
parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallelism in algebraic geometry
Examples with Singular and GPI-Space

Anne Frühbis-Krüger
joint work with Janko Böhm SFB/TRR 195

and with Mirko Rahn, Fraunhofer ITWM, Kaiserslautern
(and many others from the Singular and GPI-Space

Teams)

Institut für Mathematik
Carl von Ossietzky Universitt Oldenburg

ICERM, 18.02.2021



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge I

Why parallel?

state of the art hardware:

I multicore computers

I high performance clusters

success stories:

I numerical analysis

I simulation of flows and turbulence

practical drawback:
management of distribution of resources and data



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge I

Why parallel?

state of the art hardware:

I multicore computers

I high performance clusters

success stories:

I numerical analysis

I simulation of flows and turbulence

practical drawback:
management of distribution of resources and data



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge I

Why parallel?

state of the art hardware:

I multicore computers

I high performance clusters

success stories:

I numerical analysis

I simulation of flows and turbulence

practical drawback:
management of distribution of resources and data



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge I

Why parallel?

state of the art hardware:

I multicore computers

I high performance clusters

success stories:

I numerical analysis

I simulation of flows and turbulence

practical drawback:
management of distribution of resources and data



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge I

Why parallel?

state of the art hardware:

I multicore computers

I high performance clusters

success stories:

I numerical analysis

I simulation of flows and turbulence

practical drawback:
management of distribution of resources and data



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge I

Why parallel?

state of the art hardware:

I multicore computers

I high performance clusters

success stories:

I numerical analysis

I simulation of flows and turbulence

practical drawback:
management of distribution of resources and data



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Common knowledge II

ideal speed-up:
linear in the number of cores

limiting factors in reality:

I longest non-parallelizable part (critical chain)

I communication overhead

I locking of data

kinds of parallelism:

I fine grained
(synchronize/communicate data in short intervalls)

I coarse grained
(occasionally synchronize/communicate data)

I embarrassing
(nearly no communication between tasks)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallelism in Algorithmic Algebraic Geometry

Traditionally 3 main approaches:

1. Parallelization on the level of arithmetic
−→ fine-grained/shared memory,
−→ limited to one machine

2. Embarassing parallelism of zero-dimensional objects
−→ scales up to number of instances

3. Modular approaches
−→ basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting
e.g.:

I gfan

I talk of Lars Kastner using polymake and MPTOPCOM



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallelism in Algorithmic Algebraic Geometry

Traditionally 3 main approaches:

1. Parallelization on the level of arithmetic
−→ fine-grained/shared memory,
−→ limited to one machine

2. Embarassing parallelism of zero-dimensional objects
−→ scales up to number of instances

3. Modular approaches
−→ basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting
e.g.:

I gfan

I talk of Lars Kastner using polymake and MPTOPCOM



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallelism in Algorithmic Algebraic Geometry

Traditionally 3 main approaches:

1. Parallelization on the level of arithmetic
−→ fine-grained/shared memory,
−→ limited to one machine

2. Embarassing parallelism of zero-dimensional objects
−→ scales up to number of instances

3. Modular approaches
−→ basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting
e.g.:

I gfan

I talk of Lars Kastner using polymake and MPTOPCOM



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallelism in Algorithmic Algebraic Geometry

Traditionally 3 main approaches:

1. Parallelization on the level of arithmetic
−→ fine-grained/shared memory,
−→ limited to one machine

2. Embarassing parallelism of zero-dimensional objects
−→ scales up to number of instances

3. Modular approaches
−→ basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting

e.g.:

I gfan

I talk of Lars Kastner using polymake and MPTOPCOM



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallelism in Algorithmic Algebraic Geometry

Traditionally 3 main approaches:

1. Parallelization on the level of arithmetic
−→ fine-grained/shared memory,
−→ limited to one machine

2. Embarassing parallelism of zero-dimensional objects
−→ scales up to number of instances

3. Modular approaches
−→ basically borrowed idea from number theory

More recently: inherent natural parallelism of a setting
e.g.:

I gfan

I talk of Lars Kastner using polymake and MPTOPCOM



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Separating computation and coordination layer

Tasks in parallel setting (classically):

1. design a mathematical algorithm

2. implement mathematical algorithm

3. locate and exploit its parallelization potential

4. manage data exchange

5. manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:

I concentrate on 1 and 2

I give some thought to 3, allow help from system

I leave 4 and 5 to the system



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Separating computation and coordination layer

Tasks in parallel setting (classically):

1. design a mathematical algorithm

2. implement mathematical algorithm

3. locate and exploit its parallelization potential

4. manage data exchange

5. manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:

I concentrate on 1 and 2

I give some thought to 3, allow help from system

I leave 4 and 5 to the system



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Separating computation and coordination layer

Tasks in parallel setting (classically):

1. design a mathematical algorithm

2. implement mathematical algorithm

3. locate and exploit its parallelization potential

4. manage data exchange

5. manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:

I concentrate on 1 and 2

I give some thought to 3, allow help from system

I leave 4 and 5 to the system



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Separating computation and coordination layer

Tasks in parallel setting (classically):

1. design a mathematical algorithm

2. implement mathematical algorithm

3. locate and exploit its parallelization potential

4. manage data exchange

5. manage resources

Is each of us an expert in all of these tasks?

Certainly not.

Using a workflow management system:

I concentrate on 1 and 2

I give some thought to 3, allow help from system

I leave 4 and 5 to the system



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Separating computation and coordination layer

Tasks in parallel setting (classically):

1. design a mathematical algorithm

2. implement mathematical algorithm

3. locate and exploit its parallelization potential

4. manage data exchange

5. manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:

I concentrate on 1 and 2

I give some thought to 3, allow help from system

I leave 4 and 5 to the system



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Separating computation and coordination layer

Tasks in parallel setting (classically):

1. design a mathematical algorithm

2. implement mathematical algorithm

3. locate and exploit its parallelization potential

4. manage data exchange

5. manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:

I concentrate on 1 and 2

I give some thought to 3, allow help from system

I leave 4 and 5 to the system



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Separating computation and coordination layer

Tasks in parallel setting (classically):

1. design a mathematical algorithm

2. implement mathematical algorithm

3. locate and exploit its parallelization potential

4. manage data exchange

5. manage resources

Is each of us an expert in all of these tasks? Certainly not.

Using a workflow management system:

I concentrate on 1 and 2

I give some thought to 3, allow help from system

I leave 4 and 5 to the system



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Success stories along these lines

Fan/Graph-Traversals:

I GIT-fan (Böhm, FK, Rahn, Reinbold):

I Mori chamber decomposition of cone of movable
divisors of M0,6

I 12,5 minutes on 640 cores

I tropical varieties (Bendle, Böhm, Rahn):

I tropical Grassmannian G3,8
I less than 20 minutes on 768 cores

Coverings:

I smoothness test (Böhm, Decker FK, Rahn, Ristau,
Pfreundt) – see below

I desing. of 2-dim. schemes/Z (FK, Gaube, Schober,
Ristau)

I order zeta functions (FK, Maglione, Schober, Voll)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Success stories along these lines

Fan/Graph-Traversals:

I GIT-fan (Böhm, FK, Rahn, Reinbold):

I Mori chamber decomposition of cone of movable
divisors of M0,6

I 12,5 minutes on 640 cores

I tropical varieties (Bendle, Böhm, Rahn):

I tropical Grassmannian G3,8
I less than 20 minutes on 768 cores

Coverings:

I smoothness test (Böhm, Decker FK, Rahn, Ristau,
Pfreundt) – see below

I desing. of 2-dim. schemes/Z (FK, Gaube, Schober,
Ristau)

I order zeta functions (FK, Maglione, Schober, Voll)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Success stories along these lines

Fan/Graph-Traversals:

I GIT-fan (Böhm, FK, Rahn, Reinbold):

I Mori chamber decomposition of cone of movable
divisors of M0,6

I 12,5 minutes on 640 cores

I tropical varieties (Bendle, Böhm, Rahn):

I tropical Grassmannian G3,8
I less than 20 minutes on 768 cores

Coverings:

I smoothness test (Böhm, Decker FK, Rahn, Ristau,
Pfreundt) – see below

I desing. of 2-dim. schemes/Z (FK, Gaube, Schober,
Ristau)

I order zeta functions (FK, Maglione, Schober, Voll)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

What we used: GPI-space

GPI-Space (Fraunhofer ITWM)

I originally designed with applications in finite element
methods in mind

I separation of coordination and computation layers

I distributed, robust, scalable Run-Time-System
(resource management, scheduler)

I application independent global memory layer

I Petri net based workflow engine
(automated parallel execution, dependency tracking)

biggest advantage:
Parallelisation without modification to the backend



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

What we used: GPI-space

GPI-Space (Fraunhofer ITWM)

I originally designed with applications in finite element
methods in mind

I separation of coordination and computation layers

I distributed, robust, scalable Run-Time-System
(resource management, scheduler)

I application independent global memory layer

I Petri net based workflow engine
(automated parallel execution, dependency tracking)

biggest advantage:
Parallelisation without modification to the backend



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

What we used: GPI-space

GPI-Space (Fraunhofer ITWM)

I originally designed with applications in finite element
methods in mind

I separation of coordination and computation layers

I distributed, robust, scalable Run-Time-System
(resource management, scheduler)

I application independent global memory layer

I Petri net based workflow engine
(automated parallel execution, dependency tracking)

biggest advantage:
Parallelisation without modification to the backend



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

What we used: GPI-space

GPI-Space (Fraunhofer ITWM)

I originally designed with applications in finite element
methods in mind

I separation of coordination and computation layers

I distributed, robust, scalable Run-Time-System
(resource management, scheduler)

I application independent global memory layer

I Petri net based workflow engine
(automated parallel execution, dependency tracking)

biggest advantage:
Parallelisation without modification to the backend



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Petri nets

Petri net:

I directed graph

I 2 kinds of vertices: places (circle) and transitions (box)

I places hold marked tokens

I transitions contain functional units



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Petri nets

Petri net:

I directed graph

I 2 kinds of vertices: places (circle) and transitions (box)

I places hold marked tokens

I transitions contain functional units



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Petri nets

Petri net (running on a single core):

I directed graph

I 2 kinds of vertices: places (circle) and transitions (box)

I places hold marked tokens

I transitions contain functional units



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Petri nets

Petri net (running on a single core):

I directed graph

I 2 kinds of vertices: places (circle) and transitions (box)

I places hold marked tokens

I transitions contain functional units



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Petri nets

Petri net (running on a single core):

I directed graph

I 2 kinds of vertices: places (circle) and transitions (box)

I places hold marked tokens

I transitions contain functional units



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Petri nets

Petri net (running on a single core):

I directed graph

I 2 kinds of vertices: places (circle) and transitions (box)

I places hold marked tokens

I transitions contain functional units



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Petri nets

Petri net:

I directed graph

I 2 kinds of vertices: places (circle) and transitions (box)

I places hold marked tokens

I transitions contain functional units



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus I

First for plane curves:

V (f ) singular at p ∈ C2 ⇔ not a unique
tangent direction at p

⇔ tangent space to X at p
not of dimension 1

⇔ ∂f
∂x1

(p) = 0 = ∂f
∂x2

(p)

⇔ Jacobian matrix J of f
at p of rank < 1



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus I

First for plane curves:

V (f ) singular at p ∈ C2 ⇔ not a unique
tangent direction at p

⇔ tangent space to X at p
not of dimension 1

⇔ ∂f
∂x1

(p) = 0 = ∂f
∂x2

(p)

⇔ Jacobian matrix J of f
at p of rank < 1



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus I

First for plane curves:

V (f ) singular at p ∈ C2 ⇔ not a unique
tangent direction at p

⇔ tangent space to X at p
not of dimension 1

⇔ ∂f
∂x1

(p) = 0 = ∂f
∂x2

(p)

⇔ Jacobian matrix J of f
at p of rank < 1



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus I

First for plane curves:

V (f ) singular at p ∈ C2 ⇔ not a unique
tangent direction at p

⇔ tangent space to X at p
not of dimension 1

⇔ ∂f
∂x1

(p) = 0 = ∂f
∂x2

(p)

⇔ Jacobian matrix J of f
at p of rank < 1



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus I

First for plane curves:

V (f ) singular at p ∈ C2 ⇔ not a unique
tangent direction at p

⇔ tangent space to X at p
not of dimension 1

⇔ ∂f
∂x1

(p) = 0 = ∂f
∂x2

(p)

⇔ Jacobian matrix J of f
at p of rank < 1



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus II

Jacobian Criterion

Let all components of V (f1, . . . , fm) be of dimension d

Then:
V (f1, . . . , fm) sing. in p ∈ Cn ⇔ dimC Tp(X ) > d

⇔ rank of Jacobian matrix
J of (f1 . . . , fm) at p
< n − d

singular locus:

Sing(X ) := {p ∈ X | X singular at p}
= V (f1, . . . , fm and (n − dim(X ))−

minors of Jacobian matrix J)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus II

Jacobian Criterion

Let all components of V (f1, . . . , fm) be of dimension d

Then:
V (f1, . . . , fm) sing. in p ∈ Cn ⇔ dimC Tp(X ) > d

⇔ rank of Jacobian matrix
J of (f1 . . . , fm) at p
< n − d

singular locus:

Sing(X ) := {p ∈ X | X singular at p}
= V (f1, . . . , fm and (n − dim(X ))−

minors of Jacobian matrix J)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus II

Jacobian Criterion

Let all components of V (f1, . . . , fm) be of dimension d

Then:
V (f1, . . . , fm) sing. in p ∈ Cn ⇔ dimC Tp(X ) > d

⇔ rank of Jacobian matrix
J of (f1 . . . , fm) at p
< n − d

singular locus:

Sing(X ) := {p ∈ X | X singular at p}
= V (f1, . . . , fm and (n − dim(X ))−

minors of Jacobian matrix J)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus II

Jacobian Criterion

Let all components of V (f1, . . . , fm) be of dimension d

Then:
V (f1, . . . , fm) sing. in p ∈ Cn ⇔ dimC Tp(X ) > d

⇔ rank of Jacobian matrix
J of (f1 . . . , fm) at p
< n − d

singular locus:

Sing(X ) := {p ∈ X | X singular at p}

= V (f1, . . . , fm and (n − dim(X ))−
minors of Jacobian matrix J)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The singular locus II

Jacobian Criterion

Let all components of V (f1, . . . , fm) be of dimension d

Then:
V (f1, . . . , fm) sing. in p ∈ Cn ⇔ dimC Tp(X ) > d

⇔ rank of Jacobian matrix
J of (f1 . . . , fm) at p
< n − d

singular locus:

Sing(X ) := {p ∈ X | X singular at p}
= V (f1, . . . , fm and (n − dim(X ))−

minors of Jacobian matrix J)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

A real-life example – the problem

numerical Godeaux-Surface (from current research/
surface with prescribed properties):

13 variables, dimension 2, 22 polynomials
=⇒ approx. 55 Mio. minors

Jacobian Criterion tests : Sing(X ) == ∅ ?

I that is: 1 ∈ I + 〈(n − d) minors von J〉 ?

I Groebner Basis computations: all minors as input (size
of pairset!)

I certificate of smoothness or singularity after all
computations



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

A real-life example – the problem

numerical Godeaux-Surface (from current research/
surface with prescribed properties):

13 variables, dimension 2, 22 polynomials
=⇒ approx. 55 Mio. minors

Jacobian Criterion tests : Sing(X ) == ∅ ?

I that is: 1 ∈ I + 〈(n − d) minors von J〉 ?

I Groebner Basis computations: all minors as input (size
of pairset!)

I certificate of smoothness or singularity after all
computations



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

A real-life example – the problem

numerical Godeaux-Surface (from current research/
surface with prescribed properties):

13 variables, dimension 2, 22 polynomials
=⇒ approx. 55 Mio. minors

Jacobian Criterion tests : Sing(X ) == ∅ ?

I that is: 1 ∈ I + 〈(n − d) minors von J〉 ?

I Groebner Basis computations: all minors as input (size
of pairset!)

I certificate of smoothness or singularity after all
computations



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The setting

K algebraically closed field

f1, . . . , fr ∈ K[x1, . . . , xn] and X = V (f1, . . . , fr )

IX = I (X ) ⊂ K[x1, . . . , xn] vanishing ideal

Goal:

Test whether X is singular
without computation of singular locus!



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The setting

K algebraically closed field

f1, . . . , fr ∈ K[x1, . . . , xn] and X = V (f1, . . . , fr )

IX = I (X ) ⊂ K[x1, . . . , xn] vanishing ideal

Goal:

Test whether X is singular
without computation of singular locus!



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The setting

K algebraically closed field

f1, . . . , fr ∈ K[x1, . . . , xn] and X = V (f1, . . . , fr )

IX = I (X ) ⊂ K[x1, . . . , xn] vanishing ideal

Goal:

Test whether X is singular
without computation of singular locus!



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The setting

K algebraically closed field

f1, . . . , fr ∈ K[x1, . . . , xn] and X = V (f1, . . . , fr )

IX = I (X ) ⊂ K[x1, . . . , xn] vanishing ideal

Goal:

Test whether X is singular
without computation of singular locus!



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Hironaka’s Approach

Hironaka(1964):

resolution of singularities in characteristic zero

I finitely many blow-ups in ’good’ centers

I termination criterion without Jacobian criterion

Hironaka’s measure for distance to smoothness at p:

ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

where

I g1, . . . , gs minimal standard basis von IXOAn
K,p

w.r.t.
local degree ordering, sorted by increasing order.

I ordp(gi ) = max{k ∈ Z | gi ∈ mk
An
K ,p
}



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Hironaka’s Approach

Hironaka(1964):

resolution of singularities in characteristic zero

I finitely many blow-ups in ’good’ centers

I termination criterion without Jacobian criterion

Hironaka’s measure for distance to smoothness at p:

ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

where

I g1, . . . , gs minimal standard basis von IXOAn
K,p

w.r.t.
local degree ordering, sorted by increasing order.

I ordp(gi ) = max{k ∈ Z | gi ∈ mk
An
K ,p
}



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Hironaka’s Approach

Hironaka(1964):

resolution of singularities in characteristic zero

I finitely many blow-ups in ’good’ centers

I termination criterion without Jacobian criterion

Hironaka’s measure for distance to smoothness at p:

ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

where

I g1, . . . , gs minimal standard basis von IXOAn
K,p

w.r.t.
local degree ordering, sorted by increasing order.

I ordp(gi ) = max{k ∈ Z | gi ∈ mk
An
K ,p
}



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Hironaka’s Approach

Hironaka(1964):

resolution of singularities in characteristic zero

I finitely many blow-ups in ’good’ centers

I termination criterion without Jacobian criterion

Hironaka’s measure for distance to smoothness at p:

ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

where

I g1, . . . , gs minimal standard basis von IXOAn
K,p

w.r.t.
local degree ordering, sorted by increasing order.

I ordp(gi ) = max{k ∈ Z | gi ∈ mk
An
K ,p
}



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Hironaka’s Approach

Hironaka(1964):

resolution of singularities in characteristic zero

I finitely many blow-ups in ’good’ centers

I termination criterion without Jacobian criterion

Hironaka’s measure for distance to smoothness at p:

ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

where

I g1, . . . , gs minimal standard basis von IXOAn
K,p

w.r.t.
local degree ordering, sorted by increasing order.

I ordp(gi ) = max{k ∈ Z | gi ∈ mk
An
K ,p
}



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Hironaka’s Approach II

defined a moment ago:
ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

Lemma (Hironaka)

X singular at p

⇐⇒ ν∗(X , p) >lex (1, . . . , 1)︸ ︷︷ ︸
n−dim(X )

practical problem:
standard basis locally at each point impossible



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Hironaka’s Approach II

defined a moment ago:
ν∗(X , p) := (ordp(g1), . . . , ordp(gs))

Lemma (Hironaka)

X singular at p

⇐⇒ ν∗(X , p) >lex (1, . . . , 1)︸ ︷︷ ︸
n−dim(X )

practical problem:
standard basis locally at each point impossible



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Locus of Order 1

First entry of ν∗: order of ideal at p

ordp(I ) := min{ordp(h) | h ∈ I}

We know:

ordp(I ) = 1 =⇒ ∃h ∈ I : ordp(h) = 1

=⇒ • first entry of ν∗(X , p) is 1

•V (h) smooth hypersurface locally at p

X ⊂ V (h)

locus of order ≥ 2 of X :

∆(Ix) = V (〈f1, . . . , fs ,
∂fi
∂xj
| 1 ≤ i ≤ s, 1 ≤ j ≤ n〉)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Locus of Order 1

First entry of ν∗: order of ideal at p

ordp(I ) := min{ordp(h) | h ∈ I}

We know:

ordp(I ) = 1 =⇒ ∃h ∈ I : ordp(h) = 1

=⇒ • first entry of ν∗(X , p) is 1

•V (h) smooth hypersurface locally at p

X ⊂ V (h)

locus of order ≥ 2 of X :

∆(Ix) = V (〈f1, . . . , fs ,
∂fi
∂xj
| 1 ≤ i ≤ s, 1 ≤ j ≤ n〉)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Locus of Order 1

First entry of ν∗: order of ideal at p

ordp(I ) := min{ordp(h) | h ∈ I}

We know:

ordp(I ) = 1 =⇒ ∃h ∈ I : ordp(h) = 1

=⇒ • first entry of ν∗(X , p) is 1

•V (h) smooth hypersurface locally at p

X ⊂ V (h)

locus of order ≥ 2 of X :

∆(Ix) = V (〈f1, . . . , fs ,
∂fi
∂xj
| 1 ≤ i ≤ s, 1 ≤ j ≤ n〉)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Locus of Order 1

First entry of ν∗: order of ideal at p

ordp(I ) := min{ordp(h) | h ∈ I}

We know:

ordp(I ) = 1 =⇒ ∃h ∈ I : ordp(h) = 1

=⇒ • first entry of ν∗(X , p) is 1

•V (h) smooth hypersurface locally at p

X ⊂ V (h)

locus of order ≥ 2 of X :

∆(Ix) = V (〈f1, . . . , fs ,
∂fi
∂xj
| 1 ≤ i ≤ s, 1 ≤ j ≤ n〉)



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Local System of Parameters

we have seen:

ordp(I ) = 1 =⇒ ∃h ∈ I : V (h) smooth and X ⊂ V (h) near p

Choose V (h) locally at p as new ambient space

=⇒ no longer working in K[x ],
but locally at p at least isomorphic
to K[[y1, . . . , yn−1]] (Cohen structure theorem)

Transfer to (K[x1, . . . , xn]/〈h〉)g possible



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Local System of Parameters

we have seen:

ordp(I ) = 1 =⇒ ∃h ∈ I : V (h) smooth and X ⊂ V (h) near p

Choose V (h) locally at p as new ambient space

=⇒ no longer working in K[x ],
but locally at p at least isomorphic
to K[[y1, . . . , yn−1]] (Cohen structure theorem)

Transfer to (K[x1, . . . , xn]/〈h〉)g possible



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Local System of Parameters

we have seen:

ordp(I ) = 1 =⇒ ∃h ∈ I : V (h) smooth and X ⊂ V (h) near p

Choose V (h) locally at p as new ambient space

=⇒ no longer working in K[x ],

but locally at p at least isomorphic
to K[[y1, . . . , yn−1]] (Cohen structure theorem)

Transfer to (K[x1, . . . , xn]/〈h〉)g possible



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Local System of Parameters

we have seen:

ordp(I ) = 1 =⇒ ∃h ∈ I : V (h) smooth and X ⊂ V (h) near p

Choose V (h) locally at p as new ambient space

=⇒ no longer working in K[x ],
but locally at p at least isomorphic
to K[[y1, . . . , yn−1]] (Cohen structure theorem)

Transfer to (K[x1, . . . , xn]/〈h〉)g possible



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Local System of Parameters

we have seen:

ordp(I ) = 1 =⇒ ∃h ∈ I : V (h) smooth and X ⊂ V (h) near p

Choose V (h) locally at p as new ambient space

=⇒ no longer working in K[x ],
but locally at p at least isomorphic
to K[[y1, . . . , yn−1]] (Cohen structure theorem)

Transfer to (K[x1, . . . , xn]/〈h〉)g possible



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Subsequent Entry of ν∗

Sketch of approach:

I Choose appropriate V (h) und D(g) covering X
(g suitably chosen derivative of h)

I on each D(g) consider: X ∩ D(g) ⊂ V (h) ∩ D(g)
I repeat previous construction (slightly modified):

I dim(V (h)) = n − 1, drop in codimension
I derivatives w.r.t. local systems of parameters in

V (h) ∩ D(g)
I provides covering of X ∩ D(g) by new

V (h, hneu) ∩ D(gneu)

I iterate



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Algorithmic Aspects

Observation:

I number of charts increases, while codimension drops

I sufficiently small codimension makes Jacobian criterion
feasable

I in practice: hybrid approach using descent in ambient
space and Jacobian criterion

Challenges:

I choose large neighbourhoods for new ambient space

I keep number of charts low/use easily computable charts

I consistent choice of local system of parameters

I derivatives w.r.t. a system of parameters



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Algorithmic Aspects

Observation:

I number of charts increases, while codimension drops

I sufficiently small codimension makes Jacobian criterion
feasable

I in practice: hybrid approach using descent in ambient
space and Jacobian criterion

Challenges:

I choose large neighbourhoods for new ambient space

I keep number of charts low/use easily computable charts

I consistent choice of local system of parameters

I derivatives w.r.t. a system of parameters



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Algorithmic Aspects

Observation:

I number of charts increases, while codimension drops

I sufficiently small codimension makes Jacobian criterion
feasable

I in practice: hybrid approach using descent in ambient
space and Jacobian criterion

Challenges:

I choose large neighbourhoods for new ambient space

I keep number of charts low/use easily computable charts

I consistent choice of local system of parameters

I derivatives w.r.t. a system of parameters



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Algorithmic Aspects

Observation:

I number of charts increases, while codimension drops

I sufficiently small codimension makes Jacobian criterion
feasable

I in practice: hybrid approach using descent in ambient
space and Jacobian criterion

Challenges:

I choose large neighbourhoods for new ambient space

I keep number of charts low/use easily computable charts

I consistent choice of local system of parameters

I derivatives w.r.t. a system of parameters



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallel, but not embarassingly parallel

Challenges call for parallel approach:

I choose large neighbourhoods for new ambient space
=⇒ check whether everything is covered

I keep number of charts low/use easily computable charts
=⇒ let fastest charts win

I derivatives w.r.t. a system of parameters
=⇒ potentially expensive computations

We really need a powerful parallelization environment:

I with good scheduling

I with good resource management

I without too much technical overhead

I robust against huge variations in computing time and
size



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallel, but not embarassingly parallel

Challenges call for parallel approach:

I choose large neighbourhoods for new ambient space
=⇒ check whether everything is covered

I keep number of charts low/use easily computable charts
=⇒ let fastest charts win

I derivatives w.r.t. a system of parameters
=⇒ potentially expensive computations

We really need a powerful parallelization environment:

I with good scheduling

I with good resource management

I without too much technical overhead

I robust against huge variations in computing time and
size



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallel, but not embarassingly parallel

Challenges call for parallel approach:

I choose large neighbourhoods for new ambient space
=⇒ check whether everything is covered

I keep number of charts low/use easily computable charts
=⇒ let fastest charts win

I derivatives w.r.t. a system of parameters
=⇒ potentially expensive computations

We really need a powerful parallelization environment:

I with good scheduling

I with good resource management

I without too much technical overhead

I robust against huge variations in computing time and
size



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallel, but not embarassingly parallel

Challenges call for parallel approach:

I choose large neighbourhoods for new ambient space
=⇒ check whether everything is covered

I keep number of charts low/use easily computable charts
=⇒ let fastest charts win

I derivatives w.r.t. a system of parameters
=⇒ potentially expensive computations

We really need a powerful parallelization environment:

I with good scheduling

I with good resource management

I without too much technical overhead

I robust against huge variations in computing time and
size



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Parallel, but not embarassingly parallel

Challenges call for parallel approach:

I choose large neighbourhoods for new ambient space
=⇒ check whether everything is covered

I keep number of charts low/use easily computable charts
=⇒ let fastest charts win

I derivatives w.r.t. a system of parameters
=⇒ potentially expensive computations

We really need a powerful parallelization environment:

I with good scheduling

I with good resource management

I without too much technical overhead

I robust against huge variations in computing time and
size



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

The Algorithm as a Petri-Net



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

A screenshot



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Campedelli-Fläche – Timings

2687

1351

685

356

18

1 16 32 64 96 128 160 192 224 256



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Campedelli-Fläche – Speed-Up versus cores

20

40

60

80

100

120

140

160

1 16 32 64 96 128 160 192 224 256



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Links and References

I https://github.com/singular-gpispace/framework

I https://www.mathematik.uni-kl.de/
˜ boehm/singulargpispace

I J. Böhm, W. Decker, A. Frühbis-Krüger, F.-J. Pfreundt,
M. Rahn, L. Ristau: Towards Massively Parallel
Computations In Algebraic Geometry, to appear in
Foundations of Computational Mathematics (2021)

I W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann:
Singular – A computer algebra system for polynomial
computations
http://www.singular.uni-kl.de

I Fraunhofer ITWM / F.-J. Pfreundt, M. Rahn, et al.:
GPI-space
http://www.gpi-space.de



parallel algorithms

A. Frühbis-Krüger

Parallel Computing
in brief

GPI-Space

Sample
application:
Smoothness Test

The problem

Hironaka’s ν∗

Technical Side

Timings

links

Thank you!


	Parallel Computing in brief
	GPI-Space
	Sample application: Smoothness Test
	The problem
	Hironaka's *
	Technical Side
	Timings
	links


