petri net:
GPI-Space

v

directed graph

v

2 kinds of vertices: places (circle) and transitions (box)

v

places hold marked tokens

transitions contain functional units

v

Pet rl n ets parallel algorithms

A. Friihbis-Kriiger

Petri net (running on a single core):

GPI-Space

v

directed graph

v

2 kinds of vertices: places (circle) and transitions (box)

v

places hold marked tokens

transitions contain functional units

v

Pet rl n ets parallel algorithms

A. Friihbis-Kriiger

Petri net (running on a single core):

GPI-Space

S0l

v

directed graph

v

2 kinds of vertices: places (circle) and transitions (box)

v

places hold marked tokens

transitions contain functional units

v

Pet rl n ets parallel algorithms

A. Friihbis-Kriiger

Petri net (running on a single core):

GPI-Space

e mo

v

directed graph

v

2 kinds of vertices: places (circle) and transitions (box)

v

places hold marked tokens

transitions contain functional units

v

Pet rl n ets parallel algorithms

A. Friihbis-Kriiger
Petri net (running on a single core):

GPI-Space

TS e

v

directed graph

v

2 kinds of vertices: places (circle) and transitions (box)

v

places hold marked tokens

transitions contain functional units

v

Pet rl n ets parallel algorithms

A. Friihbis-Kriiger
Petri net:

GPI-Space

J —@

®_,.H

PORIInON
OO

v

directed graph

v

2 kinds of vertices: places (circle) and transitions (box)

v

places hold marked tokens

transitions contain functional units

v

The singular locus |

First for plane curves:

parallel algorithms

A. Friihbis-Kriiger

Parallel Computing
in brief

GPI-Space

Sample
application
Smoothness Test
The problem
Hironaka's v *
Technical Side
Timings

links.

The singular locus | parallel slgorithms

A. Friihbis-Kriiger

First for plane curves:

The problem
Hironaka's v *
Technical Side
Timings

links.

V(f) singular at p € C> < not a unique
tangent direction at p

The singular locus | parallel slgorithms

A. Friihbis-Kriiger

First for plane curves:

The problem
Hironaka's v *
Technical Side
Timings

links.

V(f) singular at p € C> < not a unique
tangent direction at p

& tangent space to X at p
not of dimension 1

The singular locus |

First for plane curves:

V/(f) singular at p € C?

=

not a unique
tangent direction at p

tangent space to X at p
not of dimension 1

BX1 (P) =0= 3X2 (P)

parallel algorithms

A. Friihbis-Kriiger

The problem
Hironaka's v ™
Technical Side
Timings

links.

The singular locus | parallel slgorithms

First for plane curves:

V/(f) singular at p € C?

=

-

3

A. Friihbis-Kriiger

The problem
Hironaka's v ™
Technical Side
Timings

links.

not a unique
tangent direction at p

tangent space to X at p
not of dimension 1

BX1 (P) =0= 3X2 (P)
Jacobian matrix J of f
at p of rank <1

The singular locus Il paralel agorithms

A. Friihbis-Kriiger
Jacobian Criterion

Let all components of V(fi,...,fn) be of dimension d

The problem

The singular locus Il parallel slgorithms

A. Friihbis-Kriiger
Jacobian Criterion
Let all components of V(fi,...,fn) be of dimension d
Then:
V(f,...,fm) sing. in pe C" & dimg Tp(X) > d

The problem

The singular locus Il sl i,

A. Friihbis-Kriiger

Jacobian Criterion

Let all components of V(fi,...,fn) be of dimension d

Then:
V(f,...,fm) sing. in pe C" & dimg Tp(X) > d

The problem
< rank of Jacobian matrix
Jof (A...,fm) atp
<n-—d

The singular locus Il sl i,

A. Friihbis-Kriiger
Jacobian Criterion
Let all components of V(fi,...,fn) be of dimension d

Then:
V(f,...,fm) sing. in pe C" & dimg Tp(X) > d

The problem
< rank of Jacobian matrix
Jof (A...,fm) atp
<n-—d

singular locus:

Sing(X) := {pe X | X singular at p}

The singular locus Il parallel slgorithms

A. Friihbis-Kriiger
Jacobian Criterion
Let all components of V(fi,...,fn) be of dimension d

Then:
V(f,...,fm) sing. in pe C" & dimg Tp(X) > d

The problem
< rank of Jacobian matrix
Jof (A...,fm) atp
<n-—d

singular locus:

Sing(X) := {pe X | X singular at p}
= V(f,...,fmand (n —dim(X)) —

minors of Jacobian matrix J)

A real—llfe example —_ the problem parallel algorithms

A. Friihbis-Kriiger

numerical Godeaux-Surface (from current research/
surface with prescribed properties):

13 variables, dimension 2, 22 polynomials
= approx. 55 Mio. minors

The problem

A real—llfe example —_ the problem parallel algorithms

A. Friihbis-Kriiger

numerical Godeaux-Surface (from current research/
surface with prescribed properties):

13 variables, dimension 2, 22 polynomials
= approx. 55 Mio. minors

The problem

Jacobian Criterion tests : Sing(X) ==107

A real—llfe example —_ the problem parallel algorithms

A. Friihbis-Kriiger

numerical Godeaux-Surface (from current research/
surface with prescribed properties):

13 variables, dimension 2, 22 polynomials
= approx. 55 Mio. minors

The problem

Jacobian Criterion tests : Sing(X) ==107

» thatis: 1 € I 4+ ((n — d) minors von J) 7

» Groebner Basis computations: all minors as input (size
of pairset!)

» certificate of smoothness or singularity after all
computations

The setting

K algebraically closed field

The Settl ng parallel algorithms

A. Friihbis-Kriiger

K algebraically closed field

fyeooofr €EK[x1,...,xp] and X = V(f,...,f) Hironaka's 1*

The Settl ng parallel algorithms

A. Friihbis-Kriiger

K algebraically closed field

fyeooofr €EK[x1,...,xp] and X = V(f,...,f) Hironaka's 1*
Ix = I(X) C K[xi,...,xs] vanishing ideal

The setting

K algebraically closed field

fyeooofr €EK[x1,...,xp] and X = V(f,...,f)
Ix = 1(X) C K[x1,...,xs] vanishing ideal

Goal:

Test whether X is singular
without computation of singular locus!

parallel algorithms

A. Friihbis-Kriiger

Hironaka's v *

H | rona ka ,S Approach parallel algorithms

A. Friihbis-Kriiger

Hironaka(1964):

resolution of singularities in characteristic zero

Hironaka's v *

Hironaka's Approach

Hironaka(1964):
resolution of singularities in characteristic zero

» finitely many blow-ups in 'good’ centers

» termination criterion without Jacobian criterion

parallel algorithms

A. Friihbis-Kriiger

Hironaka's v *

H | rona ka ,S Approach parallel algorithms
A. Friihbis-Kriiger
Hironaka(1964):
resolution of singularities in characteristic zero

» finitely many blow-ups in 'good’ centers

» termination criterion without Jacobian criterion imetizfs 2

Hironaka's measure for distance to smoothness at p:

v (X, p) = (ordp(g1), .. .,ordp(gs))

where

H | rona ka ,S Approach parallel algorithms
A. Friihbis-Kriiger
Hironaka(1964):
resolution of singularities in characteristic zero

» finitely many blow-ups in 'good’ centers

» termination criterion without Jacobian criterion imetizfs 2

Hironaka's measure for distance to smoothness at p:

v (X, p) = (ordp(g1), .. .,ordp(gs))

where

> g1,--.,8s minimal standard basis von IxOan p w.r.t.
local degree ordering, sorted by increasing order.

H | rona ka ,S Approach parallel algorithms
A. Friihbis-Kriiger
Hironaka(1964):
resolution of singularities in characteristic zero

» finitely many blow-ups in 'good’ centers

» termination criterion without Jacobian criterion imetizfs 2

Hironaka's measure for distance to smoothness at p:

v (X, p) = (ordp(g1), .. .,ordp(gs))

where

> g1,--.,8s minimal standard basis von IxOan p w.r.t.
local degree ordering, sorted by increasing order.

» ordy(gi) =max{k € Z | g € mgnwp}

Hironaka's Approach Il

defined a moment ago:
V*(Xa P) = (Ordp(gl)a s 7ordp(gs))

Lemma (Hironaka)
X singular at p
= v*(X,p) >ex (1,...,1)
~———

n—dim(X)

parallel algorithms

A. Friihbis-Kriiger

Hironaka's v *

HIrOnaka’S Approach I | parallel algorithms

A. Friihbis-Kriiger

defined a moment ago:
V*(Xa p) = (Ordp(gl)a s 7ordp(gs))

Hironaka's v *

Lemma (Hironaka)
X singular at p
= v*(X,p) >ex (1,...,1)
~———
n—dim(X)

practical problem:
standard basis locally at each point impossible

LOCUS Of O rder]_ parallel algorithms
A. Friihbis-Kriiger

First entry of v*: order of ideal at p

ord,(!) := min{ord,(h) | h € I}

Hironaka's v *

LOCUS Of Order]_ parallel algorithms

A. Friihbis-Kriiger
First entry of v*: order of ideal at p

ord,(!) := min{ord,(h) | h € I}

We know:

Hironaka's v *

ordp(/) =1 == 3hel:ordp(h)=1

LOCUS Of Order]_ parallel algorithms

A. Friihbis-Kriiger
First entry of v*: order of ideal at p

ord,(!) := min{ord,(h) | h € I}

We know:

ordp(/) =1 == 3hel:ordp(h)=1

= e first entry of v*(X,p) is 1

e V/(h) smooth hypersurface locally at p
X C V(h)

LOCUS Of Order]_ parallel algorithms

A. Friihbis-Kriiger

First entry of v*: order of ideal at p

ord,(!) := min{ord,(h) | h € I}

We know:

Hironaka's v *

ordp(/) =1 == 3hel:ordp(h)=1

= e first entry of v*(X,p) is 1
e V/(h) smooth hypersurface locally at p
X C V(h)

locus of order > 2 of X:

f
a—’_!léiés,lgjsm)

A(lL)=V({A,... 1 o
j

Local System of Parameters parallel algorithms

A. Friihbis-Kriiger

we have seen:

ordp(/) =1 == 3h € | : V(h) smooth and X C V(h) near p

Hironaka's v *

Local System of Parameters parallel algorithms

A. Friihbis-Kriiger

we have seen:

ordp(/) =1 == 3h € | : V(h) smooth and X C V(h) near p

Hironaka's v *

Choose V/(h) locally at p as new ambient space

Local System of Parameters parallel algorithms

A. Friihbis-Kriiger

we have seen:

ordp(/) =1 == 3h € | : V(h) smooth and X C V(h) near p

Hironaka's v *

Choose V/(h) locally at p as new ambient space

= no longer working in K[x],

Local System of Parameters parallel algorithms

A. Friihbis-Kriiger

we have seen:

ordp(/) =1 == 3h € | : V(h) smooth and X C V(h) near p

Hironaka's v *

Choose V/(h) locally at p as new ambient space

= no longer working in K[x],
but locally at p at least isomorphic
to K[[y1, ..., yn-1]] (Cohen structure theorem)

Local System of Parameters parallel algorithms

A. Friihbis-Kriiger

we have seen:

ordp(/) =1 == 3h € | : V(h) smooth and X C V(h) near p

Hironaka's v *

Choose V/(h) locally at p as new ambient space

= no longer working in K[x],
but locally at p at least isomorphic
to K[[y1, ..., yn-1]] (Cohen structure theorem)

Transfer to (K[x1,...,xs]/(h))g possible

Subsequent Entry Of V* parallel algorithms

A. Friihbis-Kriiger

Sketch of approach:

» Choose appropriate V/(h) und D(g) covering X
(g suitably chosen derivative of h)

Hironaka's v*
» on each D(g) consider: X N D(g) C V(h)N D(g)
> repeat previous construction (slightly modified):
» dim(V/(h)) = n—1, drop in codimension
» derivatives w.r.t. local systems of parameters in

V(h) N D(g)
» provides covering of X N D(g) by new
V(h7 hneu) N D(gneu)

> iterate

Algorlth m |C Aspects parallel algorithms

A. Friihbis-Kriiger

Observation:

» number of charts increases, while codimension drops

Hironaka's v *

Algorithmic Aspects parallel algorithms
A. Friihbis-Kriiger
Observation:
» number of charts increases, while codimension drops

» sufficiently small codimension makes Jacobian criterion
feasable

Hironaka's v *

Algorlth m |C Aspects parallel algorithms

A. Friihbis-Kriiger

Observation:
» number of charts increases, while codimension drops
» sufficiently small codimension makes Jacobian criterion
feasable

> in practice: hybrid approach using descent in ambient
space and Jacobian criterion

Hironaka's v *

Algorithmic Aspects parallel slgorithms

A. Friihbis-Kriiger

Observation:
» number of charts increases, while codimension drops

» sufficiently small codimension makes Jacobian criterion
feasable

Hironaka's v *

> in practice: hybrid approach using descent in ambient
space and Jacobian criterion

Challenges:
» choose large neighbourhoods for new ambient space
» keep number of charts low/use easily computable charts
> consistent choice of local system of parameters

» derivatives w.r.t. a system of parameters

Parallel, but not embarassingly parallel paraliel algorithms

A. Friihbis-Kriiger

Challenges call for parallel approach:

» choose large neighbourhoods for new ambient space
= check whether everything is covered

Technical Side

Parallel, but not embarassingly parallel paraliel algorithms
A. Friihbis-Kriiger
Challenges call for parallel approach:

» choose large neighbourhoods for new ambient space
= check whether everything is covered

» keep number of charts low/use easily computable charts
= let fastest charts win

Technical Side

Parallel, but not embarassingly parallel paralel algorithms
A. Friihbis-Kriiger
Challenges call for parallel approach:

» choose large neighbourhoods for new ambient space
= check whether everything is covered

» keep number of charts low/use easily computable charts
= let fastest charts win

Technical Side
> derivatives w.r.t. a system of parameters
—> potentially expensive computations

We really need a powerful parallelization environment:
» with good scheduling

» with good resource management

Parallel, but not embarassingly parallel paralel algorithms
A. Friihbis-Kriiger
Challenges call for parallel approach:

» choose large neighbourhoods for new ambient space
= check whether everything is covered

» keep number of charts low/use easily computable charts
= let fastest charts win

Technical Side
> derivatives w.r.t. a system of parameters
—> potentially expensive computations

We really need a powerful parallelization environment:
» with good scheduling
» with good resource management

» without too much technical overhead

Parallel, but not embarassingly parallel paralel algorithms
A. Friihbis-Kriiger
Challenges call for parallel approach:

» choose large neighbourhoods for new ambient space
= check whether everything is covered

» keep number of charts low/use easily computable charts
= let fastest charts win

Technical Side
> derivatives w.r.t. a system of parameters
—> potentially expensive computations

We really need a powerful parallelization environment:
» with good scheduling
» with good resource management
» without too much technical overhead

> robust against huge variations in computing time and
size

The Algorithm as a Petri-Net

Discard

codir

TrivialCheck

Discard
locglly

smdoth

Init

=0

—C}Lh ‘hla-u'ubi(-'-lli'{'k

not sydooth

DeltaCheck

Hewreka

NoMore-
Tokens

Descend-
Embedding-
Smooth

i 11{)) S0

i
‘I-]fm ireka

false

parallel algorithms

A. Friihbis-Kriiger

Technical Side

A screenshot

emacs-26@nenekiki (auf nenekiki) QO
Fie Edt Optons Buffers Tools Singuar Commands Help

s B B X s Undo % B
[7] > /7 add information for path to working directory, file with addresses of com

nodes, number of cores to be used per node, and server and port for logging of the
computation

gc.options. tmpdir

e odefile =

agent-nenekiki 37932
adminisiraion-nenkid
ne

"/scrateh/ristau/temp/";

compute-nenekiki 3793
compute-nenekiki 3793
compute-nenekiki 3793
compute-nenepapa 42.
compute-nenepapa 42.
Compute-nenepapa 42.

gc.options. procspern

9877,
it 1 omer T e e Com e e e = A CH T
sach server (the frammork scales up to several thousands of cores on WPC ctusters)

/ define standard configuration for smoothness certificate
5 conngYoken sc = configure_smoothtest();
> // set option to do a projective
descend to a relative codimension of 2
relative Jacobi criterion with

b2

compre-nencpapa 42.

and
(1% svhosmuant mpplisation oF th
ts)

2 minors in thy comput

sult = smoothtest(I, gc, 50);
1:starting base sdpa components on menekiki 37932 23838
I3 starting top level gspe logging demutiplexer on nenekikt

=> accepting registration on <<nenekiki:40396>>, SOCKET
<<nenekiki-\006abdS

alagsntt oot pemek NS a2l z300s 0 ont{rl elontey pat i neok IS 1032

23888 with parent orchestrator
I: starting compute workers (master agent-nenekiki 37932 23888-0, 16/host,
unlimited, © SHM) with t agent-nenekiki 37932 23888-0 on rif entry point

compute-nenekiki 3793
compte-nenekid 3793
comput

compute-ner

s (master agent-nenekiki 37932 23888-6, 1/host,
unique, © SHM) with parent gen[nenekiki 37632 236660 on rif entry point
Reneiiict 37952 23608, nenepapa 47617 58751

[}

compute-nenepapa 42.

- *singular* Bot L62

singu! (singular Demo:run Wrap Narrow)
Hit RET to continue demo

compute-nenekiki 3793

compute-nenekid 3793'

compute-nenekiki 3793.

ComptenenckRs 3755,

gspc-monitor (auf nenekiki) 0’0
Add emiteers _Save Text Log
Execution Monitor | Logging

s
10

10
10

10
10

10

parallel algorithms

A. Friihbis-Kriiger

The problem
Hironaka's v ™
Technical Side
Timings

links

Cam pedelll—FlaChe — T|m|ngs parallel algorithms

A. Friihbis-Kriiger

2687
The problem
Hironaka's v ™
Technical Side
Timings
links.

13514

6851

356

8- la)
116 32 64 96 128 160 192 224 256

Campede”l—FlaChe - Speed_Up Versus cores parallel algorithms

A. Friihbis-Kriiger

160
140 - O P
= Hirom's
100 ngs
80
60
40
201

204 256

LI n ks a nd Refe rences parallel algorithms

A. Friihbis-Kriiger

https://github.com/singular-gpispace/framework
https://www.mathematik.uni-kl.de/

~ boehm /singulargpispace
J. Bohm, W. Decker, A. Friihbis-Kruger, F.-J. Pfreundt,
M. Rahn, L. Ristau: Towards Massively Parallel
Computations In Algebraic Geometry, to appear in ke
Foundations of Computational Mathematics (2021)
W. Decker, G.-M. Greuel, G. Pfister, H. Schonemann:
SINGULAR — A computer algebra system for polynomial
computations
http://www.singular.uni-kl.de
Fraunhofer ITWM / F.-J. Pfreundt, M. Rahn, et al.:
GPl-space
http://www.gpi-space.de

Thank you!

	Parallel Computing in brief
	GPI-Space
	Sample application: Smoothness Test
	The problem
	Hironaka's *
	Technical Side
	Timings
	links

